• Aucun résultat trouvé

Unistructuralité des algèbres amassées de type Ã

N/A
N/A
Protected

Academic year: 2021

Partager "Unistructuralité des algèbres amassées de type Ã"

Copied!
55
0
0

Texte intégral

(1)

❯♥✐#$%✉❝$✉%❛❧✐$* ❞❡# ❛❧❣.❜%❡# ❛♠❛##*❡# ❞❡ $②♣❡ ˜A

♣❛"

❱$"♦♥✐(✉❡ ❇❛③✐❡%✲▼❛((❡

▼$♠♦✐"❡ ♣"$-❡♥.$ ❛✉ ❉$♣❛".❡♠❡♥. ❞❡ ♠❛.❤$♠❛.✐(✉❡- ❡♥ ✈✉❡ ❞❡ ❧✬♦❜.❡♥.✐♦♥

❞✉ ❣"❛❞❡ ❞❡ ▼❛7."❡ 8- -❝✐❡♥❝❡- ✭▼✳ ❙❝✳✮

❋❛❝✉❧(- ❞❡/ /❝✐❡♥❝❡/

❯♥✐✈❡%/✐(- ❞❡ ❙❤❡%❜%♦♦❦❡

❙❤❡"❜"♦♦❦❡✱ ◗✉$❜❡❝✱ ❈❛♥❛❞❛✱ ❛♦B. ✷✵✶✻

(2)

▲❡ ✸✶ ❛♦&' ✷✵✶✻✱ ❧❡ ❥✉/② ❛ ❛❝❝❡♣'3 ❧❡ ♠3♠♦✐/❡ ❞❡ ▼❛❞❛♠❡ ❱3/♦♥✐:✉❡ ❇❛③✐❡/✲▼❛''❡ ❞❛♥> >❛ ✈❡/>✐♦♥ ✜♥❛❧❡✳ ▼❡♠❜/❡> ❞✉ ❥✉/② ✿ D/♦❢❡>>❡✉/ ■❜/❛❤✐♠ ❆>>❡♠ ❉✐/❡❝'❡✉/ ❞❡ /❡❝❤❡/❝❤❡ ❉3♣❛/'❡♠❡♥' ❞❡ ♠❛'❤3♠❛'✐:✉❡> D/♦❢❡>>❡✉/ ❚❤♦♠❛> ❇/K>'❧❡ ▼❡♠❜/❡ ✐♥'❡/♥❡ ❉3♣❛/'❡♠❡♥' ❞❡ ♠❛'❤3♠❛'✐:✉❡> D/♦❢❡>>❡✉/❡ ❱❛>✐❧✐>❛ ❙❤/❛♠❝❤❡♥❦♦ D/3>✐❞❡♥'✲/❛♣♣♦/'❡✉/ ❉3♣❛/'❡♠❡♥' ❞❡ ♠❛'❤3♠❛'✐:✉❡> ✐✐

(3)

❙♦♠♠❛✐%❡

❆!!❡♠✱ ❙❝❤✐✤❡* ❡+ ❙❤*❛♠❝❤❡♥❦♦ ♦♥+ 0♠✐! ❝♦♠♠❡ ❝♦♥❥❡❝+✉*❡ 3✉❡ +♦✉+❡ ❛❧❣6❜*❡ ❛♠❛!✲ !0❡ ❡!+ ✉♥✐!+*✉❝+✉*❡❧❧❡✱ ❝✬❡!+✲:✲❞✐*❡ 3✉❡ ❧✬❡♥!❡♠❜❧❡ ❞❡! ✈❛*✐❛❜❧❡! ❛♠❛!!0❡! ❞0+❡*♠✐♥❡ ✉♥✐✲ 3✉❡♠❡♥+ ❧❛ !+*✉❝+✉*❡ ❞✬❛❧❣6❜*❡ ❛♠❛!!0❡✳ ❊♥ ❞✬❛✉+*❡! ♠♦+!✱ ✐❧ ❡①✐!+❡ ✉♥❡ ✉♥✐3✉❡ ❞0❝♦♠✲ ♣♦!✐+✐♦♥ ❞❡ ❧✬❡♥!❡♠❜❧❡ ❞❡! ✈❛*✐❛❜❧❡! ❛♠❛!!0❡! ❡♥ ❛♠❛!✳ ❈❡++❡ ❝♦♥❥❡❝+✉*❡ ❡!+ ♣*♦✉✈0❡ ❞❛♥! ❧❡ ❝❛! ❞❡! ❛❧❣6❜*❡! ❛♠❛!!0❡! ❞❡ +②♣❡ ❉②♥❦✐♥ ♦✉ ❞❡ *❛♥❣ ✷ ❬❆❙❙✶✹❛❪✳ ▲❡ ❜✉+ ❞❡ ❝❡ ♠0♠♦✐*❡ ❞❡ ❧❛ ♣*♦✉✈❡* 0❣❛❧❡♠❡♥+ ❞❛♥! ❧❡ ❝❛! ❞❡! ❛❧❣6❜*❡! ❛♠❛!!0❡! ❞❡ +②♣❡ ˜A✳ ◆♦✉! ✉+✐❧✐✲ !♦♥! ❧❡! +*✐❛♥❣✉❧❛+✐♦♥! ❞❡ ❝♦✉*♦♥♥❡! ❡+ ❧✬✐♥❞0♣❡♥❞❛♥❝❡ ❛❧❣0❜*✐3✉❡ ❞❡! ❛♠❛! ♣♦✉* ♣*♦✉✈❡* ❧✬✉♥✐!+*✉❝+✉*❛❧✐+0 ❞❡! ❛❧❣6❜*❡! ♣*♦✈❡♥❛♥+ ❞❡ ❝♦✉*♦♥♥❡!✱ ❞♦♥❝ ❞❡ +②♣❡ ˜A✳ ◆♦✉! ♣*♦✉✈♦♥! 0❣❛❧❡♠❡♥+ ❧❛ ❝♦♥❥❡❝+✉*❡ ❞❡! ❛✉+♦♠♦*♣❤✐!♠❡! ✭✈♦✐* ❬❆❙❙✶✹❛❪✮ ♣♦✉* ❧❡! ❛❧❣6❜*❡! ❞❡ +②♣❡ ˜A ❝♦♠♠❡ ❝♦♥!03✉❡♥❝❡ ✐♠♠0❞✐❛+❡✳ ▼♦"#✲❝❧❡❢# ✿ ❆❧❣6❜*❡! ❛♠❛!!0❡!✱ ✉♥✐!+*✉❝+✉*❛❧✐+0✱ +*✐❛♥❣✉❧❛+✐♦♥!✱ ❝♦✉*♦♥♥❡! ✐✐✐

(4)

❘❡♠❡#❝✐❡♠❡♥'(

❏❡ "❡♠❡"❝✐❡ ♠♦♥ ❞✐"❡❝)❡✉" ❞❡ "❡❝❤❡"❝❤❡✱ ❧❡ ."✳ ■❜"❛❤✐♠ ❆44❡♠ ♣♦✉" 4❛ 4✉♣❡"✈✐4✐♦♥✱ 4♦♥ 4♦✉)✐❡♥ ❡) 4❡4 ❝♦♥4❡✐❧4✳ ❏❡ "❡♠❡"❝✐❡ 7❣❛❧❡♠❡♥) ❧❛ ."✳ ❱✐"❣✐♥✐❡ ❈❤❛"❡))❡ ❡) ▼✳ .❛)"✐❝❦ ▲❡ ▼❡✉" ♣♦✉" ❧❡✉" ❛✐❞❡ ❡) ❧❡✉" ❣7♥7"♦4✐)7✳ .❛" ❛✐❧❧❡✉"4✱ ❥❡ "❡♠❡"❝✐❡ ♠❡4 ❣"❛♥❞4✲♣❛"❡♥)4 ▼✳ ❘❡♥7 ❇❛③✐❡" ❡) ▼♠❡ ❏❡❛♥✐♥❡ ❇❛③✐❡" ♣♦✉" ❧❡✉" ❛❝❝✉❡✐❧ ❝❤❛❧❡✉"❡✉① ❞✉"❛♥) ♠♦♥ 47❥♦✉" ❡♥ ❋"❛♥❝❡✳ ❋✐♥❛❧❡♠❡♥)✱ ❥❡ "❡♠❡"❝✐❡ ♠♦♥ ❞✐"❡❝)❡✉" ❞❡ "❡❝❤❡"❝❤❡ ❛✐♥4✐ E✉❡ ❧❡ ❈♦♥4❡✐❧ ❞❡ "❡❝❤❡"❝❤❡ ❡♥ 4❝✐❡♥❝❡4 ♥❛)✉"❡❧❧❡4 ❡) ❡♥ ❣7♥✐❡ ❡) ❧❡ ❋♦♥❞4 ❞❡ "❡❝❤❡"❝❤❡ ❞✉ ◗✉7❜❡❝ ✕ ◆❛)✉"❡ ❡) )❡❝❤♥♦❧♦❣✐❡4 ♣♦✉" ❧❡✉" 4♦✉)✐❡♥ ✜♥❛♥❝✐❡"✳ ❱7"♦♥✐E✉❡ ❇❛③✐❡"✲▼❛))❡ ❙❤❡"❜"♦♦❦❡✱ ❧❡ ✸✶ ❛♦M) ✷✵✶✻ ✐✈

(5)

❚❛❜❧❡ ❞❡& ♠❛(✐*+❡&

❙♦♠♠❛✐%❡ ✐✐✐ ❘❡♠❡%❝✐❡♠❡♥*+ ✐✈ ❚❛❜❧❡ ❞❡+ ♠❛*✐0%❡+ ✈ ■♥*%♦❞✉❝*✐♦♥ ✶ ❈❤❛♣✐*%❡ ✶ ✖ ❆❧❣'❜)❡+ ❛♠❛++.❡+ ✸ ✶✳✶ ❉#✜♥✐'✐♦♥) ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸ ✶✳✷ ,-♦♣-✐#'#) ❞❡) ❛❧❣4❜-❡) ❛♠❛))#❡) ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✷ ✶✳✸ ❈♦♥❥❡❝'✉-❡ ❞✬✉♥✐)'-✉❝'✉-❛❧✐'# ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✸ ❈❤❛♣✐*%❡ ✷ ✖ ❙✉)❢❛❝❡+ ♠❛)5✉.❡+ ✶✺ ✷✳✶ ❙✉-❢❛❝❡) ♠❛->✉#❡) ❡' ❛❧❣4❜-❡) ❛♠❛))#❡) ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✺ ✷✳✷ ❙✉-❢❛❝❡ ♠❛->✉#❡ ❛))♦❝✐#❡ ❛✉① ❛❧❣4❜-❡) ❛♠❛))#❡) ❞❡ '②♣❡ ˜A ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✵ ✷✳✸ ❘❡✈E'❡♠❡♥') ❞❡ )✉-❢❛❝❡) ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✷ ✈

(6)

❈❤❛♣✐%&❡ ✸ ✖ ❇❛$❡$ ❞❡ '(❛♥$❝❡♥❞❛♥❝❡ ✷✺ ✸✳✶ ❉$✜♥✐(✐♦♥* ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✺ ✸✳✷ -.♦♣.✐$($* ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✻ ❈❤❛♣✐%&❡ ✹ ✖ ❯♥✐$'(✉❝'✉(❛❧✐'2 ❞❡$ ❛❧❣4❜(❡$ ❛♠❛$$2❡$ ❞❡ '②♣❡ ˜A ✷✾ ✹✳✶ ❉$♠♦♥*(.❛(✐♦♥ ❞❡ ❧✬✉♥✐*(.✉❝(✉.❛❧✐($ ❞❡* ❛❧❣;❜.❡* ❛♠❛**$❡* ❞❡ (②♣❡ ˜A ✳ ✳ ✳ ✷✾ ✹✳✷ ❈♦♥*$@✉❡♥❝❡* ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✻ ❇✐❜❧✐♦❣&❛♣❤✐❡ ✹✽ ✈✐

(7)

■♥"#♦❞✉❝"✐♦♥

▲❡" ❛❧❣&❜(❡" ❛♠❛""*❡" ♦♥- *-* ✐♥-(♦❞✉✐-❡" ❡♥ ✷✵✵✷ ♣❛( ❋♦♠✐♥ ❡- ❩❡❧❡✈✐♥"❦②✱ ✈♦✐( ❬❋❩✵✷❪ ❛✜♥ ❞❡ ❝(*❡( ✉♥ ❝❛❞(❡ ❛❧❣*❜(✐>✉❡ ♣♦✉( ❧✬*-✉❞❡ ❞❡" ❜❛"❡" ❝❛♥♦♥✐>✉❡" ❡- ❞❡ ❧❛ ♣♦"✐-✐✈✐-* -♦-❛❧❡✳ ❉❡♣✉✐"✱ ✐❧ "✬❡"- ❛✈*(* >✉❡ ❝❡--❡ ❝❧❛""❡ ❞✬❛❧❣&❜(❡" ❡"- (❡❧✐*❡ B ♣❧✉"✐❡✉(" ❞♦♠❛✐♥❡" ❞❡" ♠❛-❤*♠❛-✐>✉❡"✱ ♣❛( ❡①❡♠♣❧❡✱ ❧❛ ❝♦♠❜✐♥❛-♦✐(❡✱ ❧❛ -❤*♦(✐❡ ❞❡ ❧❛ (❡♣(*"❡♥-❛-✐♦♥ ❞❡" ❛❧❣&❜(❡"✱ ❧❛ ❣*♦♠*-(✐❡ ❞❡ E♦✐""♦♥ ❡- ❧❛ -❤*♦(✐❡ ❞❡ ❚❡✐❝❤♠G❧❧❡(✳ ▲❡" ❛❧❣&❜(❡" ❛♠❛""*❡" "♦♥- ❞❡" Z✲❛❧❣&❜(❡" ❝♦♠♠✉-❛-✐✈❡" ❛✈❡❝ ✉♥ ❡♥"❡♠❜❧❡ ❞❡ ❣*♥*(❛✲ -❡✉("✱ ❛♣♣❡❧*" ✈❛(✐❛❜❧❡" ❛♠❛""*❡"✱ (❡❣(♦✉♣*" ❡♥ "♦✉"✲❡♥"❡♠❜❧❡" ❛♣♣❡❧*" ❛♠❛"✳ ▲✬❡♥"❡♠❜❧❡ ❞❡ -♦✉-❡" ❧❡" ✈❛(✐❛❜❧❡" ❛♠❛""*❡" ❡"- ❝♦♥"-(✉✐- (*❝✉("✐✈❡♠❡♥- B ♣❛(-✐( ❞✬✉♥ ❡♥"❡♠❜❧❡ ❞❡ ✈❛(✐❛❜❧❡" ❛♠❛""*❡" ✐♥✐-✐❛❧❡" ❡♥ ❡✛❡❝-✉❛♥- ✉♥❡ ♦♣*(❛-✐♦♥ ❛♣♣❡❧*❡ ♠✉-❛-✐♦♥✳ ❈❤❛>✉❡ ♠✉-❛✲ -✐♦♥ ❞*✜♥✐- ✉♥ ♥♦✉✈❡❧ ❛♠❛"✱ ❞✐✛*(❛♥- ❞✉ ♣(*❝*❞❡♥- ♣❛( ✉♥❡ "❡✉❧❡ ✈❛(✐❛❜❧❡ ❛♠❛""*❡✳ ❯♥❡ ❝♦♥❥❡❝-✉(❡ ❞✬❆""❡♠✱ ❙❝❤✐✤❡( ❡- ❙❤(❛♠❝❤❡♥❦♦ ❞❛♥" ❬❆❙❙✶✹❛❪ "-✐♣✉❧❡ >✉❡ "✐ ❞❡✉① ❛♠❛" ❡♥✲ ❣❡♥❞(❡♥- ❧❛ ♠R♠❡ ❛❧❣&❜(❡ ❛♠❛""*❡✱ ❛❧♦(" ❝❤❛>✉❡ ❛♠❛" "✬♦❜-✐❡♥- B ♣❛(-✐( ❞❡ ❧✬❛✉-(❡ ♣❛( ✉♥❡ "✉✐-❡ ❞❡ ♠✉-❛-✐♦♥" ❀ ❡♥ ❞✬❛✉-(❡" -❡(♠❡"✱ ✐❧ ❡①✐"-❡ ✉♥❡ ✉♥✐>✉❡ ❞*❝♦♠♣♦"✐-✐♦♥ ❞❡ ❧✬❡♥"❡♠❜❧❡ ❞❡" ✈❛(✐❛❜❧❡" ❛♠❛""*❡" ❡♥ ❛♠❛"✳ ❯♥❡ -❡❧❧❡ ❛❧❣&❜(❡ ❡"- ❞✐-❡ ✉♥✐"-(✉❝-✉(❡❧❧❡✳ ▲❡" ❛✉-❡✉(" ♦♥- ❞*❥B ♣(♦✉✈* >✉❡ ❧❡" ❛❧❣&❜(❡" ❞❡ -②♣❡ ❉②♥❦✐♥ ♦✉ ❞❡ (❛♥❣ ✷ "♦♥- ✉♥✐"-(✉❝-✉(❡❧❧❡"✳ ❉❛♥" ❝❡ ♠*♠♦✐(❡✱ ♥♦✉" ♣(♦✉✈♦♥" >✉❡ ❝✬❡"- *❣❛❧❡♠❡♥- ❧❡ ❝❛" ♣♦✉( ❧❡" ❛❧❣&❜(❡" ❞❡ -②♣❡ ˜A✳ E♦✉( ❝❡ ❢❛✐(❡✱ ♥♦✉" ✉-✐❧✐"♦♥" ❧❡" -(✐❛♥❣✉❧❛-✐♦♥" ❞❡ "✉(❢❛❝❡" ♠❛(>✉*❡"✱ -❡❧❧❡" >✉❡ ❞*✜♥✐❡"✱ ❡♥-(❡ ❛✉-(❡"✱ ❞❛♥" ❬❋❙❚✵✽❪ ❡- ❧❡" (❡✈R-❡♠❡♥-" ❞❡ "✉(❢❛❝❡" ♠❛(>✉*❡"✱ ✈♦✐( ❬❙❚✵✾✱ ❙❝❤✶✵❪✳ ✶

(8)

❊♥ ❡✛❡$✱ ❧❡' ✈❛*✐❛❜❧❡' ❛♠❛''.❡' '♦♥$ ❡♥ ❝♦**❡'♣♦♥❞❛♥❝❡ ❜✐✉♥✐✈♦4✉❡ ❛✈❡❝ ❧❡' ❝❧❛''❡' ❞✬✐'♦✲ $♦♣✐❡ ❞❡ ❝❡*$❛✐♥❡' ❝♦✉*❜❡' ❞❛♥' ❧❛ '✉*❢❛❝❡✱ ❛♣♣❡❧.❡' ❛*❝' ✐♥$❡*♥❡'✳ ▲❡' ❛♠❛' '♦♥$ ❡♥ ❝♦**❡'♣♦♥❞❛♥❝❡ ❜✐✉♥✐✈♦4✉❡ ❛✈❡❝ ❧❡' $*✐❛♥❣✉❧❛$✐♦♥'✱ 4✉✐ '♦♥$ ✉♥ ❡♥'❡♠❜❧❡ ♠❛①✐♠❛❧ ❞✬❛*❝' ❝♦♠♣❛$✐❜❧❡'✳ ◆♦✉' .$✉❞✐❡*♦♥' ❛✐♥'✐ ❧❡' ❛❧❣=❜*❡' ❛♠❛''.❡' ❞❡ $②♣❡ ˜A ♣❛* ❧❡ ❜✐❛✐' ❞❡' $*✐✲ ❛♥❣✉❧❛$✐♦♥' ❞❡ ❝♦✉*♦♥♥❡'✳ ❋✐♥❛❧❡♠❡♥$✱ ♥♦✉' ♣*♦✉✈♦♥' ❧❛ ❝♦♥❥❡❝$✉*❡ ❞❡' ❛✉$♦♠♦*♣❤✐'♠❡'✱ .♥♦♥❝.❡ ❞❛♥' ❬❆❙❙✶✹❛❪✱ ♣♦✉* ❧❡' ❛❧❣=❜*❡' ❛♠❛''.❡' ❞❡ $②♣❡ ˜A ❝♦♠♠❡ ❝♦*♦❧❧❛✐*❡ ❞✐*❡❝$ ❞❡ ❧✬✉♥✐'$*✉❝$✉*❛❧✐$. ❞❡ ❝❡' ❛❧❣=❜*❡'✳ ❙❡❧♦♥ ❝❡$$❡ ❝♦♥❥❡❝$✉*❡✱ ♣♦✉* ✉♥❡ ❛❧❣=❜*❡ ❛♠❛''.❡ A ✱ f : A → A ❡'$ ✉♥ ❛✉$♦♠♦*♣❤✐'♠❡ ❞✬❛♠❛' '✐ ❡$ '❡✉❧❡♠❡♥$ '✐ f ❡'$ ✉♥ ❛✉$♦♠♦*♣❤✐'♠❡ ❞✉ ❝♦*♣' ❛♠❜✐❛♥$ 4✉✐ '❡ *❡'$*❡✐♥$ H ✉♥❡ ♣❡*♠✉$❛$✐♦♥ ❞❡ ❧✬❡♥'❡♠❜❧❡ ❞❡' ✈❛*✐❛❜❧❡' ❛♠❛''.❡'✳ ❈❡$$❡ ❝♦♥❥❡❝$✉*❡ ❡'$ *❡❧✐.❡ H ❧❛ ❝♦♥❥❡❝$✉*❡ ✼✳✹✭✷✮ ❞❛♥' ❬❋❩✵✼❪ ❞❡ ❋♦♠✐♥ ❡$ ❩❡❧❡✈✐♥'❦②✱ *❡❢♦*♠✉❧.❡ ❞❛♥' ❬❆❙❙✶✹❛❪ ❝♦♠♠❡ '✉✐$✳ ❉❡✉① ✈❛*✐❛❜❧❡' ❛♠❛''.❡' x ❡$ x′ ❞✬✉♥❡ ❛❧❣=❜*❡ ❛♠❛''.❡ A (X , Q) '♦♥$ ❝♦♠♣❛$✐❜❧❡' '✐ ❡$ '❡✉❧❡♠❡♥$ '✐✱ ♣♦✉* ❝❤❛4✉❡ ❛♠❛' Y ❞❡ A (X , Q) ❝♦♥$❡♥❛♥$ x✱ ✐❧ ❡'$ ♣♦''✐❜❧❡ ❞✬.❝*✐*❡ x′ ❝♦♠♠❡ ✉♥ ♣♦❧②♥R♠❡ ❞❡ ▲❛✉*❡♥$ ❡♥ Y ❞❡ ❢♦*♠❡ *.❞✉✐$❡ P M ♦S P ❡'$ ✉♥ ♣♦❧②♥R♠❡ ❡♥ ❧❡' ✈❛*✐❛❜❧❡' ❞❡ Y ❡$ M ❡'$ ✉♥ ♠♦♥R♠❡ ❡♥ $♦✉$❡' ❧❡' ✈❛*✐❛❜❧❡' ❞❡ Y '❛✉❢ x✳ ❈❡$$❡ ❝♦♥❥❡❝$✉*❡ ❛ .$. ♣*♦✉✈.❡ ♣♦✉* ❧❡' ❛❧❣=❜*❡' ❛♠❛''.❡' ♣*♦✈❡♥❛♥$ ❞❡ '✉*❢❛❝❡'✱ ❞♦♥❝✱ ❡♥ ♣❛*$✐❝✉❧✐❡*✱ ♣♦✉* ❧❡' ❛❧❣=❜*❡' ❛♠❛''.❡' ❞❡ $②♣❡ ˜A✱ ✈♦✐* ❬❋❙❚✵✽❪✳ ✷

(9)

❈❤❛♣✐%&❡ ✶

❆❧❣$❜&❡( ❛♠❛((+❡(

✶✳✶ ❉#✜♥✐'✐♦♥)

❉!✜♥✐%✐♦♥ ✶✳✶✳✶✳ ❯♥ ❝❛"#✉♦✐' Q ❡#$ ✉♥ &✉❛❞)✉♣❧❡$ (Q0, Q1, s, b) $❡❧ &✉❡ Q0 ❡#$ ✉♥ ❡♥#❡♠❜❧❡ ❞♦♥$ ❧❡# /❧/✲ ♠❡♥$# #♦♥$ ❛♣♣❡❧/# ❞❡# ♣♦✐♥*'✱ Q1 ❡#$ ✉♥ ❡♥#❡♠❜❧❡ ❞♦♥$ ❧❡# /❧/♠❡♥$# #♦♥$ ❛♣♣❡❧/# ❞❡# ✢,❝❤❡' ❡$ s✱ b : Q1 → Q0 #♦♥$ ❞❡✉① ❢♦♥❝$✐♦♥# &✉✐ ❛##♦❝✐❡♥$ 6 ❝❤❛&✉❡ ✢9❝❤❡ ❞❡✉① ♣♦✐♥$# )❡#♣❡❝$✐✈❡♠❡♥$ ❛♣♣❡❧/# #❛ '♦✉"❝❡ ❡$ #♦♥ ❜✉*✳ <♦✉) i ∈ Q0✱ ♦♥ ♥♦$❡ i+ ❧✬❡♥#❡♠❜❧❡ ❞❡# ✢9❝❤❡# ❞❡ Q1 ❞❡ #♦✉)❝❡ i✳ ❉❡ ❧❛ ♠?♠❡ ❢❛@♦♥✱ ♦♥ ♥♦$❡ i− ❧✬❡♥#❡♠❜❧❡ ❞❡# ✢9❝❤❡# ❞❡ Q 1 ❞❡ ❜✉$ i✳ ❉❡ ♣❧✉#✱ ♦♥ ♥♦$❡ Q(i, j) = i+∩ j−✱ ❝✬❡#$✲6✲❞✐)❡✱ ❧✬❡♥#❡♠❜❧❡ ❞❡# ✢9❝❤❡# ❞❡ i ✈❡)# j✳ ❊①❡♠♣❧❡ ✶✳✶✳✷✳ ❙♦✐$ Q ❧❡ ❝❛)&✉♦✐# )❡♣)/#❡♥$/ 6 ❧❛ ✜❣✉)❡ ✶✳✶✳ ▲✬❡♥#❡♠❜❧❡ ❞❡# ♣♦✐♥$# ❞❡ Q ❡#$ Q0 = {1, 2, 3, 4, 5} ❡$ ❧✬❡♥#❡♠❜❧❡ ❞❡ #❡# ✢9❝❤❡# ❡#$ Q1 ={α, β, γ, δ, ǫ, ζ}✳ ❘❡♠❛)&✉♦♥# &✉❡ s(β) = 1✱ b(β) = 3✱ 3+ ={γ, ǫ}✱ 3− ={β, δ} ❡$ Q(3, 5) = {ǫ}✳

(10)

1 2 3 4 5 α β γ δ ǫ ζ ❋✐❣✉$❡ ✶✳✶ ✕ ❈❛$+✉♦✐-❉!✜♥✐%✐♦♥' ✶✳✶✳✸✳ ❛✮ ❙♦✐0 Q ✉♥ ❝❛$+✉♦✐-✳ ❯♥ ❝②❝❧❡ ♦%✐❡♥() ❞❡ ❧♦♥❣✉❡✉% n✱ ❛✈❡❝ n > 1✱ ❡-0 ✉♥ ❡♥-❡♠❜❧❡ {α1, . . . , αn} ❝♦♠♣♦-: ❞❡ n ✢=❝❤❡- ❞❡ Q1 0❡❧ +✉❡ b(αi) = s(αi+1) ♣♦✉$ i ∈ {1, . . . , n − 1} ❡0 s(αn) = b(α1)✳ ❯♥❡ ✢=❝❤❡ α ∈ Q1 0❡❧❧❡ +✉❡ s(α) = b(α) ❡-0 ❛♣♣❡❧:❡ ✉♥❡ ❜♦✉❝❧❡✳ ❜✮ ❯♥ ❝❛$+✉♦✐- Q ❡-0 ❞✐0 ❝♦♥♥❡①❡ -✐ ♣♦✉$ 0♦✉0❡ ♣❛✐$❡ ❞❡ ♣♦✐♥0- (i, j) ∈ Q0 × Q0✱ ✐❧ ❡①✐-0❡ ✉♥ -♦✉-✲❡♥-❡♠❜❧❡ {k1, . . . , kn} ❞❡ Q0 0❡❧ +✉❡ ✿ ✐✮ Q(i, k1)6= ∅ ♦✉ Q(k1, i)6= ∅ ❀ ✐✐✮ Q(j, kn)6= ∅ ♦✉ Q(kn, j)6= ∅ ❀ ✐✐✐✮ Q(kl, kl+1)6= ∅ ♦✉ Q(kl+1, kl)6= ∅ ♣♦✉$ 0♦✉0 l ∈ {1, . . . , n − 1}✳ ❊♥ -♦♠♠❡✱ ✉♥ ❝❛$+✉♦✐- ❡-0 ❝♦♥♥❡①❡ -✐ 0♦✉- -❡- ♣♦✐♥0- -♦♥0 $❡❧✐:- ♣❛$ ✉♥❡ -✉✐0❡ ❞❡ ✢=❝❤❡- ❞✬✉♥❡ ♦$✐❡♥0❛0✐♦♥ ❛$❜✐0$❛✐$❡✳ ❊①❡♠♣❧❡ ✶✳✶✳✹✳ ▲❡ ❝❛$+✉♦✐- F ❧❛ ✜❣✉$❡ ✶✳✶ ❡-0 ❝♦♥♥❡①❡ ❡0 ♣♦--=❞❡ ✉♥ ❝②❝❧❡ ♦$✐❡♥0: ❢♦$♠: ♣❛$ ❧❡- ✢=❝❤❡-α✱ β ❡0 γ✳ ■❧ ❡-0 F ♥♦0❡$ +✉❡ 0♦✉0❡- ❧❡- ♣✉✐--❛♥❝❡- ❞❡ ❝❡ ❝②❝❧❡ -♦♥0 :❣❛❧❡♠❡♥0 ❞❡- ❝②❝❧❡-✳ ❉❛♥- ❧❡ ❝❛❞$❡ ❞❡ ❧✬:0✉❞❡ ❞❡- ❛❧❣=❜$❡- ❛♠❛--:❡-✱ ♦♥ ❝♦♥-✐❞:$❡$❛ ✉♥✐+✉❡♠❡♥0 ❧❡- ❝❛$+✉♦✐-❝♦♥♥❡①❡- -❛♥- ❜♦✉❝❧❡ ♥✐ ❝②❝❧❡ ♦$✐❡♥0: ❞❡ ❧♦♥❣✉❡✉$ ✷✳ ❘❡♠❛45✉❡ ✶✳✶✳✺✳ M♦✉$ 0♦✉0 0❡❧ ❝❛$+✉♦✐- Q ❡0 0♦✉- ♣♦✐♥0- i✱ j ∈ Q0✱ ♦♥ ❛ Q(i, i) = ∅ ❡0✱ -✐ Q(i, j) 6= ∅✱ ❛❧♦$- Q(j, i) = ∅✳ ✹

(11)

❉!✜♥✐%✐♦♥ ✶✳✶✳✻✳ ▲❛ ♠✉"❛"✐♦♥ ❞✬✉♥ ❝❛'(✉♦✐+ Q ❡♥ ✉♥ ♣♦✐♥. k ❞❡ Q0 .'❛♥+❢♦'♠❡ Q ❡♥ ✉♥ ♥♦✉✈❡❛✉ ❝❛'(✉♦✐+ µk(Q) ♦❜.❡♥✉ ♣❛' ❧❡+ 4.❛♣❡+ +✉✐✈❛♥.❡+ ✿ ✶✳ ♣♦✉' .♦✉.❡ ♣❛✐'❡ ❞❡ ✢9❝❤❡+ α, β ∈ Q1.❡❧❧❡ (✉❡ b(α) = k = s(β)✱ ❛❥♦✉.❡' ✉♥❡ ♥♦✉✈❡❧❧❡ ✢9❝❤❡ γ .❡❧❧❡ (✉❡ s(γ) = s(α) ❡. b(γ) = b(β)✱ ❝✬❡+.✲>✲❞✐'❡✱ ❞❡ ♠❛♥✐9'❡ > ❝❡ (✉❡ ❧❡+ ✢9❝❤❡+ α✱ β ❡. γ ❢♦'♠❡♥. ✉♥ ❝②❝❧❡ ❀ ✷✳ ✐♥✈❡'+❡' .♦✉.❡+ ❧❡+ ✢9❝❤❡+ ✐♥❝✐❞❡♥.❡+ > k ❀ ✸✳ '❡.✐'❡' ✉♥ > ✉♥ .♦✉+ ❧❡+ ✷✲❝②❝❧❡+ ❛✐♥+✐ ❝'44+✳ ❊①❡♠♣❧❡ ✶✳✶✳✼✳ ❊✛❡❝.✉♦♥+ +✉' ❧❡ ❝❛'(✉♦✐+ ❞❡ ❧❛ ✜❣✉'❡ ✶✳✶ ❧❛ ♠✉.❛.✐♦♥ ❡♥ ❞✐'❡❝.✐♦♥ ✸✳ 1 2 3 4 5 1 2 3 4 5 ❀ µ3 ◆♦%❛%✐♦♥ ✶✳✶✳✽✳ ◆♦.♦♥+ |E| ❧❛ ❝❛'❞✐♥❛❧✐.4 ❞✬✉♥ ❡♥+❡♠❜❧❡ ✜♥✐ E ❛✜♥ ❞✬❛❧❧4❣❡' ❧❛ ❧❡❝.✉'❡ ❞❡ ❧❛ ♣'♦❝❤❛✐♥❡ ♣'❡✉✈❡✳ ▲❡♠♠❡ ✶✳✶✳✾✳ ▲❛ ♠✉"❛"✐♦♥ ❞❡ ❝❛+,✉♦✐- ❡-" ✐♥✈♦❧✉"✐✈❡✱ ❝✬❡-"✲3✲❞✐+❡ ,✉❡ ♣♦✉+ "♦✉" ❝❛+,✉♦✐- Q ❡" ♣♦✉+ "♦✉" ♣♦✐♥" k ∈ Q0✱ ♦♥ ❛ µ2k(Q)≃ Q✳ ❉!♠♦♥6%7❛%✐♦♥✳ ❙♦✐❡♥. Q ✉♥ ❝❛'(✉♦✐+ ❡. k ∈ Q0✳ ❱4'✐✜♦♥+ (✉❡ ❧❛ ♠✉.❛.✐♦♥ µk ❡+. ✐♥✈♦❧✉.✐✈❡✳ ❈♦♥+✐❞4'♦♥+ i✱ j ∈ Q0✳ ❙✉♣♣♦+♦♥+ +❛♥+ ♣❡'.❡ ❞❡ ❣4♥4'❛❧✐.4 (✉❡ Q(j, i) = ∅✳ ❉✬❛❜♦'❞✱ ✐❧ ❡+. ❝❧❛✐' (✉❡ µ2k(Q)(i, k) =|µk(Q)(k, i)| = |Q(i, k)| . ✺

(12)

❙✐ Q(i, k) = ∅ ❡# Q(k, i) = ∅✱ ♦♥ ❛ µ2k(Q)(i, j) =|µk(Q)(i, j)| = |Q(i, j)| . ❈♦♥)✐❞+,♦♥) ❞♦♥❝ ❧❡ ❝❛) ♦/ Q(i, k) 6= ∅✳ ❖♥ ❛ ❛❧♦,) µk(Q)(k, i) 6= ∅ ❡# µk(Q)(i, k) = ∅✳ ❆✐♥)✐✱ ♦♥ ❛

|µk(Q)(i, j)| = |Q(i, j)| + |Q(i, k)| · |Q(k, j)|

❡#

µ2k(Q)(i, j) =|µk(Q)(i, j)| − |µk(Q)(j, k)| · |µk(Q)(k, i)|

= (|Q(i, j)| + |Q(i, k)| · |Q(k, j)|) − |Q(k, j)| · |Q(i, k)| =|Q(i, j)| .

❉❡ ♠5♠❡✱ )✐ Q(k, i) 6= ∅✱ ♦♥ ❛

|µk(Q)(i, j)| = |Q(i, j)| − |Q(j, k)| · |Q(k, i)|

❡#

µ2k(Q)(i, j)

=|µk(Q)(i, j)| + |µk(Q)(i, k)| · |µk(Q)(k, j)|

= (|Q(i, j)| − |Q(j, k)| · |Q(k, i)|) + |Q(k, i)| · |Q(j, k)| =|Q(i, j)| . ❈♦♠♠❡ ❧❡ ♥♦♠❜,❡ ❞❡ ✢8❝❤❡) ❡♥#,❡ #♦✉) ♣♦✐♥#) ❡)# ✐❞❡♥#✐<✉❡ ❞❛♥) Q ❡# µ2 k(Q)✱ ♦♥ ❝♦♥❝❧✉# <✉❡ µ2 k(Q)≃ Q✳ =✉✐)<✉❡ ❧❛ ♠✉#❛#✐♦♥ ❞❡ ❝❛,<✉♦✐) ❡)# ✐♥✈♦❧✉#✐✈❡✱ ❡❧❧❡ ❡)# ,+✢❡①✐✈❡ ❡# )②♠+#,✐<✉❡✱ ❞♦♥❝ )❛ ❢❡,♠❡#✉,❡ #,❛♥)✐#✐✈❡ ❡)# ✉♥❡ ,❡❧❛#✐♦♥ ❞✬+<✉✐✈❛❧❡♥❝❡✳ ❉!✜♥✐%✐♦♥ ✶✳✶✳✶✵✳ ❉❡✉① ❝❛,<✉♦✐) Q ❡# Q′ )♦♥# ❞✐#) ♠✉"❛"✐♦♥✲()✉✐✈❛❧❡♥"- )✬✐❧ ❡①✐)#❡ ✉♥❡ )✉✐#❡ ❞❡ ♠✉#❛#✐♦♥) µ= µkn. . . µk1 #❡❧❧❡ <✉❡ Q ′ ≃ µ(Q)✳ ✻

(13)

❊①❡♠♣❧❡ ✶✳✶✳✶✶✳ ❙♦✐❡♥% Q✱ Q′ ❡% Q′′ ❧❡( %)♦✐( ❝❛),✉♦✐( (✉✐✈❛♥%(✳ 1 2 3 4 5 Q = 1 2 3 4 5 Q′ = 1 2 3 4 5 Q′′ = ❈❡( %)♦✐( ❝❛),✉♦✐( (♦♥% ♠✉%❛%✐♦♥✲3,✉✐✈❛❧❡♥%(✱ ❝❛) Q′′ = µ1(Q′) = µ1µ4(Q)✳ ❉)✜♥✐-✐♦♥ ✶✳✶✳✶✷✳ ❯♥ ❝❛),✉♦✐( Q ❡(% ❞❡ "②♣❡ ❉②♥❦✐♥ (✬✐❧ ❡(% ♠✉%❛%✐♦♥✲3,✉✐✈❛❧❡♥% 6 ❧✬✉♥ ❞❡( (✉✐✈❛♥%( ✿ . . . 1 2 n — An : ♣♦✉) n ≥ 1 ❀ . . . 1 2 n − 2 n − 1 n — Dn : ♣♦✉) n ≥ 4 ❀ ✼

(14)

1 2 3 4 5 6 — E6 : ❀ 1 2 3 4 5 6 7 — E7 : ❀ 1 2 3 4 5 6 7 8 — E8 : ✳

■❧ ❡%& ❞❡ &②♣❡ ˜Ap,q✱ ♦✉ ❞❡ ♠❛♥✐12❡ ♣❧✉% %✐♠♣❧❡✱ ˜A✱ %✬✐❧ ❡%& ♠✉&❛&✐♦♥✲56✉✐✈❛❧❡♥& 8

1 2 . . . . . . p p + 1 p + q − 1 p + q . ❊①❡♠♣❧❡ ✶✳✶✳✶✸✳

▲❡% ❝❛26✉♦✐% ❞❡ ❧✬❡①❡♠♣❧❡ ✶✳✶✳✶✶ %♦♥& ❞❡ &②♣❡ ˜A3,2✳

❉*✜♥✐.✐♦♥ ✶✳✶✳✶✹✳

❙♦✐❡♥& K ✉♥ ❝♦2♣% ❡& k ✉♥ %♦✉%✲❝♦2♣% ❞❡ K✳ ❯♥ ❡♥%❡♠❜❧❡ X = {x1, . . . , xn} ⊆ K ❡%&

❛❧❣#❜%✐'✉❡♠❡♥, ✐♥❞#♣❡♥❞❛♥, %✉2 k %✐ ♣♦✉2 &♦✉& ♣♦❧②♥@♠❡ f ∈ k [t1, . . . , tn]✱ f 6= 0✱

♦♥ ❛ f(x1, . . . , xn) 6= 0✳ ❆✉&2❡♠❡♥& ❞✐&✱ (x1, . . . xn) ♥✬❡%& 2❛❝✐♥❡ ❞✬❛✉❝✉♥ ♣♦❧②♥@♠❡ ❞❡

k[t1, . . . , tn] .

(15)

❊①❡♠♣❧❡ ✶✳✶✳✶✺✳ ▲❡" "✐♥❣❧❡'♦♥" {π} ❡' {√2π + 1} ⊆ R "♦♥' ❛❧❣*❜,✐-✉❡♠❡♥' ✐♥❞*♣❡♥❞❛♥'" "✉, Q✱ ♠❛✐" ♣❛" ❧✬❡♥"❡♠❜❧❡ {π,√2π + 1}✳ ❊♥ ❡✛❡'✱ "√2π + 12 − 2π − 1 = 0✱ ❞♦♥❝ ❧❡ ♣♦❧②♥)♠❡ ♥♦♥✲♥✉❧ f(t1, t2) = t21− 2t2− 1 -✬❛♥♥✉❧❡ ❡♥ √2π + 1, π✳ ❉!✜♥✐%✐♦♥ ✶✳✶✳✶✻✳ ❯♥❡ ❣!❛✐♥❡ (X, Q) ❡-2 ✉♥❡ ♣❛✐4❡ ❢♦4♠6❡ ❞✬✉♥ ❝❛47✉♦✐- Q ❞♦♥2 ❧❡- ♣♦✐♥2- -♦♥2 Q0 = {1, 2, . . . n} ❡2 ❞✬✉♥ ❡♥-❡♠❜❧❡ X = {x1, . . . xn}✱ ❛❧❣6❜4✐7✉❡♠❡♥2 ✐♥❞6♣❡♥❞❛♥2 -✉4 Q✱ ♦: ❧✬♦♥ ❝♦♥✈✐❡♥2 7✉❡ xi❝♦44❡-♣♦♥❞ ❛✉ ♣♦✐♥2 i✳ ▲✬❡♥-❡♠❜❧❡ X ❡-2 ❛♣♣❡❧6 ✉♥ ❛♠❛'✳ ▲❛ ♠✉)❛)✐♦♥ ❞✬✉♥❡ ❣!❛✐♥❡ (X, Q) ❞❛♥- ❧❛ ❞✐4❡❝2✐♦♥ xk✭♦✉ ❞❛♥- ❧❛ ❞✐4❡❝2✐♦♥ k -✬✐❧ ♥✬② ❛ ♣❛- ❞✬❛♠❜✐❣✉>26✮ 24❛♥-❢♦4♠❡ (X, Q) ❡♥ ✉♥❡ ♥♦✉✈❡❧❧❡ ❣4❛✐♥❡ µxk(X, Q) = (µxk(X), µxk(Q)) ♦: µkx(X) = (X \ {xk}) ∪ {x′k} ❛✈❡❝ x ′ k 2❡❧ 7✉❡ xkx′k= Y α∈k+ xb(α)+ Y α∈k− xs(α) ❡2 µxk(Q) = µk(Q)✳ ❯♥ ♣4♦❞✉✐2 ✈✐❞❡ ❡-2 6❣❛❧ @ ✶ ♣❛4 ❝♦♥✈❡♥2✐♦♥✳ ❖♥ ❛♣♣❡❧❧❡ ❧✬6❣❛❧✐26 ❝✐✲❞❡--✉- ❧❛ !❡❧❛)✐♦♥ ❞✬.❝❤❛♥❣❡✳ ❊①❡♠♣❧❡ ✶✳✶✳✶✼✳ ❙♦✐❡♥2 X = {x1, . . . , x5} ✉♥ ❡♥-❡♠❜❧❡ ❛❧❣6❜4✐7✉❡♠❡♥2 ✐♥❞6♣❡♥❞❛♥2 -✉4 Q ❡2 Q ❧❡ ❝❛47✉♦✐-❞❡ ❧✬❡①❡♠♣❧❡ ✶✳✶✳✷✳ ▲❛ ♣❛✐4❡ (X, Q) ❢♦4♠❡ ✉♥❡ ❣4❛✐♥❡✳ ❖♥ ❛ x1 x2 x′ 3 x4 x5 µ3(X, Q) = ❛✈❡❝ x′ 3 = x1x4+ x2x5 x3 ✳ ✾

(16)

▲❡♠♠❡ ✶✳✶✳✶✽✳ ▲❛ ♠✉$❛$✐♦♥ ❞❡ ❣+❛✐♥❡, ❡,$ ✉♥❡ ♦♣.+❛$✐♦♥ ✐♥✈♦❧✉$✐✈❡✱ ❝✬❡,$✲5✲❞✐+❡ 6✉❡ ♣♦✉+ $♦✉$❡ ❣+❛✐♥❡ (X, Q) ❡$ ♣♦✉+ $♦✉$ ♣♦✐♥$ k ∈ Q0✱ ♦♥ ❛ µ2k(X, Q)≃ (X, Q)✳ ❉'♠♦♥*+,❛+✐♦♥✳ ◆♦"♦♥$ Q′ = µ k(Q)✳ ❉✬✉♥❡ ♣❛,"✱ ♦♥ $❛✐" ❣,0❝❡ ❛✉ ❧❡♠♠❡ ✶✳✶✳✾ 6✉❡ ❧❛ ♠✉"❛"✐♦♥ ❞❡ ❝❛,6✉♦✐$ ❡$" ✐♥✈♦❧✉"✐✈❡✳ ❉✬❛✉",❡ ♣❛,"✱ x′ k = Q α∈k+❞❛♥# Q xb(α)+ Q α∈k−❞❛♥# Q xs(α) xk ❡" ❞♦♥❝ x′′ k = Q α∈k+❞❛♥# Q′ xb(α)+ Q α∈k−❞❛♥# Q′ xs(α) x′ k = Q α∈k−❞❛♥# Q xs(α)+ Q α∈k+❞❛♥# Q xb(α) x′ k = Q α∈k−❞❛♥# Q xs(α)+ Q α∈k+❞❛♥# Q xb(α) Q α∈k+❞❛♥# Q xb(α)+ Q α∈k−❞❛♥# Q xs(α) xk ! = xk, ❝❡ 6✉✐ 9"❛✐" ❧❡ ,9$✉❧"❛" ❛""❡♥❞✉✳ ❉'✜♥✐+✐♦♥ ✶✳✶✳✶✾✳ ❙♦✐" (X, Q) ✉♥❡ ❣,❛✐♥❡ ♦; X = {x1, . . . , xn}✳ ❖♥ ♥♦"❡ X ❧✬✉♥✐♦♥ ❞❡ "♦✉$ ❧❡$ ❛♠❛$ ♣♦$$✐❜❧❡$ ♦❜"❡♥✉$ > ♣❛,"✐, ❞❡ ❝❡""❡ ❣,❛✐♥❡ ♣❛, ❞❡$ ♠✉"❛"✐♦♥$ ✐"9,9❡$ ❡" ♦♥ ❛♣♣❡❧❧❡ $❡$ 9❧9♠❡♥"$ ❞❡$ ✈❛+✐❛❜❧❡, ❛♠❛,,.❡,✳ ❉❡✉① ✈❛,✐❛❜❧❡$ ❛♠❛$$9❡$ $♦♥" ❞✐"❡$ ❝♦♠♣❛$✐❜❧❡, $✬✐❧ ❡①✐$"❡ ✉♥ ❛♠❛$ ❧❡$ ❝♦♥"❡♥❛♥" "♦✉"❡$ ❧❡$ ❞❡✉①✳ ▲✬❛❧❣9❜+❡ ❛♠❛,,.❡ A (X, Q) ❡$" ❧❛ $♦✉$✲Z✲❛❧❣B❜,❡ ❞✉ ❝♦+♣, ❛♠❜✐❛♥$ FX = Q(x1, . . . , xn) ❡♥❣❡♥❞,9❡ ♣❛, X ✳ ▲❡ +❛♥❣ ❞✬✉♥❡ ❛❧❣B❜,❡ ❛♠❛$$9❡ ❡$" ❧❛ ❝❛,❞✐♥❛❧✐"9 n ❞❡ ❧✬❡♥$❡♠❜❧❡ X✳ ✶✵

(17)

❊①❡♠♣❧❡ ✶✳✶✳✷✵✳

❊①♣❧✐❝✐&♦♥) ❧✬❛❧❣-❜/❡ ❛♠❛))2❡ ❞❡ /❛♥❣ ✷ ❡♥❣❡♥❞/2❡ ♣❛/ ❧❛ ❣/❛✐♥❡ (X, Q) =x1 x2 ❡♥

❡✛❡❝&✉❛♥& &♦✉&❡) ❧❡) ♠✉&❛&✐♦♥) ♣♦))✐❜❧❡) 7 ❧❛ ✜❣✉/❡ ✶✳✷✳

x1 x2 ❀ x2+ 1 x1 x2 ❀ x2 + 1 x1 x1+ x2+ 1 x1x2 x1+ 1 x2 x1+ x2+ 1 x1x2 x1+ 1 x2 x1 µx1 µx2 ❀ µ x2 +1 x1 ❀ µx1 +x2 +1 x1 x2 ❀ µx1 +1 x2 x2 x1 = ❋✐❣✉/❡ ✶✳✷ ✕ ❊♥)❡♠❜❧❡ ❞❡) ♠✉&❛&✐♦♥) ♣♦))✐❜❧❡) 7 ♣❛/&✐/ ❞❡ (X, Q)

❉❡ ❝❡&&❡ ❢❛?♦♥✱ ♦♥ ❞2❞✉✐& A✉❡ ❧❡) ❞✐✛2/❡♥&) ❛♠❛) ❞❡ ❝❡&&❡ ❛❧❣-❜/❡ ❛♠❛))2❡ )♦♥& {x1, x2}✱

n

x1,x2x+11 o✱ nx2,x1x+12 o✱ nx1x+12 ,x1+xx1x22+1o ❡& nx2x+11 ,x1+xx1x22+1o✳ ❆✐♥)✐✱

X =  x1, x2, x1+ 1 x2 ,x2+ 1 x1 ,x1+ x2+ 1 x1x2  ❡& A (X, Q) = Z[X ]✳

❘❡♠❛/A✉♦♥) A✉❡ ❞❛♥) ❧✬❡①❡♠♣❧❡ ✶✳✶✳✷✵✱ ❧✬❛❧❣-❜/❡ ❛♠❛))2❡ ♥❡ ❝♦♠♣&❡ A✉✬✉♥ ♥♦♠❜/❡ ✜♥✐ ❞✬❛♠❛)✱ ♠❛✐) ❝❡ ♥✬❡)& ♣❛) &♦✉❥♦✉/) ❧❡ ❝❛)✱ ❝♦♠♠❡ ❧✬❡①♣❧✐A✉❡ ❧❡ ♣/♦❝❤❛✐♥ &❤2♦/-♠❡✳ ❉+✜♥✐/✐♦♥ ✶✳✶✳✷✶✳

❙♦✐& A (X, Q) = Z[X ] ✉♥❡ ❛❧❣-❜/❡ ❛♠❛))2❡✳ ▲❡ ②♣❡ ❞❡ ❝❡&&❡ ❛❧❣-❜/❡ ❝♦//❡)♣♦♥❞ ❛✉ &②♣❡ ❞❡ )♦♥ ❝❛/A✉♦✐) Q✳ ❉❡ ♣❧✉)✱ ❧✬❛❧❣-❜/❡ ❡)& ❞✐&❡ ❞❡ ②♣❡ ✜♥✐ )✐ ❡❧❧❡ ❡)& ❡♥❣❡♥❞/2❡ ♣❛/ ✉♥ ♥♦♠❜/❡ ✜♥✐ ❞❡ ✈❛/✐❛❜❧❡)✱ ❝✬❡)&✲7✲❞✐/❡ A✉❡ ❧❛ ❝❛/❞✐♥❛❧✐&2 ❞❡ X ❡)& ✜♥✐❡✳

❚❤+♦34♠❡ ✶✳✶✳✷✷ ✭❚❤2♦/-♠❡ ✶✳✽✱ ❬❋❩✵✸❪✮✳

❯♥❡ ❛❧❣,❜.❡ ❛♠❛001❡ ❡0 ❞❡ ②♣❡ ✜♥✐ 0✐ ❡ 0❡✉❧❡♠❡♥ 0✐ ❡❧❧❡ ❡0 ❞❡ ②♣❡ ❉②♥❦✐♥✳ ✶✶

(18)

✶✳✷ #$♦♣$✐()(* ❞❡* ❛❧❣0❜$❡* ❛♠❛**(❡*

❆✜♥ ❞❡ ♣&♦✉✈❡& ❧❡ +❤-♦&.♠❡ ♣&✐♥❝✐♣❛❧ ❞❡ ❝❡ ♠-♠♦✐&❡✱ ♥♦✉4 ❛✈♦♥4 ❜❡4♦✐♥ ❞❡ 6✉❡❧6✉❡4 ♣&♦♣&✐-+-4 ❞❡4 ❛❧❣.❜&❡4 ❛♠❛44-❡4✱ ❡♥ ♣❛&+✐❝✉❧✐❡&✱ ❧❡ ♣❤-♥♦♠.♥❡ ▲❛✉&❡♥+ ❡+ ❧❡ +❤-♦&.♠❡ ❞❡ ♣♦4✐+✐✈✐+-✳ ❉!✜♥✐%✐♦♥ ✶✳✷✳✶✳ ❙♦✐+ X = {x1, . . . , xn} ✉♥ ❡♥4❡♠❜❧❡ ❞✬✐♥❞-+❡&♠✐♥-❡4✳ ▲❡4 ♣♦❧②♥%♠❡( ❞❡ ▲❛✉-❡♥. ❡♥ X 4♦♥+ ❧❡4 -❧-♠❡♥+4 ❞❡ ❧✬❛♥♥❡❛✉ Z[x1, x−11, . . . , xn, x−1n ]✳ ■❧ 4✬❛❣✐+ ❞❡ +♦✉+❡4 ❧❡4 ❡①♣&❡44✐♦♥4 ❞❡ ❧❛ ❢♦&♠❡ P(x1, . . . , xn) xd1 1 . . . xdnn ❛✈❡❝ P ∈ Z[x1, . . . , xn] ❡+ di ∈ N✳ ❚❤!♦,-♠❡ ✶✳✷✳✷ ✭❚❤-♦&.♠❡ ✸✳✶✱ ❬❋❩✵✷❪✮✳ /♦✉- .♦✉.❡ ❛❧❣1❜-❡ ❛♠❛((3❡ A (X, Q) ❡. ♣♦✉- .♦✉. ❛♠❛( Y = {y1, . . . , yn} ❞❡ ❝❡..❡ ❛❧❣1❜-❡✱ ❝❤❛7✉❡ ✈❛-✐❛❜❧❡ ❛♠❛((3❡ ♣❡✉. (✬3❝-✐-❡ ❝♦♠♠❡ ✉♥ ♣♦❧②♥%♠❡ ❞❡ ▲❛✉-❡♥. ❡♥ Y ✳ ❊♥ ♣❛&+✐❝✉❧✐❡&✱ X ⊆ Z[y1, y−1 1 , . . . , yn, yn−1]. ❚❤!♦,-♠❡ ✶✳✷✳✸ ✭❚❤-♦&.♠❡ ✶✳✶✱ ❬▲❙✶✺❪✮✳ ❙♦✐❡♥. A (X, Q) ✉♥❡ ❛❧❣1❜-❡ ❛♠❛((3❡✱ Y ✉♥ ❛♠❛( ❞❡ ❝❡..❡ ❛❧❣1❜-❡ ❡. x = P(y1,...,yn) yd11 ...ydnn ✉♥❡ ✈❛-✐❛❜❧❡ ❛♠❛((3❡ 3❝-✐.❡ ❝♦♠♠❡ ✉♥ ♣♦❧②♥%♠❡ ❞❡ ▲❛✉-❡♥. ❡♥ Y (♦✉( ❢♦-♠❡ -3❞✉✐.❡✳ ❆❧♦-(✱ ❧❡ ♥✉♠3-❛.❡✉- P ❞❡ ❝❡..❡ ❢-❛❝.✐♦♥ ❛ (❡✉❧❡♠❡♥. ❞❡( ❝♦❡✣❝✐❡♥.( ♣♦(✐.✐❢(✳ ❊♥ ♣❛&+✐❝✉❧✐❡&✱ P ∈ N[y1, . . . , yn] ❡+ X ⊆ N[y1, y−1 1 , . . . , yn, y −1 n ].

❈❡4 ❞❡✉① ❞❡&♥✐❡&4 +❤-♦&.♠❡4 4♦♥+ ❛♣♣❡❧-4 &❡4♣❡❝+✐✈❡♠❡♥+ ❧❡ ♣❤-♥♦♠.♥❡ ▲❛✉&❡♥+ ❡+ ❧❡ +❤-♦&.♠❡ ❞❡ ♣♦4✐+✐✈✐+-✳

(19)

✶✳✸ ❈♦♥❥❡❝)✉+❡ ❞✬✉♥✐/)+✉❝)✉+❛❧✐)2

❆✈❛♥$ ❞❡ ❞✐(❝✉$❡+ ❞❡ ❧✬✉♥✐($+✉❝$✉+❛❧✐$. ❞❡( ❛❧❣0❜+❡( ❛♠❛((.❡(✱ +❛♣♣❡❧♦♥( ❧❛ ❞.✜♥✐$✐♦♥ ❞✬✉♥ ❣!❛♣❤❡ ❞✬(❝❤❛♥❣❡ ❊●(X, Q) ✐♥$+♦❞✉✐$❡ ♣❛+ ❬❋❩✵✷❪ ♣♦✉+ ✉♥❡ ❣+❛✐♥❡ (X, Q)✳ ❉#✜♥✐'✐♦♥ ✶✳✸✳✶✳ ❙♦✐$ A (X, Q) ✉♥❡ ❛❧❣0❜+❡ ❛♠❛((.❡✳ ▲✬❡♥(❡♠❜❧❡ ❞❡( (♦♠♠❡$(✱ ♥♦$. ❊●0(X, Q)✱ ❞✉ ❣!❛♣❤❡ ❞✬(❝❤❛♥❣❡ ❊●(X, G) ❡($ ❡♥ ❝♦++❡(♣♦♥❞❛♥❝❡ ❜✐✉♥✐✈♦@✉❡ ❛✈❡❝ ❧✬❡♥(❡♠❜❧❡ ❞❡( ❛♠❛( ❞❛♥( A(X, Q)✳ ❖♥ ❞.(✐❣♥❡ ❧✬❛♠❛( ❞❡ A (X, Q) ❛((♦❝✐. ❛✉ (♦♠♠❡$ α ♣❛+ Xα✳ ❉❡✉① (♦♠♠❡$( α ❡$ β (♦♥$ +❡❧✐.( ♣❛+ ✉♥❡ ❛+D$❡ (✐ ❡$ (❡✉❧❡♠❡♥$ (✐ Xα ♣❡✉$ D$+❡ ♦❜$❡♥✉ ❞❡ Xβ ♣❛+ ✉♥❡ ♠✉$❛$✐♦♥ ✭❡$ ✐♥✈❡+(❡♠❡♥$✮✳ ❊①❡♠♣❧❡ ✶✳✸✳✷✳ ❘❡♣+.(❡♥$♦♥( ❧❡ ❣+❛♣❤❡ ❞✬.❝❤❛♥❣❡ ❞❡ ❧✬❛❧❣0❜+❡ ❛♠❛((.❡ ❞♦♥♥.❡ ♣❛+ ❧❛ ❣+❛✐♥❡ (X, Q) = x1 x2 ✱ .$✉❞✐.❡ I ❧✬❡①❡♠♣❧❡ ✶✳✶✳✷✵✳ {x1, x2} n x2, x2+1 x1 o n x2+1 x1 , x1+x2+1 x1x2 o n x1+1 x2 , x1+x2+1 x1x2 o n x1,x1x+1 2 o ❉#✜♥✐'✐♦♥ ✶✳✸✳✸ ✭❬❆❙❙✶✹❛❪✮✳ ❯♥❡ ❛❧❣0❜+❡ ❛♠❛((.❡ A (X, Q) ❡!" ❞✐"❡ ✉♥✐#$%✉❝$✉%❡❧❧❡ !✐✱ ♣♦✉) "♦✉" !♦✉!✲❡♥!❡♠❜❧❡ Y ❞❡ ✈❛)✐❛❜❧❡! ❛♠❛!!1❡! ❞❡ A (X, Q) ❡" ♣♦✉) "♦✉" ❝❛)3✉♦✐! R "❡❧ 3✉❡ (Y, R) ❡♥❣❡♥❞)❡ ❧❡ ♠5♠❡ ❡♥!❡♠❜❧❡ ❞❡ ✈❛)✐❛❜❧❡! ❛♠❛!!1❡! 3✉❡ (X, Q)✱ ♦♥ ❛ ❊●(X, Q) = ❊●(Y, R) ❡" ❧✬❡♥!❡♠❜❧❡ ❞❡! ❛♠❛! ❞❡ A (X, Q) ❡" ❞❡ A (Y, R) !♦♥" ❧❡! ♠5♠❡! 7 ❧✬♦)❞)❡ ♣)8!✳ :❧✉! ♣)1❝✐!1♠❡♥"✱ !✐ (Y, R) ❣1♥8)❡ ♣❛) ♠✉"❛"✐♦♥! ✉♥❡ ❢❛♠✐❧❧❡ ❞❡ ✈❛)✐❛❜❧❡! ❛♠❛!!1❡! Y✱ ❛❧♦)! ❧✬1❣❛❧✐"1 Y = X ✐♠♣❧✐3✉❡ 3✉❡ ✶✸

(20)

✶✳ ❊●(Y, R) = ❊●(X, Q) ❀ ✷✳ ✐❧ ❡①✐()❡ ✉♥❡ ♣❡-♠✉)❛)✐♦♥ σ ❞❡ ❊●0(X, Q) )❡❧❧❡ 2✉❡ Xα = Yσ(β) ♣♦✉- )♦✉) α ∈ ❊●0(X, Q) ❡) ❛✈❡❝ β ∈ ❊●0(Y, R)✳ ❈❡❝✐ -❡✈✐❡♥) 6 ❞✐-❡ 2✉❡ ❧✬❡♥(❡♠❜❧❡ ❞❡( ✈❛-✐❛❜❧❡( ❛♠❛((9❡( ❞9)❡-♠✐♥❡ ✉♥✐2✉❡♠❡♥) ❧❛ ()-✉❝✲ )✉-❡ ❞✬❛❧❣<❜-❡ ❛♠❛((9❡ ❀ ✐❧ ❡①✐()❡ ✉♥❡ ✉♥✐2✉❡ ❞9❝♦♠♣♦(✐)✐♦♥ ❞❡ ❧✬❡♥(❡♠❜❧❡ ❞❡( ✈❛-✐❛❜❧❡( ❛♠❛((9❡( ❡♥ ❛♠❛(✳ ❈♦♥❥❡❝(✉*❡ ✶✳✸✳✹ ✭❈♦♥❥❡❝)✉-❡ ✶✳✷✱ ❬❆❙❙✶✹❛❪✮✳ ❚♦✉)❡( ❧❡( ❛❧❣<❜-❡( ❛♠❛((9❡( (♦♥) ✉♥✐()-✉❝)✉-❡❧❧❡(✳ ❈❡))❡ ❝♦♥❥❡❝)✉-❡ ❡() ✈9-✐✜9❡ ❞❛♥( ❧❡ ❝❛( ❞❡( ❛❧❣<❜-❡( ❛♠❛((9❡( ❞❡ -❛♥❣ ✷ ❡) ❞❡ )②♣❡ ❉②♥❦✐♥ ❬❆❙❙✶✹❛✱ ❆❙❙✶✹❜❪✳ ▲❡ ❜✉) ❞❡ ❝❡ ♠9♠♦✐-❡ ❡() ❞❡ ❧❛ ✈9-✐✜❡- 9❣❛❧❡♠❡♥) ❞❛♥( ❧❡ ❝❛( ❞❡( ❛❧❣<❜-❡( ❛♠❛((9❡( ❞❡ )②♣❡ ˜A✳ ✶✹

(21)

❈❤❛♣✐%&❡ ✷

❙✉#❢❛❝❡( ♠❛#*✉+❡(

✷✳✶ ❙✉%❢❛❝❡* ♠❛%,✉-❡* ❡. ❛❧❣1❜%❡* ❛♠❛**-❡*

❧✉#$# %✉❡ ❞✬)#✉❞✐❡+ ❧❡, ❛❧❣/❜+❡, ❛♠❛,,)❡, ❞❡ #②♣❡ ˜A ❡♥ ❡✛❡❝#✉❛♥# ❞❡, ♠✉#❛#✐♦♥, ,✉+ ❧❡✉+, ❝❛+%✉♦✐,✱ ♦♥ )#✉❞✐❡ ❧❡, #+✐❛♥❣✉❧❛#✐♦♥, ❞❡ ❝♦✉+♦♥♥❡, ❡♥ ✢✐♣♣❛♥# ❧❡✉+, ❛+❝,✳ ♦✉+ ❝❡ ❢❛✐+❡✱ ✐❧ ❢❛✉# ❞✬❛❜♦+❞ %✉❡❧%✉❡, ♥♦#✐♦♥, ❣)♦♠)#+✐%✉❡, %✉✐ ♥❡ ,❡+♦♥# ♣❛, ❡①♣❧✐❝✐#)❡, ✐❝✐✳ ◆♦✉, +)❢)+♦♥, ❞♦♥❝ ❧❡ ❧❡❝#❡✉+ > ❬❉❋◆✽✹❪✳ ▲❡, ❞)✜♥✐#✐♦♥, ,✉✐✈❛♥#❡, ,♦♥# ❛❞❛♣#)❡, ❞❡ ❬❋❙❚✵✽❪✳ ❉!✜♥✐%✐♦♥ ✷✳✶✳✶✳ ❯♥❡ ✉"❢❛❝❡ ♠❛"(✉)❡ (S, M) ❡,# ❝♦♠♣♦,)❡ ❞✬✉♥❡ ,✉+❢❛❝❡ S ❝♦♥♥❡①❡ ❡# ♦+✐❡♥#❛❜❧❡ ❛✈❡❝ ✉♥❡ ❢+♦♥#✐/+❡ ❡# ❞✬✉♥ ❡♥,❡♠❜❧❡ ✜♥✐ M ⊂ S ❞❡ ♣♦✐♥. ♠❛"(✉) ❝♦♥#❡♥❛♥# ❛✉ ♠♦✐♥, ✉♥ ♣♦✐♥# ♠❛+%✉) ,✉+ ❝❤❛%✉❡ ❝♦♠♣♦,❛♥#❡ ❝♦♥♥❡①❡ ❞❡ ❧❛ ❢+♦♥#✐/+❡ ❞❡ S✳ ▲❡, ♣♦✐♥#, ♠❛+%✉), > ❧✬✐♥#)+✐❡✉+ ❞❡ S ,♦♥# ❛♣♣❡❧), ❞❡, ♣♦♥❝.✐♦♥ ✳ ❯♥ ❛"❝ ✐♥.❡"♥❡ γ ❞❛♥, (S, M) ❡,# ❧❛ ❝❧❛,,❡ ❞✬✐,♦#♦♣✐❡ ❞✬✉♥❡ ❝♦✉+❜❡ #❡❧❧❡ %✉❡ ✿ ✖ ❧❡, ❡①#+)♠✐#), ❞❡ ❧❛ ❝♦✉+❜❡ ,♦♥# ❞❛♥, M ❀ ✖ ❧❛ ❝♦✉+❜❡ ♥❡ ,❡ ❝♦✉♣❡ ♣❛, ❡❧❧❡✲♠Q♠❡✱ ,❛✉❢ ♣❡✉#✲Q#+❡ > ,❡, ❡①#+)♠✐#), ❀ ✖ ❧❛ ❝♦✉+❜❡ ❡,# ❞✐,❥♦✐♥#❡ ❞❡ M ❡# ❞❡ ❧❛ ❢+♦♥#✐/+❡ ❞❡ S ,❛✉❢ ❡♥ ,❡, ❡①#+)♠✐#), ❀ ✶✺

(22)

. M S S (S, M ) (S′ , M′ ) (S, M ) = (S′, M) = γ1 γ2 γ3 (S, M ) T γ2 γ1 γ3

(23)

(S′ , M′ ) ˜ Ap,q T γ T γ′ 6= γ (T \ {γ}) ∪ {γ′ } T γ T = , γ′ (T \ {γ}) ∪ {γ′} = . T µγ T γ γ′ 6= γ (T \ {γ}) ∪ {γ′ }

(24)

❘❡♠❛$%✉❡ ✷✳✶✳✺✳ ■❧ ❡#$ ❝❧❛✐( )✉✬✉♥ ✢✐♣ ❡#$ ✉♥❡ ♦♣0(❛$✐♦♥ ✐♥✈♦❧✉$✐✈❡✳ 3❛( ❝♦♥#0)✉❡♥$✱ ✐❧ ✐♥❞✉✐$ ✉♥❡ ❝❧❛##❡ ❞✬0)✉✐✈❛❧❡♥❝❡✳ ❉,✜♥✐0✐♦♥ ✷✳✶✳✻✳ ❖♥ ❞✐$ )✉❡ ❞❡✉① $(✐❛♥❣✉❧❛$✐♦♥# #♦♥$ ✢✐♣✲$%✉✐✈❛❧❡♥,❡- #✐ ❡❧❧❡# #♦♥$ (❡❧✐0❡# ♣❛( ✉♥❡ #✉✐$❡ ❞❡ ✢✐♣#✳ ❊①❡♠♣❧❡ ✷✳✶✳✼✳ ❋❧✐♣♣♦♥# ❧✬❛(❝ γ1 ❞❡ ❧❛ $(✐❛♥❣✉❧❛$✐♦♥ ✐❧❧✉#$(0❡ : ❧✬❡①❡♠♣❧❡ ✷✳✶✳✷✱ ❛✜♥ ❞✬♦❜$❡♥✐( ✉♥❡ ♥♦✉✈❡❧❧❡ $(✐❛♥❣✉❧❛$✐♦♥ T1 ❝♦♥$❡♥❛♥$ ❧✬❛(❝ ✢✐♣♣0 γ1′ ✿ γ2 γ1′ γ3 ❆✐♥#✐✱ T ❡$ T1 #♦♥$ ❞❡✉① $(✐❛♥❣✉❧❛$✐♦♥# ✢✐♣✲0)✉✐✈❛❧❡♥$❡#✳ ■❧ ❡#$ ♣♦##✐❜❧❡ ❞✬❛##♦❝✐❡( ✉♥ ❝❛()✉♦✐# QT : ✉♥❡ $(✐❛♥❣✉❧❛$✐♦♥ T ❞✬✉♥❡ #✉(❢❛❝❡ (S, M) ❞❡ ❧❛ ♠❛♥✐D(❡ #✉✐✈❛♥$❡✳ ▲❡# ♣♦✐♥$# ❞❡ QT ❝♦((❡#♣♦♥❞❡♥$ ❛✉① ❛(❝# ✐♥$❡(♥❡# ❞❡ T ✳ ❙♦✐❡♥$ γ1 ❡$ γ2 ❞❡✉① ❝G$0# ❞✬✉♥ $(✐❛♥❣❧❡ ❞❛♥# T ✳ ■❧ ② ❛ ✉♥❡ ✢D❝❤❡ α $❡❧❧❡ )✉❡ s(α) = γ1 ❛♥❞ b(α) = γ2 #✐ ❡$ #❡✉❧❡♠❡♥$ #✐ γ2 #✉✐$ ❞✐(❡❝$❡♠❡♥$ γ1 ❞❛♥# ❧✬♦(✐❡♥$❛$✐♦♥ ❞❡ S ❛✉$♦✉( ❞❡ ❧❡✉( #♦♠♠❡$ ❝♦♠♠✉♥✳ ❉,✜♥✐0✐♦♥ ✷✳✶✳✽✳ ▲✬❛❧❣D❜(❡ ❛♠❛##0❡ A (X, QT)❞♦♥♥0❡ ♣❛( ✉♥ ❛♠❛# X ❡$ ♣❛( ✉♥ ❝❛()✉♦✐# QT ❛##♦❝✐0 : ✉♥❡ $(✐❛♥❣✉❧❛$✐♦♥ T ❞❡ ❧❛ #✉(❢❛❝❡ (S, M) ✕ ❝✬❡#$✲:✲❞✐(❡ )✉❡ ❝❤❛)✉❡ ✈❛(✐❛❜❧❡ ❞❡ X ❡#$ ❛##♦❝✐0❡ : ✉♥ ❛(❝ ✐♥$❡(♥❡ ❞❡ T ✕ ❡#$ ❛♣♣❡❧0❡ ❧✬❛❧❣/❜1❡ ❛♠❛--$❡ ❛--♦❝✐$❡ 5 ❧❛ -✉1❢❛❝❡ (S, M)✳ ❚❤,♦$;♠❡ ✷✳✶✳✾ ✭▲❡♠♠❡ ✾✳✼✱ ❬❋❙❚✵✽❪✮✳ ❙♦✐, Tk ✉♥❡ ,1✐❛♥❣✉❧❛,✐♦♥ ❞✬✉♥❡ -✉1❢❛❝❡ ♠❛1%✉$❡ ♦❜,❡♥✉❡ 5 ♣❛1,✐1 ❞✬✉♥❡ ,1✐❛♥❣✉❧❛,✐♦♥ T ❡♥ ✢✐♣♣❛♥, ✉♥ ❛1❝ k✳ ❆❧♦1-✱ QTk = µk(QT)✳ ✶✽

(25)

❊♥ ❢❛✐%✱ ✐❧ ❡)% ♣♦))✐❜❧❡ ❞❡ ♠♦♥%/❡/ 0✉❡ A (X, QT) ♥❡ ❞2♣❡♥❞ ♣❛) ❞❡ ❧❛ %/✐❛♥❣✉❧❛%✐♦♥ ✐♥✐%✐❛❧❡ T ❡% ♥❡ ❞2♣❡♥❞ 0✉❡ ❞❡ ❧❛ )✉/❢❛❝❡ ♠❛/0✉2❡ (S, M)✱ ✈♦✐/ ❬❋❙❚✵✽❪✳ ■❧ ❡)% ❛✐♥)✐ ♣♦))✐❜❧❡ ❞✬2%✉❞✐❡/ ❧❡) ❛❧❣@❜/❡) ❛♠❛))2) ❛))♦❝✐2) A ✉♥❡ )✉/❢❛❝❡ ♠❛/0✉2❡ ♣❛/ ❧❡ ❜✐❛✐) ❞❡) %/✐❛♥❣✉❧❛%✐♦♥) ❞❡ ❝❡%%❡ )✉/❢❛❝❡✳ ❊①❡♠♣❧❡ ✷✳✶✳✶✵✳ ❙♦✐❡♥% T ❧❛ %/✐❛♥❣✉❧❛%✐♦♥ ✐❧❧✉)%/2❡ A ❧✬❡①❡♠♣❧❡ ✷✳✶✳✷ ❡% T1 ❝❡❧❧❡ ✐❧❧✉)%/2❡ A ❧✬❡①❡♠♣❧❡ ✷✳✶✳✼✳ ❖♥ ❛ ❛❧♦/) QT = 1 2 3 ❡% QT1 = 1 2 3. ❘❡♠❛/0✉♦♥) 0✉❡ QT1 = µ1(QT)✳ ❚❤,♦./♠❡ ✷✳✶✳✶✶ ✭❬❋❙❚✵✽❪✮✳ ▲❡" ❛♠❛" "♦♥' ❡♥ ❝♦))❡"♣♦♥❞❛♥❝❡ ❜✐✉♥✐✈♦0✉❡ ❛✈❡❝ ❧❡" ')✐❛♥❣✉❧❛'✐♦♥" ❡' ❧❡" ✈❛)✐❛❜❧❡" ❛♠❛"✲ "4❡" "♦♥' ❡♥ ❝♦))❡"♣♦♥❞❛♥❝❡ ❜✐✉♥✐✈♦0✉❡ ❛✈❡❝ ❧❡" ❛)❝" ✐♥'❡)♥❡✳ ❉,✜♥✐4✐♦♥ ✷✳✶✳✶✷✳ ▲❛ /❡❧❛%✐♦♥ ❞✬2❝❤❛♥❣❡ ♦❜%❡♥✉❡ ❡♥ ✢✐♣♣❛♥% γ ❞❛♥) ❝❡%%❡ ✜❣✉/❡ ❡)% ❧❛ )❡❧❛'✐♦♥ ❞❡ 6'♦❧4♠4❡ xγxγ′ = xαxδ+ xβxǫ✱ ♦N xη /❡♣/2)❡♥%❡ ❧❛ ✈❛/✐❛❜❧❡ ❛♠❛))2❡ ❛))♦❝✐2❡ A ❧✬❛/❝ η ✭)✐ ❝❡/%❛✐♥) ❞❡) ❝O%2) )♦♥% ❞❡) ❛/❝) ❞❡ ❢/♦♥%✐@/❡✱ ❧❛ ✈❛/✐❛❜❧❡ ❝♦//❡)♣♦♥❞❛♥%❡ ❡)% /❡♠♣❧❛❝2❡ ♣❛/ ✶✮✳ α β ǫ δ γ γ′ ❖♥ ❛♣♣❡❧❧❡ ✉♥ %❡❧ ❡♥)❡♠❜❧❡ ❞✬❛/❝) α✱ β✱ δ ❡% ǫ ✉♥ 0✉❛❞)✐❧❛'7)❡ ❡% ❧❡) ❛/❝) γ ❡% γ′✱ )❡) ❞✐❛❣♦♥❛❧❡"✳ ✶✾

(26)

a b c d x y xy= ac + bd a b c d x y T xi γi γ1 x′1 x1x′1 = x2+ 1 QT

˜

A

˜ A

(27)

❯♥❡ #✉%❢❛❝❡ #❛♥# ♣♦♥❝+✐♦♥ ❞❡ ❣❡♥%❡ ♥✉❧ ❛✈❡❝ ❡①❛❝+❡♠❡♥+ ❞❡✉① ❝♦♠♣♦#❛♥+❡# ❝♦♥♥❡①❡# ❞❡ ❢%♦♥+✐3%❡✱ +❡❧ 5✉✬✐❧❧✉#+%7❡ 8 ❧❛ ✜❣✉%❡ ✷✳✷✳✶✱ ❡#+ ❛♣♣❡❧7❡ ✉♥❡ ❝♦✉#♦♥♥❡✳ ❋✐❣✉%❡ ✷✳✶ ✕ ❈♦✉%♦♥♥❡ ❚❤"♦$%♠❡ ✷✳✷✳✷ ✭❚❤7♦%3♠❡ ✶✳✶✱ ❬❆❇❈❏G✶✵❪✮✳ ▲❡ ❝❛#(✉♦✐* QT ❡*+ ❞❡ +②♣❡ ˜Ap,q✱ *✐ ❡+ *❡✉❧❡♠❡♥+ *✐ T ❡*+ ❧❛ +#✐❛♥❣✉❧❛+✐♦♥ ❞✬✉♥❡ ❝♦✉#♦♥♥❡ ❛✈❡❝ p ♣♦✐♥+* *✉# ✉♥❡ ❢#♦♥+✐6#❡ ❡+ q ♣♦✐♥+* *✉# ❧✬❛✉+#❡✳ ❉"✜♥✐.✐♦♥ ✷✳✷✳✸✳ ❉❛♥# ✉♥❡ ❝♦✉%♦♥♥❡✱ ❧❡# ❛%❝# ✐♥+❡%♥❡# ❛✈❡❝ ❧❡# ❞❡✉① ❡①+%7♠✐+7# #✉% ❧❛ ♠L♠❡ ❢%♦♥+✐3%❡ #♦♥+ ❞✐+# ♣8#✐♣❤8#✐(✉❡*✱ +❛♥❞✐# 5✉❡ ❧❡# ❛%❝# ✐♥+❡%♥❡# ❛✈❡❝ ❧❡# ❞❡✉① ❡①+%7♠✐+7# #✉% ❞❡# ❢%♦♥+✐3%❡# ❞✐✛7%❡♥+❡# #♦♥+ ❞✐+# +#❛♥*✈❡#*❛✉①✳ ❊①❡♠♣❧❡ ✷✳✷✳✹✳ ❙♦✐+ Q ❧❡ ❝❛%5✉♦✐# ❞❡ +②♣❡ ˜A3,2 ❞❡ ❧✬❡①❡♠♣❧❡ ✶✳✶✳✶✶✳ ■❧ ❡#+ ❛##♦❝✐7 8 ❧❛ +%✐❛♥❣✉❧❛+✐♦♥ #✉✐✈❛♥+❡ ✿ 3 2 5 1 4 q2 q1 p2 p1 p3 ✷✶

(28)

❈❡""❡ "#✐❛♥❣✉❧❛"✐♦♥ ♥❡ ❝♦♠♣♦#"❡ .✉❡ ❞❡0 ❛#❝0 "#❛♥0✈❡#0❛✉① ❡" ❞❡0 ❛#❝0 ❞❡ ❢#♦♥"✐4#❡✳

✷✳✸ ❘❡✈&'❡♠❡♥'* ❞❡ *✉-❢❛❝❡*

6✉✐0.✉❡ #❡♣#70❡♥"❡# ❡" ✈✐0✉❛❧✐0❡# ❞❡0 ❛#❝0 ❞❛♥0 ✉♥❡ ❝♦✉#♦♥♥❡ ♣❡✉" #❛♣✐❞❡♠❡♥" ❞❡✈❡♥✐# ❝♦♥❢✉0✱ ✐❧ ❡0" ♣❛#❢♦✐0 ♣#7❢7#❛❜❧❡ ❞✬✉"✐❧✐0❡# ❞❡0 #❡✈;"❡♠❡♥"0 ❞❡ 0✉#❢❛❝❡✳ ❉!✜♥✐%✐♦♥ ✷✳✸✳✶✳ ❙♦✐❡♥" Q✱ ˜Q ❞❡✉① ❝❛#.✉♦✐0 "❡❧0 .✉❡ Z ❛❣✐" ❧✐❜#❡♠❡♥" 0✉# ˜Q✱ ❝✬❡0"✲>✲❞✐#❡ n ·˜i 6= ˜i ♣♦✉# "♦✉" ♣♦✐♥" ˜i ∈ ˜Q0 ❡" "♦✉" n ∈ Z∗✳ ❯♥ ❡✈#$❡♠❡♥$ ❣❛❧♦✐,✐❡♥ π : ˜Q → Q ❡0" ❞♦♥♥7 ♣❛# ❞❡✉① ❛♣♣❧✐❝❛"✐♦♥0 π0 : ˜Q0 → Q0 ❡" π1 : ˜Q1 → Q1 "❡❧❧❡0 .✉❡ ✿ ✖ ♣♦✉# "♦✉" ♣♦✐♥" ˜i✱ ˜j ∈ ˜Q0✱ ♦♥ ❛ π1 ˜Q1(˜i, ˜j)  ⊆ Q1 π0 ˜i , π0 ˜j ❀ ✖ ❧✬❛♣♣❧✐❝❛"✐♦♥ π0 ❡0" 0✉#❥❡❝"✐✈❡ ❀ ✖ ♣♦✉# "♦✉" n ∈ Z✱ ♦♥ ❛ π ◦ n = π ❀

✖ 0✐ ˜i✱ ˜j ∈ ˜Q0 "❡❧ .✉❡ π0(˜i) = π0(˜j)✱ ❛❧♦#0 ✐❧ ❡①✐0"❡ n ∈ Z "❡❧ .✉❡ ˜j = n · ˜i❀

✖ ♣♦✉# "♦✉" ˜i ∈ ˜Q0✱ π1 ✐♥❞✉✐" ❞❡✉① ❜✐❥❡❝"✐♦♥0 ˜i+→ π0 ˜i + ❛♥❞ ˜i− → π0 ˜i − ✳ ❙✐ Q = QT ❡" ˜Q = ˜QT˜✱ ✉♥❡ ❛♣♣❧✐❝❛"✐♦♥ π′ : ˜T → T ❡0" ✐♥❞✉✐"❡✳ ▲❛ "#✐❛♥❣✉❧❛"✐♦♥ ˜T ❡0" ❛♣♣❡❧7❡ ✉♥ ❡✈#$❡♠❡♥$ ❞❡ ❧❛ $ ✐❛♥❣✉❧❛$✐♦♥ T ✳ ❊①❡♠♣❧❡ ✷✳✸✳✷✳ ❙♦✐" ❧✬❛♣♣❧✐❝❛"✐♦♥ ˜π : ˜Q→ Q ♦E Q ❡0" ❧❡ ❝❛#.✉♦✐0 ✐❧❧✉0"#7 ❛✉① ❡①❡♠♣❧❡0 ✶✳✶✳✷ ❡" ✶✳✶✳✼✱ 1 −1 2 −1 3−1 50 40 10 20 30 51 41 11 21 31 52 · · · · · · ˜ Q = ✷✷

(29)

❡! π0 : Q˜0 → Q0 ij 7→ i ♣♦✉% i ∈ {1, . . . 5} ❡! j ∈ Z. ❆❧♦%(✱ ❧✬❛♣♣❧✐❝❛!✐♦♥ π ❡(! ✉♥ %❡✈0!❡♠❡♥! ❣❛❧♦✐(✐❡♥✳ ❊❧❧❡ ✐♥❞✉✐! ✉♥❡ ❛♣♣❧✐❝❛!✐♦♥ ❡♥!%❡ !%✐✲ ❛♥❣✉❧❛!✐♦♥( π′ : ˜T → T ♦7 T ❡(! ❧❛ !%✐❛♥❣✉❧❛!✐♦♥ ✐❧❧✉(!%8❡ 9 ❧✬❡①❡♠♣❧❡ ✷✳✷✳✹ ❡! q1 q2 q1 q2 q1 p1 p2 p3 p1 p2 p3 p1 2 −1 3−1 20 30 21 50 40 51 41 10 11 ˜ T = . ▲❛ !%✐❛♥❣✉❧❛!✐♦♥ ˜T ❡(! ❞♦♥❝ ✉♥ %❡✈0!❡♠❡♥! ❞❡ ❧❛ !%✐❛♥❣✉❧❛!✐♦♥ T ✳ ❘❡♠❛%?✉♦♥( ?✉❡ ❧❡( 8❧8♠❡♥!( ❞❡ ❧❛ ♣%8✐♠❛❣❡ π−1(i) ❞✬✉♥ ♣♦✐♥! i ∈ Q 0 (♦♥! ❞❡ ❧❛ ❢♦%♠❡ ˜in ❛✈❡❝ n ∈ Z✳ ❚❤"♦$%♠❡ ✷✳✸✳✸ ✭❚❤8♦%D♠❡ ✺✳✷✱ ❬❙❝❤✶✵❪✮✳ ❙♦✐# ˜µi =Qn∈Zµ˜in✳ ❆❧♦'(✱ ˜µi( ˜T) = (π ′ )−1 i(T ))✳ ❊①❡♠♣❧❡ ✷✳✸✳✹✳ ▼✉!♦♥( (✉% !♦✉( ❧❡( ❛%❝( ❞❡ ❧❛ ❢♦%♠❡ 4j ❞❡ ❧❛ !%✐❛♥❣✉❧❛!✐♦♥ ˜T ❞❡ ❧✬❡①❡♠♣❧❡ ✷✳✸✳✷ ♣♦✉% j ∈ Z✳ ◆♦✉( ♦❜!❡♥♦♥( ❧❛ !%✐❛♥❣✉❧❛!✐♦♥ (✉✐✈❛♥!❡ ✿ q1 q2 q1 q2 q1 p1 p2 p3 p1 p2 p3 p1 2 −1 3−1 20 30 21 50 51 40 41 10 11 ˜ µ4  ˜ T  = . ✷✸

(30)

❖!✱ ˜µ4 ˜T ❡$% ✉♥ !❡✈)%❡♠❡♥% ❞❡ ❧❛ %!✐❛♥❣✉❧❛%✐♦♥ 3 2 5 1 4′ p1 p2 p3 q1 q2 T′ = . ❘❡♠❛!2✉♦♥$ 2✉❡ T′ = µ4(T ) ♦3 T ❡$% ❧❛ %!✐❛♥❣✉❧❛%✐♦♥ ✐❧❧✉$%!4❡ 5 ❧✬❡①❡♠♣❧❡ ✷✳✷✳✹✳ ✷✹

(31)

❈❤❛♣✐%&❡ ✸

❇❛#❡# ❞❡ &'❛♥#❝❡♥❞❛♥❝❡

❉❛♥# ❧❡ ❝❛❞(❡ ❞❡ ❧❛ ❞)♠♦♥#,(❛,✐♦♥ ♣(✐♥❝✐♣❛❧❡ ❞❡ ❝❡ ♠)♠♦✐(❡✱ ♥♦✉# ❛✈♦♥# )❣❛❧❡♠❡♥, ❜❡#♦✐♥ ❞✬✉♥ ❛✉,(❡ ❝♦♥❝❡♣, ✿ ❧❡# ❜❛#❡# ❞❡ ,(❛♥#❝❡♥❞❛♥❝❡✳ ◆♦✉# ❧❡# ❞)✜♥✐##♦♥# ✐❝✐ ❡, ❡♥ ❞)❞✉✐#♦♥# ✉♥ ❧❡♠♠❡ ❡##❡♥,✐❡❧ ♣♦✉( ❧❛ #✉✐,❡✳

✸✳✶ ❉$✜♥✐(✐♦♥*

❉!✜♥✐%✐♦♥ ✸✳✶✳✶✳ ❙♦✐❡♥, K ✉♥ ❝♦(♣# ❡, k ✉♥ #♦✉#✲❝♦(♣# ❞❡ K✳ ❛✮ ❯♥ )❧)♠❡♥, x ∈ K ❡#, ❛❧❣#❜%✐'✉❡ #✉( k #✬✐❧ ❡①✐#,❡ ✉♥ ♣♦❧②♥?♠❡ ♥♦♥✲♥✉❧ f ∈ k[t] ,❡❧ @✉❡ f(x) = 0✳ ❜✮ ❯♥ #♦✉#✲❡♥#❡♠❜❧❡ X ⊆ K ❡#, ❛❧❣#❜%✐'✉❡ #✉( k #✐ ,♦✉# #❡# )❧)♠❡♥,# #♦♥, ❛❧❣)❜(✐@✉❡# #✉( k✳ ❝✮ ❯♥ #♦✉#✲❡♥#❡♠❜❧❡ X ⊆ K ❡#, ❛♣♣❡❧) ✉♥❡ ❜❛*❡ ❞❡ ,%❛♥*❝❡♥❞❛♥❝❡ ❞❡ K #✉( k #✐ X ❡#, ❛❧❣)❜(✐@✉❡♠❡♥, ✐♥❞)♣❡♥❞❛♥, #✉( k ✭✈♦✐( ❧❛ ❞)✜♥✐,✐♦♥ ✶✳✶✳✶✹✮ ❡, K ❡#, ❛❧❣)❜(✐@✉❡ #✉( ❧❡ #♦✉#✲❝♦(♣# k(X) ❞❡ K ❡♥❣❡♥❞() ♣❛( X #✉( k✳ ✷✺

(32)

❘❡♠❛$%✉❡ ✸✳✶✳✷✳ ❙♦✐# A (X, Q) ✉♥❡ ❛❧❣*❜,❡ ❛♠❛../❡✳ ▲✬❡♥.❡♠❜❧❡ X ❡.# ✉♥❡ ❜❛.❡ ❞❡ #,❛♥.❝❡♥❞❛♥❝❡ ❞❡ FX .✉, Q✳ ❊♥ ❡✛❡#✱ X ❡.# ♣❛, ❞/✜♥✐#✐♦♥ ❛❧❣/❜,✐:✉❡♠❡♥# ✐♥❞/♣❡♥❞❛♥# .✉, Q ❡# ✐❧ ❡.# ❝❧❛✐, :✉❡ FX ❡.# ❛❧❣/❜,✐:✉❡ .✉, Q(X) = FX✳

✸✳✷ #$♦♣$✐()(*

❘❡♠❛$%✉❡ ✸✳✷✳✶✳ ❙♦✐❡♥# K ✉♥ ❝♦,♣.✱ k ✉♥ .♦✉.✲❝♦,♣. ❞❡ K ❡# X ✉♥ .♦✉.✲❡♥.❡♠❜❧❡ ❞❡ K ❛❧❣/❜,✐:✉❡♠❡♥# ✐♥❞/♣❡♥❞❛♥# .✉, k✳ ❙✐ X ❡.# ✉♥❡ ❜❛.❡ ❞❡ #,❛♥.❝❡♥❞❛♥❝❡ ❞❡ K .✉, k✱ ❛❧♦,. X ❡.# ♠❛①✐♠❛❧ ❛❧❣/❜,✐:✉❡♠❡♥# ✐♥❞/♣❡♥❞❛♥#✳ ▲❛ ♣,❡✉✈❡ ❞❡ ❧❛ ♣,♦♣♦.✐#✐♦♥ .✉✐✈❛♥#❡ ❡.# ❛❞❛♣#/❡ ❞❡ ❬▲♦,✵✻❪✳ +$♦♣♦.✐0✐♦♥ ✸✳✷✳✷✳ ❙♦✐❡♥% K ✉♥ ❝♦(♣* ❛❞♠❡%%❛♥% ✉♥❡ ❜❛*❡ ❞❡ %(❛♥*❝❡♥❞❛♥❝❡ ❞❡ ❝❛(❞✐♥❛❧✐%0 ✜♥✐❡ *✉( k✱ ♦3 k ❡*% ✉♥ *♦✉*✲❝♦(♣* ❞❡ K✳ ❆❧♦(*✱ %♦✉%❡* ❧❡* ❜❛*❡* ❞❡ %(❛♥*❝❡♥❞❛♥❝❡ ❞❡ K *✉( k ♦♥% ❧❛ ♠7♠❡ ❝❛(❞✐♥❛❧✐%0✳ ❉3♠♦♥.0$❛0✐♦♥✳ ❙♦✐❡♥# X ❡# Y ❞❡✉① ❜❛.❡. ❞❡ #,❛♥.❝❡♥❞❛♥❝❡ ❞❡ K .✉, k ❛✈❡❝ X ❞❡ ❝❛,❞✐♥❛❧✐#/ ✜♥✐❡✳ ❙✐ X = ∅✱ ❛❧♦,. K ❡.# ❛❧❣/❜,✐:✉❡♠❡♥# ✐♥❞/♣❡♥❞❛♥# .✉, k✱ ❡♥ ✈❡,#✉ ❞❡ ❧❛ ❞/✜♥✐#✐♦♥ ❞✬✉♥❡ ❜❛.❡ ❞❡ #,❛♥.❝❡♥❞❛♥❝❡✳ ❆✐♥.✐✱ ∅ ❡.# ❧❛ .❡✉❧❡ ❜❛.❡ ❞❡ #,❛♥.❝❡♥❞❛♥❝❡ ❞❡ K .✉, k✱ ❞✬♦C Y = ∅ ❡# ❧✬/♥♦♥❝/ ❡.# ♣,♦✉✈/✳ ❙✉♣♣♦.♦♥. ❞♦♥❝ :✉❡ X = {x1, . . . , xn} ❡# Y = {y1, . . . , ym} ❡# :✉❡✱ .❛♥. ♣❡,#❡ ❞❡ ❣/♥/,❛❧✐#/✱ m ≥ n✳ ❙✉♣♣♦.♦♥. /❣❛❧❡♠❡♥# :✉❡✱ ♣♦✉, ✉♥ ❝❡,#❛✐♥ i ∈ {0, . . . , n}✱ ✐❧ ❡①✐.#❡ xji+1, . . . , xjn ∈ X #❡❧. :✉❡ K .♦✐# ❛❧❣/❜,✐:✉❡ .✉, k"y1, . . . , yi, xji+1, . . . , xjn

 ❡# ♣,♦✉✈♦♥. :✉❡ ❝✬❡.# ❧❡ ❝❛. ♣♦✉, i + 1✳ ❘❡♠❛,:✉♦♥. ❞✬❛❜♦,❞ :✉❡ ❝❡##❡ ❝♦♥❞✐#✐♦♥ ❡.# ✈/,✐✜/❡ ♣♦✉, i = 0✱ ❝❛, K ❡.# ❛❧❣/❜,✐:✉❡ .✉, k (xj1, . . . , xjn)✳ ✷✻

(33)

❈♦♠♠❡ yi+1 ∈ K✱ ♦♥ ♦❜'✐❡♥' )✉❡ yi+1 ❡+' ❛❧❣/❜0✐)✉❡ +✉0 k "y1, . . . , yi, xji+1, . . . , xjn  ✳ ❆✐♥+✐✱ ✐❧ ❡①✐+'❡ f0. . . fd ∈ k [t1, . . . , tn]❛✈❡❝ fd6= 0 ❡' d X l=0 fl"y1, . . . , yi, xji+1, . . . , xjn y l i+1 = 0. ✭✸✳✶✮ ❖0✱ ♣✉✐+)✉❡ {y1, . . . , yi} ❡+' ✉♥ ❡♥+❡♠❜❧❡ ❛❧❣/❜0✐)✉❡♠❡♥' ✐♥❞/♣❡♥❞❛♥' +✉0 k✱ ✐❧ ❡①✐+'❡ x ∈ xji+1, . . . , xjn ❛♣♣❛0❛✐++❛♥' ❞❛♥+ ❧❡ ❞/✈❡❧♦♣♣❡♠❡♥' ❞✉ ♣♦❧②♥>♠❡ ❞❡ ❧✬/)✉❛'✐♦♥ ✸✳✶✳ ❙❛♥+ ♣❡0'❡ ❞❡ ❣/♥/0❛❧✐'/✱ +✉♣♣♦+♦♥+ )✉❡ x = xji+1✳ ❆✐♥+✐✱ ❧✬/❣❛❧✐'/ ✸✳✶ ♥♦✉+ ♣❡0✲

♠❡' ❞❡ ❝♦♥❝❧✉0❡ )✉❡ xji+1 ❡+' ❛❧❣/❜0✐)✉❡ +✉0 k "y1, . . . , yi+1, xji+2, . . . , xjn



✳ B✉✐+)✉❡ K ❡+' ❛❧❣/❜0✐)✉❡ +✉0 k "y1, . . . , yi, xji+1, . . . , xjn



❡♥ ✈❡0'✉ ❞❡ ❧✬❤②♣♦'❤D+❡✱ ✐❧ ❧✬❡+' ❛✉++✐ +✉0 k"y1, . . . , yi+1, xji+2, . . . , xjn

 ✳ B❛0 0/❝✉00❡♥❝❡✱ K ❡+' ❛❧❣/❜0✐)✉❡ +✉0 k (y1, . . . , yn)❡' ❞❡ ❝❡ ❢❛✐'✱ {y1, . . . , yn} ❡+' ✉♥❡ ❜❛+❡ ❞❡ '0❛♥+❝❡♥❞❛♥❝❡✳ ●0G❝❡ H ❧❛ 0❡♠❛0)✉❡ ✸✳✷✳✶✱ ♦♥ ❝♦♥❝❧✉' )✉❡ Y = {y1, . . . , yn} ❡' )✉❡ ❧❡+ ❝❛0❞✐♥❛❧✐'/+ ❞❡ X ❡' ❞❡ Y +♦♥' ❧❡+ ♠J♠❡+✳ ❉❡ ❝❡''❡ ♣0♦♣0✐/'/✱ ♥♦✉+ ♣♦✉✈♦♥+ '✐0❡0 ❧❡ ❧❡♠♠❡ +✉✐✈❛♥'✳ ▲❡♠♠❡ ✸✳✷✳✸✳ ❙♦✐❡♥% (X, Q) ❡% (Y, R) ❞❡✉① ❣*❛✐♥❡, ❡♥❣❡♥❞*❛♥% ❧❡, ♠/♠❡, ✈❛*✐❛❜❧❡, ❛♠❛,,2❡,✳ ❆❧♦*, |X| = |Y |✳ ❉'♠♦♥*+,❛+✐♦♥✳ ◆♦'♦♥+ X = {x1, . . . , xn} ❡' Y = {y1, . . . , ym}✳ ❈♦♠♠❡ x1, . . . , xn +♦♥' ❞❡+ ✈❛0✐❛❜❧❡+ ❛♠❛++/❡+ ❞❡ A (Y, R)✱ ♦♥ ♣❡✉' /❝0✐0❡ xi = mpii ♦M pi ❡+' ✉♥ ♣♦❧②♥>♠❡ ❡♥ Y ❡' mi ✉♥ ♠♦♥>♠❡ ❡♥ Y ♣♦✉0 i = 1, . . . , n. ❘❡♠❛0)✉♦♥+ ❞♦♥❝ )✉❡ FX =  f (x1, . . . , xn) g(x1, . . . , xn)|f, g ∈ Q [x 1, . . . , xn]  =    fp1 m1, . . . , pn mn  gp1 m1, . . . , pn mn |f, g ∈ Q [x1, . . . , xn]    = f ′ (y1, . . . , yn) g′(y 1, . . . , yn)|f ′ , g′ ∈ Q [y1, . . . , yn]  =FY. ✷✼

(34)

❖♥ ❡♥ ❞$❞✉✐' ( ❧✬❛✐❞❡ ❞❡ ❧❛ ,❡♠❛,.✉❡ ✸✳✶✳✷ ❡' ❞❡ ❧❛ ♣,♦♣♦5✐'✐♦♥ ✸✳✷✳✷ .✉❡ X ❡' Y ♦♥' ❧❛ ♠6♠❡ ❝❛,❞✐♥❛❧✐'$ ♣✉✐5.✉❡ ❝❡ 5♦♥' ❞❡5 ❜❛5❡5 ❞❡ ',❛♥5❝❡♥❞❛♥❝❡ ❞✬✉♥ ♠6♠❡ ❝♦,♣5✳

(35)

❈❤❛♣✐%&❡ ✹

❯♥✐$%&✉❝%✉&❛❧✐%+ ❞❡$ ❛❧❣/❜&❡$ ❛♠❛$$+❡$

❞❡ %②♣❡ ˜A

✹✳✶ ❉$♠♦♥()*❛)✐♦♥ ❞❡ ❧✬✉♥✐()*✉❝)✉*❛❧✐)$ ❞❡( ❛❧❣4❜*❡(

❛♠❛(($❡( ❞❡ )②♣❡ ˜A

❆✜♥ ❞❡ ❞%♠♦♥()❡) ❧❡ (❤%♦),♠❡ ✹✳✶✳✷✱ ❧❡ )%2✉❧(❛( ♣)✐♥❝✐♣❛❧ ❞❡ ❝❡ ♠%♠♦✐)❡✱ ♥♦✉2 ❛✈♦♥2 ❜❡2♦✐♥ ❞✉ ❧❡♠♠❡ (❡❝❤♥✐:✉❡ 2✉✐✈❛♥(✳ ▲❡♠♠❡ ✹✳✶✳✶✳ ❙♦✐# X ❧✬❡♥(❡♠❜❧❡ ❞❡( ✈❛.✐❛❜❧❡( ❛♠❛((/❡( ❞✬✉♥❡ ❛❧❣2❜.❡ ❛♠❛((/❡ A (X, Q) ❡# (♦✐❡♥# x1✱ x2 ∈ X ✳ ❉❡ ♣❧✉(✱ (♦✐❡♥# Σ1✱ Σ2✱ Σ3 ∈ N [X ] \ N [x1, x2]✱ ❝✬❡(#✲9✲❞✐.❡ :✉❡ Σ1✱ Σ2 ❡# Σ3 (♦♥# ❞❡( ♣♦❧②♥<♠❡( 9 ❝♦❡✣❝✐❡♥#( ♥❛#✉.❡❧( ❡♥ #♦✉#❡( ❧❡( ✈❛.✐❛❜❧❡( ❛♠❛((/❡(✱ (❛✉❢ x1 ❡# x2✳ ❛✮ ❙✐ x1x2 = Σ1✱ ❛❧♦.( x1 6∈ X ♦✉ x2 6∈ X✳ ❜✮ ❙✐ x1x2Σ1 = Σ1Σ2 + Σ3✱ ❛❧♦.( x1 6∈ X ♦✉ x2 6∈ X✳ ✷✾

(36)

❉!♠♦♥%&'❛&✐♦♥✳ ❛✮ ❈❤❛$✉❡ ✈❛(✐❛❜❧❡ ❛♠❛--.❡ ❞❡ A (X, Q) ♣❡✉1 -✬.❝(✐(❡ ❝♦♠♠❡ ✉♥ ♣♦❧②♥7♠❡ ❞❡ ▲❛✉(❡♥1 ❡♥ X✳ ❆✐♥-✐✱ Σ1✱ ❡♥ 1❛♥1 $✉❡ -♦♠♠❡ ❞❡ ♣(♦❞✉✐1- ❞❡ ✈❛(✐❛❜❧❡- ❛♠❛--.❡-✱ ♣❡✉1 .❣❛❧❡✲ ♠❡♥1 -✬.❝(✐(❡ ❝♦♠♠❡ ✉♥ ♣♦❧②♥7♠❡ ❞❡ ▲❛✉(❡♥1 ❡♥ X✱ $✉❡ ♥♦✉- ♥♦1❡(♦♥- P1 M1✱ ♦> P1 ❡-1 ✉♥ ♣♦❧②♥7♠❡ ❡♥ X ❡1 M1 ❡-1 ✉♥ ♠♦♥7♠❡ ❡♥ X✳ ◆♦✉- ♦❜1❡♥♦♥- ❞♦♥❝ x1x2 = MP11✱ ❝❡ $✉✐ ❡-1 .$✉✐✈❛❧❡♥1 @ M1x1x2− P1 = 0. ❙✐ x1 ∈ X ❡1 x2 ∈ X✱ ♦♥ ♦❜1✐❡♥1 ✉♥❡ ❝♦♥1(❛❞✐❝1✐♦♥ @ ❧✬✐♥❞.♣❡♥❞❛♥❝❡ ❛❧❣.❜(✐$✉❡ ❞❡ ❧✬❛♠❛- X✱ @ ♠♦✐♥- $✉❡ M = 1 ❡1 $✉❡ ❧❡ -❡✉❧ 1❡(♠❡ ❞✉ ❞.✈❡❧♦♣♣❡♠❡♥1 ❞✉ P1 -♦✐1 x1x2✱ ❝❡ $✉✐ ♥✬❡-1 ♣❛- ❧❡ ❝❛-✱ ❡♥ ✈❡(1✉ ❞❡ ❧✬❤②♣♦1❤B-❡✳ ❜✮ ❊♥❝♦(❡ ✉♥❡ ❢♦✐-✱ ❝♦♠♠❡ Σi ♣♦✉( i = 1, 2, 3 ❡-1 ✉♥❡ -♦♠♠❡ ❞❡ ♣(♦❞✉✐1- ❞❡ ✈❛(✐❛❜❧❡-❛♠❛--.❡-✱ ❞♦♥❝ ❞❡ ♣♦❧②♥7♠❡- ❞❡ ▲❛✉(❡♥1 ❡♥ X✱ ✐❧ -✬.❝(✐1 ❧✉✐✲♠E♠❡ ❝♦♠♠❡ ✉♥ ♣♦✲ ❧②♥7♠❡ ❞❡ ▲❛✉(❡♥1 ❡♥ X✳ ◆♦1♦♥- ❞♦♥❝ Σi = MPi i ♦> Pi ❡-1 ✉♥ ♣♦❧②♥7♠❡ ❡♥ X ❡1 Mi ❡-1 ✉♥ ♠♦♥7♠❡ ❡♥ X ♣♦✉( i = 1, 2, 3✳ ◆♦✉- ♦❜1❡♥♦♥- ❛✐♥-✐ x1x2MP11 = MP11MP22 + MP33✱ ❝❡ $✉✐ ❞♦♥♥❡ M1M2P3 = x1x2M2M3P1− M3P1P2 = M3P1(x1x2M2− P2). ❊♥ ✈❡(1✉ ❞✉ 1❤.♦(B♠❡ ❞❡ ♣♦-✐1✐✈✐1.✱ -♦✐1 ❧❡ 1❤.♦(B♠❡ ✶✳✷✳✸ ❞❡ ❝❡ ♠.♠♦✐(❡✱ ❧❡- ❝♦✲ ❡✣❝✐❡♥1- ❞❡- 1❡(♠❡- ❡♥ X ❞❛♥- ❧❡- ✈❛(✐❛❜❧❡- ❛♠❛--.❡- -♦♥1 ♣♦-✐1✐❢- ❀ ❝✬❡-1 ❡♥ ♣❛(✲ 1✐❝✉❧✐❡( ❧❡ ❝❛- ♣♦✉( M1M2P3✳ K✉✐-$✉❡ M1M2P3 ♥✬❛ $✉❡ ❞❡- 1❡(♠❡- ♣♦-✐1✐❢-✱ ♠❛✐--✬.❝(✐1 ❝♦♠♠❡ ✉♥❡ ❞✐✛.(❡♥❝❡ ❞❡ ❞❡✉① ❡①♣(❡--✐♦♥- ❝♦♥1❡♥❛♥1 ❡❧❧❡- ❛✉--✐ ✉♥✐$✉❡♠❡♥1 ❞❡- 1❡(♠❡- ♣♦-✐1✐❢-✱ ♦♥ ❡♥ ❞.❞✉✐1 $✉❡✱ ♦✉ ❜✐❡♥ M3P1P2 = 0✱ ❝❡ $✉✐ ❡-1 ✐♠♣♦--✐❜❧❡✱ ♦✉ ❜✐❡♥ ❝❤❛❝✉♥ ❞❡- 1❡(♠❡- ❞❡ P2 -❡ (❡1(♦✉✈❡ ❞❛♥- ❧❡ ❞.✈❡❧♦♣♣❡♠❡♥1 ❞❡ x1x2M2 ❛✈❡❝ ✉♥ ❝♦❡✣❝✐❡♥1 ♣❧✉- ❣(❛♥❞ ♦✉ .❣❛❧✳ ❙✉♣♣♦-♦♥- $✉❡ x1 ∈ X ❡1 x2 ∈ X ❀ ❡♥ ♣❛(1✐❝✉❧✐❡(✱ ✐❧ -✬❛❣✐1 ❞❡ ♠♦♥7♠❡-✳ K✉✐-$✉❡ x1x2M2 ❡-1 ✉♥ ♣(♦❞✉✐1 ❞❡ ✈❛(✐❛❜❧❡- ❞❡ X -❛♥- ❛✉❝✉♥ ❝♦❡✣❝✐❡♥1✱ ♦♥ ❡♥ ❞.❞✉✐1 $✉❡ ✸✵

(37)

P2 = x1x2M2✱ ❡" ❞♦♥❝✱ M1M2P3 = 0✱ ❝❡ '✉✐ ❡*" ❡♥❝♦+❡ ✉♥❡ ❢♦✐* ✉♥❡ ❝♦♥"+❛❞✐❝"✐♦♥ . ❧✬✐♥❞1♣❡♥❞❛♥❝❡ ❛❧❣1❜+✐'✉❡ ❞❡ X✳ ❚❤"♦$%♠❡ ✹✳✶✳✷✳ ▲❡" ❛❧❣&❜(❡" ❛♠❛""*❡" ❞❡ ,②♣❡ ˜A "♦♥, ✉♥✐",(✉❝,✉(❡❧❧❡"✳ ❉"♠♦♥./$❛/✐♦♥✳ ❙♦✐❡♥" X ❡" Y ❞❡* ❡♥*❡♠❜❧❡* ❛❧❣1❜+✐'✉❡♠❡♥" ✐♥❞1♣❡♥❞❛♥"* *✉+ Q✱ Q ✉♥ ❝❛+'✉♦✐* ❞❡ "②♣❡ ˜Ap,q ❡" R ✉♥ ❝❛+'✉♦✐* "❡❧* '✉❡ (X, Q) ❡" (Y, R) ❢♦+♠❡♥" ❞❡✉① ❣+❛✐♥❡* ❡♥❣❡♥❞+❛♥" ❧❡* ♠:♠❡* ✈❛+✐❛❜❧❡* ❛♠❛**1❡*✳ ❘❡♠❛+'✉♦♥* '✉✬❡♥ ✈❡+"✉ ❞✉ ❧❡♠♠❡ ✸✳✷✳✸✱ ❧❡* ❡♥*❡♠❜❧❡* X ❡" Y ♦♥" ❧❛ ♠:♠❡ ❝❛+❞✐♥❛❧✐"1✳ ▼♦♥"+♦♥* '✉❡ Y ❡*" ✉♥ ❛♠❛* ❞❡ ❧✬❛❧❣@❜+❡ ❛♠❛**1❡ A (X, Q)✳ ❙✉♣♣♦*♦♥* ❛✉ ❝♦♥"+❛✐+❡ '✉❡ Y ♥✬❡*" ♣❛* ✉♥ ❛♠❛* ❞❡ A (X, Q)✳ ❆✐♥*✐✱ ✐❧ ❡①✐*"❡ ❞❡✉① ✈❛+✐❛❜❧❡* yi ❡" yj ❞❡ Y ✐♥❝♦♠♣❛"✐❜❧❡* ❞❛♥* A (X, Q)✳ ❖+✱ ♦♥ *❛✐" '✉❡ ❧❡* ✈❛+✐❛❜❧❡* ❞❡ A(X, Q)*♦♥" ❛**♦❝✐1❡* ❛✉① ❛+❝* ✐♥"❡+♥❡* ❞✬✉♥❡ ❝♦✉+♦♥♥❡ ❛②❛♥" p ♣♦✐♥"* ♠❛+'✉1* *✉+ ✉♥❡ ❢+♦♥"✐@+❡ ❡" q ♣♦✐♥"* ♠❛+'✉1* *✉+ ❧✬❛✉"+❡✳ ❈♦♥*✐❞1+♦♥* ❧❡* ❛+❝* γi ❡" γj ❛**♦❝✐1* ❛✉① ✈❛+✐❛❜❧❡* yi ❡" yj +❡*♣❡❝"✐✈❡♠❡♥" ❞❛♥* A(X, Q)✳ ◆♦"♦♥* i1 ❡" i2 ❧❡* ❡①"+1♠✐"1* ❞❡ γi ❡" j1 ❡" j2 ❧❡* ❡①"+1♠✐"1* ❞❡ γj✳ ◆♦✉* ❞❡✈♦♥* ♥♦✉* ♣❡♥❝❤❡+ *✉+ "+♦✐* ❝❛* ✿ ❧❡* ❛+❝* γi ❡" γj ♣❡✉✈❡♥" :"+❡ "♦✉* ❧❡* ❞❡✉① ♣1+✐♣❤1+✐'✉❡*✱ "♦✉* ❧❡* ❞❡✉① "+❛♥*✈❡+*❛✉① ♦✉ ✉♥ ❡*" ♣1+✐♣❤1+✐'✉❡ ❡" ❧✬❛✉"+❡ ❡*" "+❛♥*✈❡+*❛❧✳ 2$❡♠✐❡$ ❝❛. ✿ ❧✬❛$❝ γi ❡./ ♣"$✐♣❤"$✐8✉❡ ❡/ ❧✬❛$❝ γj ❡./ /$❛♥.✈❡$.❛❧✳ ❙❛♥* ♣❡+"❡ ❞❡ ❣1♥1+❛❧✐"1✱ *✉♣♣♦*♦♥* '✉❡ i1✱ i2 ❡" j1*❡ *✐"✉❡♥" "♦✉* *✉+ ❧❛ ♠:♠❡ ❢+♦♥"✐@+❡ ❞❡ ❧❛ *✉+❢❛❝❡✳ ❈♦♥*✐❞1+♦♥* ❧❛ "+✐❛♥❣✉❧❛"✐♦♥ ❞❡ ❧❛ ✜❣✉+❡ ✹✳✶ ♦J z1✱ z2✱ z3 ❡" z4 *♦♥" ❞❡* ✈❛+✐❛❜❧❡* ❛♠❛**1❡* ❞✬✉♥ ♠:♠❡ ❛♠❛* ❞❡ A (X, Q)✳ ❘❡♠❛+'✉♦♥* '✉❡ ❧❡* ✈❛+✐❛❜❧❡* z1 ❡" z2 ♣❡✉✈❡♥" 1✈❡♥"✉❡❧❧❡✲ ♠❡♥" :"+❡ ❛**♦❝✐1❡* . ❞❡* ❛+❝* ❞❡ ❢+♦♥"✐@+❡*✱ ❛✉'✉❡❧ ❝❛* ❡❧❧❡* ✈❛❧❡♥" ✶✳ ❘❡♠❛+'✉♦♥* ❛✉**✐ '✉✬✐❧ ❡*" ♣♦**✐❜❧❡ '✉❡ i1 = i2✳ ✸✶

(38)

i1 i2 j2 j1 z1 z2 z3 z4 γi γj ❋✐❣✉$❡ ✹✳✶ ✕ ◗✉❛❞$✐❧❛./$❡ ❞❡ ✢✐♣ ❛②❛♥. ❝♦♠♠❡ ❞✐❛❣♦♥❛❧❡7 ✉♥ ❛$❝ ♣8$✐♣❤8$✐:✉❡ ❡. ✉♥ ❛$❝ .$❛♥7✈❡$7❛❧ ❊♥ ✈❡$.✉ ❞❡ ❧❛ $❡❧❛.✐♦♥ ❞❡ =.♦❧8♠8❡✱ ♦♥ ♦❜.✐❡♥. ✿ yiyj = z1z3+ z2z4. ❖$✱ z1z3+ z2z4 ❡7. ✉♥❡ 7♦♠♠❡ ❞❡ ♣$♦❞✉✐.7 ❞❡ ✈❛$✐❛❜❧❡7 ❛♠❛778❡7 ❞❡ A (X, Q) ❞♦♥❝ ❞❡ A(Y, R) 8❣❛❧❡♠❡♥.✳ ❆✐♥7✐✱ ❧❡ ❧❡♠♠❡ ✹✳✶✳✶ ♥♦✉7 ❛77✉$❡ :✉❡ yi 6∈ Y ♦✉ yj 6∈ Y ✱ ❝❡ :✉✐ ❡7. ✉♥❡ ❝♦♥.$❛❞✐❝.✐♦♥ C ❧✬❤②♣♦.❤/7❡ ✐♥✐.✐❛❧❡✳ ❉❡✉①✐%♠❡ ❝❛) ✿ ❧❡) ❛,❝) γi ❡- γj )♦♥- ♣1,✐♣❤1,✐3✉❡)✳ ❙✐ ❝❡7 ❞❡✉① ❛$❝7 7❡ ❝$♦✐7❡♥. ✉♥❡ 7❡✉❧❡ ❢♦✐7✱ ✐❧ ❡①✐7.❡ ❡♥❝♦$❡ ✉♥ :✉❛❞$✐❧❛./$❡ ❞❡ ✢✐♣✱ .❡❧ :✉✬✐❧❧✉7.$8 C ❧❛ ✜❣✉$❡ ✹✳✷ ✕ ♦J ✐❧ ❡7. ♣♦77✐❜❧❡ :✉❡ i1 = j2 ✕ ❡. ♦♥ ♦❜.✐❡♥. ❧❛ ♠K♠❡ ❝♦♥.$❛❞✐❝.✐♦♥ ❛✉ ❧❡♠♠❡ ✹✳✶✳✶ :✉❡ ♣$8❝8❞❡♠♠❡♥.✳ ❙✉♣♣♦7♦♥7 ❞♦♥❝ :✉❡ γi ❡. γj 7❡ ❝$♦✐7❡♥. ❞❡✉① ❢♦✐7✳ ❊♥ ❧❡7 $❡♣$87❡♥.❛♥. ❞❛♥7 ❧❛ .$✐❛♥✲ ❣✉❧❛.✐♦♥ ❞✬✉♥❡ ❝♦✉$♦♥♥❡✱ ✐❧ ❡7. ❢❛❝✐❧❡ ❞❡ 7❡ ❝♦♥✈❛✐♥❝$❡ :✉✬✐❧7 ♥❡ ♣❡✉✈❡♥. 7❡ ❝$♦✐7❡$ ♣❧✉7 ❞❡ ❞❡✉① ❢♦✐7✳ ❉❛♥7 ❝❡ ❝❛7✱ i1 ❡. i2 7♦♥. ♥8❝❡77❛✐$❡♠❡♥. ❞✐7.✐♥❝.7 ❀ ❞❡ ♠K♠❡✱ j1 ❡. j2 7♦♥. ❞✐7.✐♥❝.7✳ =$❡♠✐/$❡♠❡♥.✱ ❝♦♥7✐❞8$♦♥7 ❧❡ ❝❛7 ♦J i1✱ i2✱ j1 ❡. j2 7♦♥. .♦✉7 ❞✐7.✐♥❝.7✳ ❙♦✐. Z ✉♥ ❛♠❛7 ❞❡ A (X, Q) ❛77♦❝✐8 C ❧❛ .$✐❛♥❣✉❧❛.✐♦♥ ❞❡ ❧❛ ✜❣✉$❡ ✹✳✸ ✭$❡♣$87❡♥.8❡ ❡♥ $❡✈K.❡♠❡♥.✮ ♦J Z = {z1, . . . , zp+q} ❡. z1 = yi✳ ❘❡♠❛$:✉♦♥7 :✉❡ z6, . . . , z10 ♣❡✉✈❡♥. K.$❡ ❛77♦❝✐87 8✈❡♥.✉❡❧❧❡♠❡♥. C ❞❡7 ❛$❝7 ❞❡ ❢$♦♥✲ ✸✷

(39)

j1 i2 j2 i1 yi yj z1 z2 z3 z4 ❋✐❣✉$❡ ✹✳✷ ✕ ◗✉❛❞$✐❧❛./$❡ ❞❡ ✢✐♣ ❛②❛♥. ❝♦♠♠❡ ❞✐❛❣♦♥❛❧❡7 ❞❡✉① ❛$❝7 ♣9$✐♣❤9$✐;✉❡7 z6 i1 j2 z7 z8 z9 z6 z7 z8 z9 z10 z4 z4 z4 z10 z5 z5 z1 z1 z2 z3 z2 z3 i2 j1 i1 j2 j1 i2 i1 yj k k k ❋✐❣✉$❡ ✹✳✸ ✕ ❚$✐❛♥❣✉❧❛.✐♦♥ ❝♦♠♣♦$.❛♥. ❧✬❛$❝ ♣4$✐♣❤4$✐6✉❡ γi ❝$♦✐7❛♥. ❞❡✉① ❢♦✐7 ❧✬❛$❝ ♣4$✐✲ ♣❤4$♦6✉❡ γj ✸✸

(40)

✐"#❡✳ ❈♦♥)✐❞+#♦♥) ❧❛ )✉✐ ❡ ❞❡ ♠✉ ❛ ✐♦♥) ♣❡#♠❡ ❛♥ ❞✬♦❜ ❡♥✐# ❧✬❛#❝ γj ✐❧❧✉) #+❡ 4 ❧❛ ✜❣✉#❡ ✹✳✹✳ z6 i1 j2 z7 z8 z9 z6 z7 z8 z9 z10 z4 z4 z4 z10 z5 z5 z1 z1 z2 z3 z2 z3 i2 j1 i1 j2 j1 i2 i1 yj k k k z6 i1 j2 z7 z8 z9 z6 z7 z8 z9 z10 z4 z4 z4 z10 z5 z5 z′ 1 z1′ z2 z2 z3 z3 i2 j1 i1 j2 j1 i2 i1 k k k ❀ µ1 z6 i1 j2 z7 z8 z9 z6 z7 z8 z9 z10 z4 z4 z4 z10 z5 z5 z′ 1 z′ z1′ 2 z3 z′2 z3 i2 j1 i1 j2 j1 i2 i1 k k k ❀ µ2 z6 i1 j2 z7 z8 z9 z6 z7 z8 z9 z10 z4 z4 z4 z10 z5 z5 z′ 1 z′ z1′ 2 z′2 z′ 3 z3′ i2 j1 i1 j2 j1 i2 i1 k k k ❀ µ3 ✸✹

(41)

z6 i1 j2 z7 z8 z9 z6 z7 z8 z9 z10 z′ 4 z10 z5 z5 z′ 1 z2′ z1′ z2′ z′ 3 z3′ i2 j1 i1 j2 j1 i2 i1 k k k z6 i1 j2 z7 z8 z9 z6 z7 z8 z9 z10 z′ 4 z10 z′ 1 z2′ z1′ z2′ z′ 3 z3′ i2 j1 i1 j2 j1 i2 i1 z′ 5 k k k ❀ µ5 ❀ µ4 ❋✐❣✉$❡ ✹✳✹ ✕ ❙✉✐*❡ ❞❡ ♠✉*❛*✐♦♥0 ♣❡$♠❡**❛♥* ❞❡ ♣❛00❡$ ❞✬✉♥❡ *$✐❛♥❣✉❧❛*✐♦♥ ❝♦♥*❡♥❛♥* ❧✬❛$❝ γi ❛00♦❝✐5 6 ❧❛ ✈❛$✐❛❜❧❡ yi = z1 6 ✉♥❡ *$✐❛♥❣✉❧❛*✐♦♥ ❝♦♥*❡♥❛♥* ❧✬❛$❝ γj ❛00♦❝✐5 6 ❧❛ ✈❛$✐❛❜❧❡ yj ❡* ❝$♦✐0❛♥* γi ❞❡✉① ❢♦✐0✳ ✸✺

Références

Documents relatifs

Pour former des apprenants rédacteurs de textes et faire face aux multiples problèmes rencontrés par les enseignants et leurs élèves au niveau de l’écrit,

Mononuclear cells either from fresh biopsies (patients 11, 12, and 30) or peripheral blood (patients 3 and 12–34) were stained with antibodies against CD3 (pacific blue, clone

The tooth replacement in the minipig begins as in the ferret by a budding of the dental lamina at the lingual part of the deciduous tooth.. In the minipig, the replacement

Si les femmes ont une situation plus favorable que les hommes en matière de cancer, notons également que les inégalités entre les catégories sociales sont moins marquées chez

en 2008 (9), ont réalisé une étude rétrospective chez 10 patients porteurs d'un SAPL primaire (9 SAPL veineux, 1 SAPL artériel) ayant bénéficié de 12 mois de

Unlike conventional approaches based on local analysis of the delay bound in each crossed node in the network, our proposed approach is based on a global analysis method,

So, in the second edition, Locke says: &#34;Good and Evil, present and absent, 'tis true, work upon the mind: But that which immediately determines the Will, from time to time, to