• Aucun résultat trouvé

ORIENTATIONAL ACOUSTIC NONLINEARITY IN FLUIDS WITH ANISOTROPIC PARTICLES

N/A
N/A
Protected

Academic year: 2021

Partager "ORIENTATIONAL ACOUSTIC NONLINEARITY IN FLUIDS WITH ANISOTROPIC PARTICLES"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00219545

https://hal.archives-ouvertes.fr/jpa-00219545

Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ORIENTATIONAL ACOUSTIC NONLINEARITY IN FLUIDS WITH ANISOTROPIC PARTICLES

V. Lebedev, L. Ostrovsky

To cite this version:

V. Lebedev, L. Ostrovsky. ORIENTATIONAL ACOUSTIC NONLINEARITY IN FLUIDS WITH ANISOTROPIC PARTICLES. Journal de Physique Colloques, 1979, 40 (C8), pp.C8-235-C8-238.

�10.1051/jphyscol:1979840�. �jpa-00219545�

(2)

ORIENTATIONAL ACOUSTIC NONLINEARITY IN FLUIDS WITH ANISOTROPIC PARTICLES V.T. Lebedev and L.A. Ostrovsky

Institute of Applied Physios of the Academy of Soienoes of the V.S.S.R., 603024 Gorky, V.S.S.B.

Abstract.- Nonlinear self-action of acoustic waves due to the orientation of anisotropic particles in a sound field (the acoustic Kerr-effect) is considered. Analysis is performed for a liquid crystal in which an ultrasound changes the order parameter, the induced transition from nematic state into iso- tropic one and vice versa being possible. Estimations are made showing the real opportunity of obser- ving different nonlinear effects (phase self-modulation, wave profile distortion, self-focusing) in a liquid crystal.

This paper considers some nonlinear acoustic effects related to orientation of anisotropic micro- particles suspended in a liquid. Orientating action of an ultrasound on the system of anisotropic par- ticles has been observed rather long ago for sus- pensions with needle-shaped crystals /l/. Similar effects acquire great interest now in connection with investigation of crystalline liquids and amor- phous polymers. For us the fact is important that orientation of particles influences the acoustic parameters of the medium that results in the non- linear self-action of a sound. In principle there is an analogy with the optical Kerr-effect here, though both the theoretical model and specific manifesta- tions of such "acoustic Kerr-effect" turn to be essentially different.

We consider here the interaction of an ultra- sound field with cigar-shaped particles (tactoids) with the length I suspended in a liquid. At the beginning we shall neglect any other orientating factors besides an ultrasound. For sufficiently small I each particle carried by the acoustic velo- city field performs oscillatory movements with the angular velocity w = - /2(6v/Sx) sin 2 0 where v(x,t) is the oscillatory velocity of fluid parti- cles in a wave and 9 is the tactoid orientation angle relative to the direction of wave propagation.

The angular distribution function f(9,t) in the given point is described by the known equation /l/ which with allowance for (1) has the form

where z = cos Q , g = &v/Sx , D is the rotatory diffusion coefficient.

The solution of (1) may be represented by a series of Legendre polynomials P (z)

Substituting this series in (2) we obtain the recur- rent system of equations for C , C„ being equal to (4 ir)" . If the wave amplitude is sufficiently small then it is easily seen that the coefficients C

n decay with the growth of n. Considering the harmonic sound field in the form v = (1/2) | A(x)£lalt + A*(x)£~ | one can find the periodic solution for C2 :

where C« is the time average of C2 proDortional to

1A

X

|

2

.

The mean orientation of the particle system is usually characterized by the order parameter

S = <P2> = | |3 <Cos29> - 1| = | TT C2 where < >

denotes the averaging over a. From (3) or (4) we have after averaging over a period

Hence, the orientation degree is proportional to the square of the acoustic Hach number M = |A|/C , where C is the sound velocity. To describe the JOURNAL DE PHYSIQUE Colloque C8, supplément au n°ll, tome 40, novembre 1979, page C8-235

Résumé.- Les interactions non linéaires des ondes acoustiques induites par l'orientation des p a r t i - cules anisotropes dans un champ ultrasonore (effet Kerr acoustique) sont étudiées. L'analyse est menée pour un cristal liquide dans lequel la variation du paramètre d'ordre, la transition induite de l ' é t a t nématique à l ' é t a t isotrope, et réciproquement, sont possibles. Des estimations sont faites pour différents effets non linéaires dans un cristal liquide (auto modulation de phase, distorsion du profil d'onde, auto focalisation).

Article published online by EDP Sciences and available at

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1979840

(3)

JOURNAL DE PHYSIOUE

o r i e n t a t i o n n o n l i n e a r i t y i t i s necessary t o d e f i n e the r e l a t i o n between and sound v e l o c i t y i n t h e medium. This r e l a t i o n may be found o n l y w i t h i n t h e frames o f thermodynamics o f a n i s o t r o p i c f l u i d s t a - k i n g i n t o account t h e i n t e r m o l e c u l a r i n t e r a c t i o n s . E s p e c i a l l y s t r o n g n o n l i n e a r e f f e c t s a r i s e i n the case o f o r i e n t a t i o n phase t r a n s i t i o n s . Ye con- s i d e r here t h e behaviour o f a l i q u i d c r y s t a l near the p o i n t o f t r a n s i t i o n between i s o t r o p i c and neu- matic phases. I n t h i s case equation (1) must be supplemented by t h e terms r e s p o n s i b l e f o r the long- range i n t e r a c t i o n s . S t a t i s t i c a l mechanics o f neu- m a t i c i s b u i l t o n l y f o r some simple models. Themost u n i v e r s a l seems t o be t h e phenomenological t h e o r y of Fleier and Zaupe /2,3/. According t o t h i s theory, the energy o f t h i s molecule i n t h e long-range mole- c u l a r f i e l d E =

-

1 USP2(B) where 6 i s t h e angle of p a r t i c l e o r i e n t a t i o n and U i s t h e parameter de- f i n e d by Van-der-Vaals forces. The energy E must be taken i n t o account i n k i n e t i c equation ( 2 ) .

I f t h e d i r e c t i o n o f the nematic o r i e n t a t i o n coincides w i t h t h e d i r e c t i o n o f u l t r a s o u n d propaga- t i o n then 6 = O and t h e k i n e t i c equation f o r f has the form

where z =

-

cos 0 , m = 3 US/2 k t .

We s h a l l consider below the comparatively low frequencies when w << 6 D. I n t h i s case s e t t i n g the r i g h t p a r t o f ( 7 ) t o zero we e a s i l y f i n d t h a t

This expression i s the same as i n r l e i e r and Zaupe's t h e o r y /2,3/, b u t the parameter m' depends here on the value o f t h e a c o u s t i c v e l o c i t y f i e l d . As a r e s u l t the parameter m' o s c i l l a t e s w i t h the frequency w and, consequently, t h e s t a t e o f a l i q u i d c r y s t a l p e r i o d i c a l l y changes.

The value S i n each moment i s d e f i n e d by t h e equations /2/

L e t us use, as usual, t h e graphic i n t e r p r e t a t i o n o f equations ( 6 ) ( f i g . 1 ) . For g = 0, t h e s t a t e o f t h e system i s d e f i n e d by temperature : i n case

k T > 4.55 U, the system i s i s o t r o p i c (S = 0) ;

F i g . 1 : Graphic i n t e r p r e t a t i o n o f equations ( 6 ) c

-

t h e dependence (6 a ) , 1,2,3

-

( 6 b ) a t d i f f e r e n t values o f g

.

otherwise, s t a b l e i s t h e oematic phase. The minimull value o f the o r d e r parameter SC(TC) i n t h e neumatic phase i s 0.44.

The a c t i o n o f t h e u l t r a s o u n d gives r i s e t o t h e p e r i o d i c p a r a l l e l t r a n s l a t i o n s of t h e l i n e ( 6 b) i n f i g . 1 from the o r i g i n .

The most i n t e r e s t i n g i s t h e case when t h e u l - trasound a c t s near t h e t r a n s i t i o n p o i n t m = mC

,

S = SC. L e t t h e i n i t i a l value S = So i n t h e neu- matic exceed SC by a small value

5.

I n t h e presence o f t h e u l t r a s o u n d S undercoes t h e a d d i t i o n a l small v a r i a t i o n

n .

One may f i n d from ( 6 a) and (6 b) t h e f o l l o w i n g r e l a t i o n between q and

5

:

q ( t ) =

d 2

+ Bg ( t )

-

t; ( 7 )

where 6 = (L)d2m/ds2)-l and t h e d e r i v a t i v e i s taken i n t h e p o i n t S = SC. Then i t i s easy t o c a l c u l a t e t h e mean value o f q

.

The formula (11) i s v a l i d i f t h e amplitude gmax i s smaller than some c r i t i c a l value g* corres- ponding t o t h e t r a n s i t i o n i n t o t h e q u a s i i s o t r o p i c s t a t e . The value g* i s equal t o

-

The corresponding mean value q i s

I n case when gmax exceeds g*

,

t h e system w i l l be thrown over between t h e nematic and q u a s i i s o - t r o p i c s t a t e s . I n t h i s case, f o r small

5

one may n e g l e c t t h e change o f S o u t s i d e t h e phase t r a n s i - t i o n s ; then, approximately, one may assume S t o undergo p e r i o d i c o s c i l l a t i o n s o f a r e c t a n g u l a r form between t h e values near SC and 0

(4)

V.T. Lebedev and L.A. Ostrovsky c8-237

( f i g . 2)" so t h a t t h e average value of S i s equal may be o f v a r i o u s character. Local changes o f C du-

t o r i n g each p e r i o d r e s u l t i n the deformation o f a wave

p r o f i l e up t o t h e formation o f d i s c o n t i n u i t i e s

1 9%

= SC 11

-

- a r c cos -

1

Tr (9) (shocks) ( f i g . 4 ) . Here, u n l i k e t h e usual cases, t h e

g m asymptotic form of a wave p r o f i l e i s n o t a saw-tooth

Hence,

5

v a r i e s from Sc t o SC/2 ( f i g . 3) w i t h t h e one.

growth o f the f i e l d ampl i t u d e .

u%++

t

F i g . 2 : Time v a r i a t i o n s o f the order parameters S i n the i n t e n s i v e harmonic a c o u s t i c f i e l d g ( t ) .

F i g . 3 : Dependence of mean value o f S on sound ampl i tude.

Now l e t us r e t u r n t o the q u e s t i o n o f t h e de- pendence o f sound v e l o c i t y C on t h e o r d e r parameter.

This dependence was considered, f o r example, i n 141.

I f the changes o f t h e t o t a l energy o f a medium due t o o r i e n t a t i o n are r e l a t i v e l y small, then

C

-

Co ( 1

+

6s)

,

where 6 i s a temperature dependent parameter. Judging by the experimental data, f o r t h e nematic s t a t e 6

-

0,l. I f gm > g*

,

t h e sound ve- l o c i t y undergoes jump-1 i ke changes. According t o the experimental data 141, these jumps may achieve values o f the order of

lo-'.

To o b t a i n a more con- v i n c i n g e s t i m a t i o n one must consider some a d d i t i o n - n a l f a c t o r s such as t h e f l u c t u a t i o n s o f the order parameter i n t h e v i c i n i t y o f phase t r a n s i t i o n . M o r e - over, t h e u l t r a s o u n d changes t h e temperature o f t h e medium which a l s o i n f l u e n c e s t h e c o n d i t i o n s o f phase t r a n s i t i o n . Rough e s t i m a t i o n s show t h a t i n t h e f r e - quency band 1-10 MHz t h e a n a l y s i s performed holds t r u e p r o v i d e d the a c o u s t i c Mach number exceeds 1 0 - ~ + 1 0 - ~ .

The n o n l i n e a r a c o u s t i c e f f e c t s a r i s i n g here

'

To be precise, f o r g < 0 a tendency a r i s e s f o r t h e molecula-r o r i e n t a t i o n i n t h e plane perpendicular t o a x i s x ' ( i s o t r o p y i n t h i s plane bein? reserved).

Such "weak" order needs a s p e c i a l i n v e s t i g a t i o n .

F i g . 4 : A scheme o f n o n l i n e a r e v o l u t i o n o f wave p r o f i l e a t gmaX > gx.

A t t h e same t i n e , due t o t h e dependence of t h e mean value o f S on t h e f i e l d i n t e n s i t y , v a r i o u s s e l f - a c t i o n e f f e c t s f o r t h e wave envelopes (amplitude, phase) may be observed. The a n a l y s i s o f these e f f e c t s may~be c a r r i e d o u t by t h e methods well-known i n t h e n o n l i n e a r o p t i c s (see a l s o t h e paper 151 d e a l i n g w i t h t h e thermal s e l f - a c t i o n o f a c o u s t i c waves). The dependence o f t h e phase s h i f t i n a wave on i t s i n t e n s i t y i s one o f t h e s i m p l e s t o f t h e ef- fects. The n o n l i n e a r phase s h i f t by ~r i s achieved a t t h e distance , xo =

XE/Z

AT, where

AT.

i s t h e change o f the mean sound v e l o c i t y i n a wave. I f

AEIC -

1 0 - ~ + 1 0 - ~ a t the frequency 5 MHz,

xO

=

0,2+2 cm. For a p u l s e s i g n a l

AC

changes i n time t h a t y i e l d s t h e frequency modulation i n a pulse. A t distances x >> xo t h e w i d t h o f t h e p u l s e spectrum w i l l be d e f i n e d n o t by i t s d u r a t i o n T b u t t h e value Aw >> T-l. Such n o n l i n e a r broadenin? o f a spectrum due t o t h e phase s e l f - m o d u l a t i o n i s well-known i n t h e n o n l i n e a r o p t i c s

161.

Of i n t e r e s t i s a l s o t h e p o s s i b i l i t y o f t h e sound s e l f - f o c u s i n g due t o t h e o r i e n t a t i o n nonlinea- r i t y . Self-focusin; occurs i f d c / d ~ 0. Usually, t h e sound v e l o c i t y i n t h e o r i e n t a t e d c r y s t a l i s g r e a t e r than t h a t i n t h e i s o t r o p i c one, i .e.

dC/dS > 0. T h i s i m p l i e s t h a t t h e a c t i o n o f t h e u l t r h sound on the i s o t r o p i c c r y s t a l r e s u l t s i n t h e defo- cusing, whereas propagation of t h e u l t r a s o u n d beam i n neumatics near t h e t r a n s i t i o n p o i n t may be ac- companied by s e l f - f o c u s i n g .

As i t i s known /7/, t h e c r i t i c a l amplitude o f

(5)

~ 8 - 2 3 8 JOURNAL DE PHYSInUE

a c y l i n d r i c a l beam, a t which s e l f - f o c u s i n g a r i s e s , i s determined by t h e c o n d i t i o n

AC/C

>, ( k D ) - l where D i s t h e diameter o f t h e beam. The d i s t a n c e xN a t which t h e c o l l a p s e o f t h e plane beam occurs i s o f t h e o r d e r o f

D&c/C.

For example, i n a beam o f d i a - meter l cm a t a frequency o f 5 MHz t h e c o n d i t i o n o f t h e c o l l a p s e i s r e a l i z e d a t

AC/C

> 5 . 1 0 - ~ . I f

AC/C -

10-'+10-~, then xN

-

3r10 cm.

The damping d i s t a n c e o f sound i n l i q u i d c r y s - t a l s i s o f the same o r d e r /2,4/, t h e r e f o r e , obser- v a t i o n o f t h e s e l f - f o c u s i n ? e f f e c t (and a l l themore so, o f t h e phase self-modulation) seems t o be pos- s i b l e .

O f course, t h e o r i e n t a t i o n a l a c o u s t i c n o n l i - n e a r i t y may m a n i f e s t i t s e l f n o t o n l y i n l i q u i d c r y s t a l s . I t i s worthwhile t o consider t h e p o s s i b i - l i t y o f s i m i l a r e f f e c t s i n amorphous polymers and b i o l o g i c a l s o l u t i o n s . These e f f e c t s may be used, f o r example, f o r the d i r e c t d i a g n o s t i c s o f the par- t i c l e o r i e n t a t i o n i n nontransparent media.

References

Frenkel, Ya.I., The k i n e t i c theory o f f l u i d s , Plauka

,

Floscow.

de Gennes, P.G., The physics o f l i q u i d c r y s t a l s , C l arendon Press, Oxford (1974).

Maier, Id., Saupe, A., Z. Naturforsch,

AE,

(1960) 287.

Kapustin, A.P., E l e c t r o o p t i c and a c o u s t i c pro- p e r t i e s o f 1 iq u i d c r y s t a l s , Mauka, Ploscow(1973).

Zabolotskaya, E.A., Khokhlov, R.V., Akustiche+

k i i zhurnal

,

22 (1976).

Ostrovsky, L.A., Pis'ma v ZhETF,

5

(1967) 807.

Karpman, V . I . , Nonlinear waves i n d i s p e r s i v e media, Nauka, Floscow (1973).

Klemin, V.A., Lebedev, V.T. Ostrovsky L.A., On t h e a c o u s t i c n o n l i n e a r i t y associated w i t h t h e m i c r o p a r t i c l e o r i e n t a t i o n , I X A l l - U n i o n a c o u s t i c conference, Fbscow (1977).

Références

Documents relatifs

On a donné les valeurs exactes du sinus et cosinus de quelques angles remarquables entre 0 et 90°.. Retrouver le point qui correspond à

Pour chacune des équations proposées on donnera, en le justifiant soigneusement, l'ensemble des solutions dans IR, puis, sans justification supplémentaire, l'ensemble des

[r]

[r]

Josserand, Marty &amp; Alemany (1993) have completed this work by measuring local pressure and Strouhal frequency in the boundary layer around the cylinder. All of these

On a donné les valeurs exactes du sinus et cosinus de quelques angles remarquables entre 0 et 90°.. Retrouver le point qui correspond à

As it occurs in the classical Navier-Stokes System, global resuit s for small initial data are easier to prove than local resuit s for large data. In any case, the proof relies

may 1987, to be published in the proceedings of the colloquium in number theory, Budapest, July 1987.. SZALAY, On the statistical theory of partitions ; in