• Aucun résultat trouvé

Internal Friction of Polycrystalline and Single-Crystal Ice

N/A
N/A
Protected

Academic year: 2021

Partager "Internal Friction of Polycrystalline and Single-Crystal Ice"

Copied!
22
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Technical Translation (National Research Council of Canada), 1961

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20331676

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Internal Friction of Polycrystalline and Single-Crystal Ice

Kuroiwa, D.; Yamaji, K.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=ecf391b3-7fe6-4739-a3e6-073ac83f75cb https://publications-cnrc.canada.ca/fra/voir/objet/?id=ecf391b3-7fe6-4739-a3e6-073ac83f75cb

(2)

Preface

The i n t e r n a l s t r u c t u r e of a s o l i d has an important

i n f l u e n c e on how t h e s o l i d

w i l l

deform under an a p p l i e d

load.

A

very u s e f u l technique f o r o b t a i n i n g information

on i n t e r n a l s t r u c t u r e s

i s t o determine, a s a f u n c t i o n of

temperature and frequency of s t r e s s i n g , t h e r a t e a t which

i n t e r n a l s t r a i n energy

i s d i s s i p a t e d w i t h i n t h e s o l i d .

S c i e n t i s t s a t t h e I n s t i t u t e of Low Temperature Science

at

Holrkaido U n i v e r s i t y , Sapparo,Japan, have used t h i s tech-

nique with g r e a t success i n t h e i r i n v e s t l g a t i o n s on I c e

and snow.

The r e s u l t s of t h e i r observations should be

given s e r i o u s a t t e n t i o n i n any study on the deformation

behaviour of t h e s e m a t e r i a l s .

The present paper, t r a n s l a t e d from t h e Japanese a t

t h e r e q u e s t of t h e Snow and I c e Section of t h e D i v i s i o n

of Building Research, National Research Council, p r e s e n t s

some of t h e r e c e n t observations made a t t h e I n s t i t u t e of

Low Temperature Science on t h e i n t e r n a l f r i c t i o n of poly-

c r y s t a l l i n e and s i n g l e - c r y s t a l i c e .

It

i s the second

paper on

t h i s

s u b j e c t by t h i s group t h a t h a s been t r a n s -

l a t e d , the f i r s t b e i n g a v a i l a b l e i n t h e t r a n s l a t i o n s e r i e s

of t h e Defence Research Board (Visco E l a s t i c i t y of I c e I n

t h e Ternperzture Range

O0

-

100°C, by

K.

Yamaji and

D.

Kuroiwa, Defence Research Board T63J, August 1958).

The Division of Building Research wishes t o express

i t s a p p r e c i a t i o n t o

M r .

E.R.

Hope of t h e Defence Research

Board f o r t h e e x c e l l e n t t r a n s l a t i o n of t h i s paper.

Ottawa,

R . F .

Legget,

(3)

NATIONAL

RESEARCH

C O U N C I L

OF

CANADA

T e c h n i c a l T r a n s l a t i o n 978

T i t l e

:

I n t e r n a l f r i c t i o n of p o l y c r y s t a l l i n e and s i n g l e - c r y s t a l

ice

Authors:

Daisuke Kuroiwa and Kenju

Y a m a j i

Reference:

L o w

Temperature S c i e n c e [ ~ e i o n

~ a ~ a k u ]

,

S e r i e s

A ,

( 1 8 ) :

97-114, 1959

T r a n s l a t o r

:

E

.R.

Hope

(4)

T r a n s l a t e d from Teion Kugaku [Low Tenlpertlture S c i e n c e ] , S e r i e s A ( p h y s i c a l S c i e n c e s ) ,

-

1 8 (1959), 97-114.

INTERNAL

FRICTION OF FOLYCRYSTALZINE AND SINGLE-CRYSTAL ICE Daisuke KURODlA and ICenji Y W J I

EIokkaid6 U n i v e r s i t y , I n s t i t u t e of L o w Temperature Science,

Pure Physics S e c t i o n .

Received J u l y , 19 59. Author ' s R 6 s u d

The i n t e r n a l f r i c t i o n of p o l y c r y s t a l l i n e 3nd s i n g l e - c r y s t a l i c e was measured by a f l e x u r e v i b r a t i o n method Fn t h e temperature r m g e ODC t o -1'30'~. Fcr c o o l i n g t h e specimen, use was m d e of a c o l d box which could be r e f r i c e r a t e d by means of l i q u i d n i t r o g e n o r oxygen. The e x p e r i - mental apparatus i s shown in Figure 1.

In t h e case of p o l y c r y s t a l l i n e i c e t h e i n t e r n a l f r i c t i o n , h e r e d e s i e a t e d by t a n 6, revealed t h r e e c h a r a c t e r i s t i c v a r i a t i o n s w i t l l i n t h e nbove-mentioned temperature r a n s ( s e e Fig. 4 ) . 'dithin t h e range of O D t o -30°C t a n 6 was found t o decrease e x p o n e n t i a l l y , and, a s t h e temperature was f u r t h e r lowered, t h e r e appeared tiro peaks of t a n 6. The p o s i t i o n of t h e mwimuro of t a n 6 vinich appeared in t h e i n t e r m e d i a t e temperature ranee pro-red t o depend on t h e v i b r a t i o n frequency i n such a way t h a t it s h i f t e d towards t h e hit:ller temperature s i d e a s t h e frequency was increzsed, while t h e p o s i t i o n of t h e o t h e r peak l o c a t e d i n t h e v i c i n i t y of - 1 4 5 ' ~ was LndepenZent of t h e frequency. I n c o n t r a s t t o p o l y c r y s t a l l i n e i c e , s i n g l e - c r y s t a l i c e d i d not show ~ y t h i n g l i k e an exponential decrease i n t a n 6 i n t h e range 0' t o -30°C;

it e x h i b i t e d a t a n 6 peak which s h i f t e d with i n c r e a s i n g frequency towards t h e higher-temperature s i d e ( s e e Figs. 5, 6 ) .

We a l s o m d e some experiments t o i n v e s t i c a t e whether t a n b of i c e i s a f f e c t e d o r n o t by i n t e r n a l s t r a i n s produced a f t e r i r r a d l a t i o n with h e a t rays. It was found t h a t t h e peak of t a n 6 which appeared in t h e i n t e r m e d i a t e temperature range, i n e i t h e r p o l y c r f s t a l l i n e o r s i n g l e - c r y s t a l

i c e , .)as not influenced by t h e i n t e r n a l s t r a i n s due t o T y n d a l l ' s f i p r e s , minute c r a c k s o r t h e l i k e , r e s u l t i n g f r o n i r r a d i a t i o n ( s e e Figs. 7 , 8 ) . 'Pan b of p o l y c r y s t a l l i n e i c e in t h e range O'C t o -30°c, on t h e c o n t r a r y , was c c n s i d e r a b l y a f f e c t e d by t h e m a 1 r a d i a t i o n ( s e e Fig. 9 ) . Tdo d i f f e r e n t a c t i v a t i o n e n e r g i e s were calculated, one from t h e curve of lo^ t a n 6 versus r e c i p r o c a l a b s o l u t e tetxperature and t h e o t h e r fram t h e a l i l f t of t a n 5 observed i n t h e i n t e r - mediate tempersture r m g e ( s e e F i g s . 10-13). 'l'he f o r a e r value c a w o u t t o about 16-20 ~ c a l / m o l , and t h e i a t t e r t o 6 Kcal/mol.

I. I n t r o d u c t i o n

When a s o l i d r o d i s s e t f r e e l y v i b r a t i n g , t h e amplitude o f t h e o s c i l - l a t i o n s w i l l decay w i t h t h e pcssage o f t i m e . The r a t e o f decrement i s more r a p i d , t h e g r e a t e r t h e i n t e r n a l f r i c t i o n of t h e s o l i d . The i n t e r n a l f r i c t i o n of s o l i d s , a v e r y sensli.tive index of s t r u c t u r e , h a s l o n g been used as a

powerful method f o r a n s l y s i n g t h e i n t e r n a l struc.Lure o f m e t a l s , i n c o n n e c t i o n with t h e inlperfections o f c r y s t a l s , such as l a t t i c e d e f e c t s , d i s l o c a t i o n s , atomic i m p u r i t i e s and s o f o r t h .

I c e i s a s u b s t z n c e t h a t ~an.rl,:edly d i f f e r s i n i t s p h y s i c a l p r o p e r t i e s from m e t a l s and o t h e r soli.ds, ,md concernin:: i t s i n t e r n a l s t r u c t u r e t h e r e a r e many t h i n g s vie do no-L lnllow. T-Tc.~.s~xrements or" tlzc- i n - b e ~ n a l f r i c t i o n of i c e o v e r v ~ i r l e r c n g e s o f tc~:l.perc.tures vrould seela - t o 'ue one e f f e c t i v e means of i n v e s t i - g a t i n g i t s i n t e r n a l s t r u c - t u r e . A s our c2:tpel'irr~ntal 1r~zi;erial f o r -the i n t e r n a l f r i c t i o n m:easurexcn.ts li{e used ord:i.nary c o ~ u ? e r c i : ~ l . i c e , s i n g l e - c r y s t a l i c e prcpsrecl i n 'cize I.abor:~:i;oly, end ;:;:;:l.ncier i c e ?roc1 Greenland, brouglzt 'back t o Jap:zn by P r o f e s s o r l::?,!.:-;::ys. Thc g l a c i e r i c e i s q t l i t c difi'ferent g e n e t i c a l l y from t h e o t h c r 'iv~o t j ~ e s , bein:: for:nsd by recry:;tallizc..-Lion m d s i n t e r i n g of

(5)

p a r t i c l e s under enormous p r e s s u r e s a c t i n g over a long period of time. How t h e s e d i f f e r e n c e s of s t r u c t u r e and o r i g i n manifest theninelves i n t h e i n t e r n a l f r i c t i o n i s a question of g r e a t i n t e r e s t .

The i n t e r n a l f r i c t i o n of i c e was measured by a f l e x u r e v i b r a t i o n method. ++ The s a i d f r i c t i o n i s i n general a f u n c t i o n of t h e v i b r a t o r y f r e - quency and of temperature. In o r d e r t o extend t h e t e m p e r a t w e range of t h e measurements a s much as p o s s i b l e , t h e experimental apparatus was placed i n a cold-box which could be r e f r i g e r a t e d with l i q u i d oxygen o r l i q u i d n i t r o g e n .

Figure 1 shorio t h e general layout of t h e apparatus. PI and

P2

are t h i n b a r s of i c e , of r e c t a n g u l a r cross-section, c u t o u t of t h e same ice-block and trimmed t o e x a c t l y t h e same dimensions. P1 was used f o r temperature d e t e r - minations, and P2 f o r t h e i n t e r n a l f r i c t i o n measurenients. To each end of Pg t h i n i r o n p l a t e s a r e a f f i x e d . ( A l t e r n a t i v c l y , these p l a t e s m y be frozen on.

It i s , however, p r e f e r a b l e t o avoid doing t h i s , because krhen t h e temperature

i s lowered t o t h a t of l i q u i d oxygen, c r a c k s due t o t h e d i f f e r e n t c o e r f i c i e n t s of thermal expmsion may appear i n t h e - t e s t - p i e c e s . ) I~nmediately below t h e i r o n p l a t e s and a t a d i s t a n c e of about 5 nun t h e r e a r e two electroma@ets C1 and C2. P1 and P2 a r e each supported i n a l e v e l p o s i t i o n , a t t h e i r o s c i l - l a t o r y nodes, by two f i n e sillr t h r e a d s s t r e t c h e d between t h e two metal U-brackets B. The b r a c k e t s B and t h e rmgnets C1 and C z a r e mounted on a

s t u r d y metal base. Their p o s i t i o n s a r e f r e e l y a l t e r a b l e t,o s u i t t h e dimensions of t h e experiment. The whole apparatus, i n advance of t h e experiment, i s s e t up i n t h e c o l d room, ana enclosed i n t h e cold-box L which i s r e f r i g e r a t e d by c i r c u l a t i n g l i q u i d oxygen o r n i t r o g e n . The o u t s i d e of t h e box i s packed with styrofoarn, a good thermal i n s u l a t o r .

The i d e a l procedure would be t o measure t h e specimen temperature by a

thermocouple d i r e c t l y i n c o n t a c t with P2, but s i n c e t h i s would a f f e c t t h e . damping of t h e v i b r a t i o n s , we decided t o t a k e a s equivalent t o t h e temperature of

P2

t h e temperature measured by a thermocouple i n c o n t a c t with t h e i c e - b a r P1, which i s shaped t o t h e same dimensions and l o c a t e d i n a p o s i t i o n where t h e thermal c o n d i t i o n s a r e about t h e same as f o r

P2.

Since a mobile regula- t i o n of t h e temperature i n t h i s apparatus would be d i r f i c u l t , our procedure was t o prolong t h e c i r c u l a t i o n of l i q u i d oxygen o r n i t r o g e n , c o o l i n g t h e system u n t i l t h e temperature of P1 stood equal t o t h e b o l l i n g p o i n t of t h e r e f r i g e r a n t ; t h e n t h e supply was shut off and t h e measurements were conducted d u r i n g t h e subsequent f r e e r i s e of t h e ten~pera-Lure. The r a t e of rise was s a t i s f a c t o r i l y slow; it took about e i g h t hours f o r .the temperature i n t h i s apparatus t o come up from t h a t of l i q u i d oxygen t o - 3 O C . The cold-box was nnde i n t h r e e s i z e s , 45 x 1 6

x

12 cm3, 24 x 13

x

12 cm3, and 1 5

x

1 3

x

12

cm3,

t o s u i t t h e s i z e of t h e t e s t - p i e c e s .

If a l t e r n a t i n g c u r r e n t i s supplied t o t h e nTagnet c o i l C1 and i t s f r e - quency continuously v a r i e d ,

P2

w i l l begin t o v i b r a t e , and a t resonance, when

*

For d e t a i l s of t h e method s e e r e f e r e n c e s 1, 2, 3 and 4.

(6)

t h e impressed frequency matches t h e n a t u r a l v i b r a t o r y frequency of

P2,

t h e induced c u r r e n t i n c o i l C z r r i l l reach i t s maximum. A t t h i s p o i n t we s h o r t - c i r c u i t t h e c u r r e n t i n C1, l e a v i n g

Pg i n f r e e o s c i l l a t i o n , with a g r a d u a l l y

decaying amplitude. If f i s t h e n a t u r a l v i b r a t o r y frequency of

P2

and i s t h e measured time r e q u i r e d f o r t h e amplitude t o f a l l t o l/nth of i t s o r i g i n a l value, t h c n Young's modulus E and t h e q u a n t i t y t a n 6, p r o p o r t i o n a l t o t h e i n t e r n a l f r i c t i o n , a r e given by t h e formulae

logen t a n 6 =

n * f ( 2

1

Here m i s a c o n s t a n t d-etermined by t h e mode of v i b r a t i o n ,

&

i s t h e l e n g t h of specimen

P2,

-

a i s i t s t h i c l m e s s , and p i s t h e d e n s i t y .

111. E x ~ e r i m e n t a l R e s u l t s

In Figure 2 we show photographs, i n p o l a r i z e d l i g h t , of r e p r e s e n t a t i v e specimens of t h e kinds of i c e used i n t h e experiments. (A) and ( B ) a r e com- mercial i c e of p o l y c r y s t a l l i n e s t r u c t u r e . ( A ) i s c u t from a l a r g e block of i c e , with t h e f a c e n o r i n % l t o t h e d i r e c t i o n of f r e e z i n g ; i n ( B ) t h e f a c e i s p a r a l l e l t o t h e d i r e c t i o n of f r e e z i n g . (A) i s 1 7 cm i n l e n g t h , s o t h a t t h e c r y s t a l g r a i n s i n t h e photograph a r e 1 0 nm t o 5 mn i n s i z e . ( C ) and ( D ) a r e a r t i f i c i a l s i n g l e - c r y s t a l i c e prepsred i n t h e l a b o r a t o r y . In

( c ) ,

however, t h e r e was a sudden change of c o n d i t i o n s midway i n t h e f r e e z i n g process, w i t h t h e r e s u l t t h a t t h e sample came o u t d i v i d e d i n t o two s i n g l e c r y s t a l s , with a d i s c o n t i n u i t y i n t h e o r i e n t a t i o n . That i s t o say, t h e r e a r e two s i n g l e

c r y s t a l s Joined t o g e t h e r a t a s i n g l e g r a i n boundary. (D) i s a p e r f e c t s i n g l e c r y s t a l ,

show in^

no g r a i n boundary s t r u c t u r e . I?.'hat i s tlleant h e r e by " p e r f e c t " i s t h a t no r m t t e r how t h e p o l a r i z e r i s r o t a t e d no d i s t o r t i o n whatever can be d e t e c t e d i n t h e i n t e r i o r of t h e crys-l;al. A f t e r compl-etion of t h e experiments, ethylene d i c h l o r i d e s o l u t i o n of fonnvar (used f o r r e p l i c a s ) was a p p l i e d t o t h e s i n g l e - c r y s t a l i c e , producing p i t s , and from t h e d i r e c t i o n of t h e c r y s t a l s u r f a c e s as revealed b y t h e p i t s t h e o r i e n t a t i o n w a s determined. Tlie c r y s t a l axes werc determined by Higuc h i

'

s me thod

.

\:hen we measure t h e i n t e r n a l f r i c t i o n of a s o l i d by t h e v i b r a t i o n method, t h i s q u a n t i t y i s not a f u n c t i o n of t e u p e r a t u r e and v i b r a t i o n f r e - quency alone, b u t w i l l a l s o , depending on t h e causes t h a t produce t h e

i n t e r n a l f r i c t i o n , v a r y greatl-y with t h e amplitude of t h e v i b r a - t i o n s

.

S i n c e i n t h e c a s e of our experic!anl;s t h e s p e c i n i ~ n s were enclosed i n t h e t i g h t l y s e a l c d cold-box of Figure 1, -[;he v i b r a t o r y a r ~ ~ p l i t u d e could not e a s i l y b e determined. Therefore with i c e t h e n e c e s s i t y a r i s e s of i n v e s t i t a t i n g i n advance how much t h e i n t e r n a l f r i c t i o n a l t e r s v i t h t h e v i b r a t o r y amplitude. Figure 3 shows t h e changes of i n t e r n a l f r i c t i o n o c c u r r i n g i n i c e - b a r s of t h e dinznsions shown when, i n t h e cold rooln, t h e y were caused t o v i b r a t e with

an

aclplitude t h a t was v a r i e d from 10 p t o 8CO p. Tlle v i b r a t o r y ~implitude i s

(7)

p l o t t e d as a b s c i s s a , i n microns. The ice-specimens used i n t h e experiments were of commercial p o l y c r y s t a l . l i n e i c e <and, as sh~~hl11 schenzatically i n t h e Figure, were c u t w i t h t h e i r [broad] f a c e s perpen4icula.r t o and p a r a l l e l . t o t h e d i r e c t i o n o f f r e e z i n g . The v i b r a . t o r y a n ~ p l i t u d e s were determined b y observing, with a h o r i z o n t a l microscope, t h e d e f l e c t i o n s of a snr111 boss on t h e s u r f a c e of t h e i c e , i l l u m i n a t e d o b l i q u e l y by a s t r o n g l i g h t . The b o s s ,

s h i n i n g i n t h e f i e l d o f t h e microscope, c o u l d be observed when t h e b a r w a s se-t v i b r a t i n g . ( C f . Teion K:~.gaku, 15, p.44.) F i g u r e 3 shows t h a t a l t h o u g h t h e amplitude o f t h e v i b r a t i o n s c h a n ~ t e s g r e a t l y , t h e q u a n t i t y t a n 6 does n o t a p p e a r t o a l t e r v e r y mrked1.y. Ln o u r subsequent measurements, a l l v i b r a t o r y amplitudes were kept as s m a l l a s p o s s i b l e

---

w i t h i n limits of a few microns.

i ) The i n t e r n a l f r i c t i o n of p o l y c r y s t a l l i n e i c e . F i g u r e 4 shows o u r e x p e r i m e n t a l r e s u l t s on p o l y c r y s t a l l i n e commercial i c e . Curves (1.-5) - - are a s e r i e s o f measurements a t v a r y i n g v i b r a t i o n - f r e q u e n c y made on t e s t p i e c e s c u t w i t h t h e i r f a c e s normal t o t h e d i r e e c t i o n of f r e e z i n g , while curve ( 6 ) i s f o r a specimen c u t p a r a l l e l t o t h e d i r e c t i o n of f r e e z i n g . In c u r v e ( I ) , a bar of l e n g t h 38.7 cm, width 1 9 . .'; crn and thiclcness 0.7 cyn i s measured a t i t s funda- mental frequency. The r e a d i n g s were begun a t t h e l o w - t e m p e r a a r e end. A s t h e t e m p e r a t u r e r i s e s , t a n 6 e x h i b i t s , a t - 1 . 4 5 0 ~ , a peak of h e i g h t 0.005. With f u r t h e r r i s e of t e m p e r a t u r e t m 6 d e c r e a s e s , 01-ily t o e x h i b i t , a t - 7 5 O ~ , i t s s h a r p maximum peak of h e i g h t 0.01. Again t a n 6 d i m i n i s h e s as t h e t e m p e r a t u r e r i s e s , and i n th.e n e i w o o r h o o d o f -30°C r e a c h e s a minimum; t h e n as t h e tem- p e r a t u r e approaches t h e mel-ting p o i n t t a n 6 i n c r e z s e s e x p o n e n t i a l l y . Curve

( 2 ) i s measured on t h e same specimen a t t h e f i r s t harmonic overtone, c o r - responding t o about 2.73 tinies t h e fundamental frequency of v i b r a t i o n . I n t h i s c a s e , t h e s u p p o r t i n g p o i n t s of t h e i c e - b a r were t r a n s f e r r e d from t h e n o d a l pol.nt of t h e fundamental v i b r a t i o n t o t h a t of f i r s t harmonic o v e r t o n e . The whole p i c t u r e rernains about t h e same: t:vo peaks a p p e a r i n t a n 6, and t h e r e i s a r a p i d r i s e a s t h e m e l t i n g p o i n t is approached. But t h e r e a r e a l s o d i f f e r e n c e s from c u r v e ( 1 ) . The low-temperature t:in 6 peak i n t h e v i c i n i t y o f -145OC i s t e n d i n g t o d e c r e a s e , w h i l e t h e -temperature a t which t h e peak i n t h e middle range a p p e a r s has been d i s p l a c e d t o t h e h i g h s i d e ( - 6 3 O ~ ) as

compared w i t h t h e fundamental-frequency c u r v e . Now l e t us t u r n t o c u r v e ( 3 ) , which r e p r e s e n t s t h e v a r i a t i o n of tam 6 n~easured at; t h e second overtone, corresponding t o about 5 . 4 t i m e s t h e funclanlental frequency. Again we s e e a diminution of t h e peak i n t h e low-terr~pernturc r e g i o n and a displacenlent of t h e mid-range maximum t o a. h i g h e r tempera.ture. Curve ( 4 ) i s measured a t t h e

f o u r t h overtone, about 1 3 . 3 t itnes t h e fundamen-La1 rrequency

.

Here, however, t h e specimen had been planed dovm t o a t h i c k n e s s of 0 . 5 1 cm, because a f t e r c o ~ n p l e t i o n of curve ( 3 ) i t s d i n e n s i o n s had become r a t h e r i r r e g u l a r as a r e s u l - t o f s u b l i m a t i o n . Consequently t h e f undu.rnenl;al frequency w a s s l i g h t l y lower

---

about 99.5 c y c l e s

-- -

t h a n t h e o r i g i n a l v a l u e , s o t h a t t h e frequency o f t h e f o u r t h overtone, i n curve (4), w a s 1316 c y c l e s . In t h i s cu.rve t h e low- t e m p e r a t u r e t a n 6 peak has p r a c t i c a l l y d i s a p p e a r e d , w h i l e t h e mid-range peak has s h i f t e d t o a s t i l l h i g h e r t e m p e r a t u r e ; 1;he peaks themselves Ymve become c o n s i d e r a b l y lower as conlpared w i t h t h e i r i n i t i a l h e i g h t s i n c u m e ( 1 ) .

A t t h i s p o i n t i n t h e experiment, t h e specimens had been s u b j e c t e d t o f o u r s u c c e s s i v e t h o r l i ~ a l v a r i a t i o n s o v e r

a

wide range o f t e m p e r a t u r e s , from n e a r t h e nielting p o i n t t o t h e 1-ow t e m p e r a t u r e oC l i q u i d oxygen. I f t h e r e were any h y s t e r e s i s involved i n t h e thermal. c l l a r n c t e r i s t i c s of t a n 6 i n i c e , t h e n i f we rt~oved back t o t h e fundamental. P r e c ~ ~ ~ e n c y a n d r e p e a t e d t h e measure- ments, t a n 6 woul4 n o t be l i k e l y t o reproduce i t s o r i g i n a l v a l u e s . To

(8)

i n v e s t i g a t e t h i s m a t t e r we now p l o t t e d t a n 6 curve ( 5 ) a t t h e fundamental frequency. A s w e have explained, t h e t e s t - p i e c e t h i c l u l e s s had nreanwhile been changed i n t h e t r u i n g - u p o p e r a t i o n , s o t h a t t h e frequency w a s smnller than i n t h e c a s e of curve (1). The low-temperature peak of ttul 6 was n e v e r t h e l e s s

s t i l . 1 i n t h e same place, but t h e peak i n t h e middle region, a s one viould expect with t h e reduced frequency, appeared a t a lower temperature ( - 7 0 " ~ ) t h a n i n curve ( 1 ) . No n o t i c e a b l e h y s t e r e s i s e f f e c t i s seen i n t h e o v e r - a l l form of t h e curve nor i n t h e peak v a l u e s .

Curve ( 6 ) r e p r e s e n t s v a l u e s of t a n 6 measured a t t h e fundamental f r e - quency of v i b r a t i o n i n a p o l y c r y s t a l l i n e specimen of almost t h e same s i z e , c u t

w i t h i t s f a c e s p a r a l l e l t o t h e d i r e c t i o n of f r e e z i n g . Although t h e d i s t r i - b u t i o n of t h e c r y s t a l gra.ins i s 11nrkedly d i f f e r e n t as compared w i t h t h e former specimen, t h e r e i s p r a c t i c a l l y no change i n t h e temperature-behavior of t a n 6.

The t o p part of Figure 4 shows Young's modulus f o r i c e , measured i n t h e same range of t e m p e r a t u r e s . The numbers on t h e c u r v e s r e f e r t o Ineasure- ments a s foll.ows: curve ( l ) , f o r t h e fundamental frequency; curve ( 2 ) , f o r t h e f i r s t overtone; curve ( 3 ) , f o r t h e second overtone. I n t h e v i c i n i t y of

- 1 0 " ~ ~ Young's modulus has a v a l u e of 7 - 2 x

lo1',

and i n c r e a s e s w i t h d e c r e a s e of temperature; a t -180°C it becomes 8 . 5 X 1 0 l 0 .

The temperature c h a r a c t e r i s t i c s of t a n 6 f o r p o l y c r y s t a l l i n e i c e may be summarized a s f o l l o w s . Over t h e temperature range from O"C t o -180°C, t a n 6 of p o l y c r y s t a l l i n e i c e e x h i b i t s t h r e e d i s t i n c t i v e v a r i a t i o n s . F i r s t , Prom O°C t o -35°C t h e r e i s a r a p i d f a l l o f t a n 6. Second, i n t h e middle range from 35°C t o -120°C a l a r g e maximum of t a n 6 develops, t h e peak value of which d e c r e a s e s with i n c r e a s i n g v i b r a t i o n frequency, w h i l e simultaneously t h e t e m -

p e r a t u r e a t which t h e peak appears i s d i s p l a c e d t o t h e high s i d e . Third, t h e r e i s s t i l l a n o t h e r peak i n t h e r e g i o n around -1.4S°C. I n t h i s c a s e t h e peak val-ues decrease with i n c r e a s i n g v i b r a t i o n frequency, but t h e temperature

a t

which t h e m a x i r n t ~ m occurs does n o t s h i f t with frequency.

Next we s h a l l show how t h e temperature c h a r a c t e r i s t i c s of t a n 6 f o r s i n g l e - c r y s t a l i c e d i f f e r from t h o s e f o r p o l . y c r y s t a l l i n e i c e .

ii) The temperature c h a r a c t e r i s t i c s of s i n g l e - c r y s t a l i c e . Figure 5 shows measurements of t a n 6 f o r an a r t i f i c i a l s i n g l e - c r y s s a l i c e produced i n t h e c o l d chamber by f r e e z i n g o r d i n a r y t a p water. The s i n g l e c r y s t a l s , flaw- f r e e parts of t h e i c e e x h i b i t i n g no d i s t o r t i o n under c r o s s e d p o l a r o i d s , were c u t o u t and shaped i n t o ~ * e c t y g u l a r t e s t - b a r s . Vie were a b l e t o o b t a i n them q u i t e l a r g e , t h e b i g g e s t b e i n g 17 cm long, t h e s r m l l e s t 13 cm.

he

c r y s t a l s were p r d u c e d by M r . Waltnhan~ of our I n s t i t u t e [ 6 ] . ) C~u-ves ( l ) , ( 2 ) and ( 3 ) r e s p e c t i v e l y r e p r e s e n t measurer~ients of t a n 6 a t 51-0, 870 and 2350 c y c l e s , made on s i n g l e - c r y s t a l . specimens having t h e C-axis lengthwise of t h e r e c t a n g u l a r b a r ; t h a t i s , britn t h e i r slip-pl-anes p a r a l l e l t o t h e d i r e c t i o n of v i b r a t i o n . The o r d e r of t h e measurements was a s f o l l o w s . F i r s t we t o o k curve ( 2 ) a t t h e fundarilental frequency of 870 cycl-es, then curve ( 3 ) a t t h e f i r s t harmonic overtone, and f i n a l l y , a f t e r trimming down t h e t h i c l m e s s of t h e specimen,

curve ( 1 ) . The values of t a n 6 a r e pl-otted a.s o r d i n a t e s on a s c a l e ~ n a p i f i e d f i v e times a s compared w i t h t h e s c a l e of F i g m e 4. To show how s m a l l t h e i n t e r n a l f r i c t i o n of t h e s e c r y s t a l s i s i n cou!parison with t h a t of t h e poly-

(9)

i c e measurements from Figure 4. Branch b of curve ( 5 ) , a f t e r pz~ssing through t h e peak value a t 0.008 (not shovm i n t h g Figure), connects t o branch b 1

.

Since curve (5) i s f o r frequency 842 cycles, t h e s i n g l e - c r y s t a l v a l u e s T o r nearly the same frequency, a s seen in curve (2), a r e indicative of t h e reduc- t i o n i n t h e i n t e r n a l f r i c t i o n of single-crystal i c e a s compared with poly- c r y s t a l l i n e ice. A f u r t h e r f a c t i s t h a t t h e curves of t a n 6 f o r single- c r y s t a l i c e do not show a rapid increase a s t h e temperature approaches -the melting point, a s they do i n t h e case of polycrystalline ice, but on t h e contrary they f a l l steeply toward t h e meltinc point. Moreover t h e r e i s probably no low-temperature peak of t a n 6 a s observed around -145°C i n poly- c r y s t a l l i n e i c e ( o r i f a peak does e x i s t ,

it

i s f a r smaller than in poly- c r y s t a l l i n e i c e ) . We have only t h e tan 6 peak i n t h e middle range, t h e peak t h a t exhibits a frequency-dependent displacement toward t h e higher temperatures.

The rapid r i s e of t a n 6 in polycrystalline i c e a s t h e melting point

i s

approached, i n c o n t r a s t t o t h e experimentally established decrease toward t h e melting point in single-crystal ice, m y no doubt be ascribed t o i n t e r n a l f r i c t i o n a r i s i n g a t t h e grain boundaries. To support t h i s t h e r e i s another experimental. f a c t ; it appears from curve (4) of Figure 5. This curve repre- s e n t s measurements m d e on a specimen comprising two s i n g l e c r y s t a l s separated by one grain boundary, a s shown i n t h e polarized-light photograph C of Figure 2. Branch a of curve ( 4 ) , a f t e r passing through a maximum of height 0.01 (not

shown

i K

t h e Figure), joins t h e other branch a ' .

In

t h i s curve, then, a s t h e Figure shows, t h e r e

i s

a r i s e of t a n 6 when

tz

t e m p e r a t ~ r e exceeds - 2 0 " ~ .

In

other words, t h e presence of even a s i n g l e c r y s t a l boundary

in

t h e specimen causes t h e temperature c h a r a c t e r i s t i c s of t a n 6 t o resemble those of poly- c r y s t a l l i n e i c e

.

In

Figure 6 we show other examples of measurements of t a n 6 on single- c r y s t a l i c e . Curves ( 3 ) and ( 4 ) of Figure 6 exhibit .the temperature charac- t e r i s t i c s of t a n 6 f o r a s i n g l e c r y s t a l which, l i k e t h e previous specimens, has t h e C-axis more or l e s s coinciding with t h e lengthwise a x i s of t h e bar.

The vibration frequencies a r e 715 and 1950 cycles respectively.

In

both cases

t h e peak i s swll, about of t h e same s i z e a s i n Figure 5, and t h e temperatures a t which t h e peak appears a r e -40°C and -22°C. Curves ( 1 ) and ( 2 ) a r e

an

example of a single-crystal i c e having a t a n

6

mxbnurn of t h e same height a s t h a t of p l y c r y s t a l l i n e ice.

In

t h i s s i n g l e c r y s t a l t h e C-axis

i s

o r i e n t a t e d

i n t h e d i r e c t i o n of t h e thickness of t h e test-bar. Curve (1) i s a t 510 cycles, curve ( 2 ) a t 1390 cycles. These two curves lack t h e rapidly r i s i n g

part

of t a n

6

i n t h e v i c i n i t y of the melting point; t h e peak i n t h e v i c i n i t y of

- 1 4 5 " ~

i s

a l s o missing. The middle-range peak, t h e peak which with increasing frequency s h i f t s toward higher temperatures, i s markedly higher a s compared with t h e single c r y s t a l of curves ( 3 ) and ( 4 ) . This specimen, examined between crossed p l a r i z e r s , shows up a s e n t i r e l y a s i n g l e c r y s t a l , but t h e r e

i s a v i s i b l e pattern of i n t e r n a l d i s t o r t i o n (Figure 7). Such d i s t o r t i o n

i s

q u i t e absent from t h e s i n g l e c r y s t a l of curves (3) and ( 4 ) , o r from t h e s i n g l e c r y s t a l of Figure 2. One may perhaps imagine t h e d i s t o r t i o n p a t t e r n a s

an

a r r a y of very s l i g h t l y inclined faces of microscopic c r y s t a l s , t h a t is, of

microscopic sub-grain boundaries. This i s no

nnre

than simple speculation,

thou&

it

i s c r e d i b l e t h a t t h e markedly greater s i z e of t h e peak i n curves (1) ,and ( 2 ) , a s compared with t h a t i n curves ( 3 ) and ( 4 ) , should be due t o i n t e r n a l d i s t o r t i o n of t h e c r y s t a l . A f i n a l decision i n t h i s matter must

w a i t

(10)

I n t e r n a l f r i c t i o n i n s i n d e - c r y s t a l i c e tnay be s u m m r i l y d e s c r i b e d as

fo1lor.r~. The t a n 6 curve of s i n g l e - c r y s t a l i c e does not show t h e r i s e i n the high-temperature range, t h e r i s e t h a t i s caused by c r y s t a l boundaries. The peak i n t h e v i c i n i t y o r -145O~ i s p r a c t i c a l l y absent ( o r i f p r e s e n t , i s v e r y s ~ n a l l ) . The t a n 6 peak t h a t appears i n t h e middle range of tenlperatures m y be small, a few o r a t e n t h of' t h a t of p o l y c r y s t a l l i l : ~ ic e , o r it may be of about t h e same h e i g h t a s i n p o l y c r y s t a l l i n e i - e

.

iii) Change i n t a n 6 due t o Tyndall f i g u r e s o r i n t e r n a l s t r a i n s pro- duced i n t h e i c e by t h e m l i r r a d i a t i o n . It i s w e l l known t h a t i n t e r n a l f r i c t i o n i n metals a l t e r s with working

-

---

t h a t i s , it i s n o d i f i e d by com- p r e s s i o n s and extensions. I n t h e c a s e o f i c e a l s o it m y be v e r y i n f o n m t i v e t o i n v e s t i g a t e how t h e i n t e r n a l f r i c t i o n , as discuss?d above, w i l l a l t e r with working, i f t h e p r o p e r t i e s of i c e c r e considered i n a n a 7 . 0 ~ with metals. But s i n c e i c e i s c h a r a c t e r i s t i c a l l y fran[:ible, it would be d i f f i c u l t t o work it f r e e l y i n t h e same way as a metal. Therefore we t r i e d thermal i r r a d i a t i o n of t h e i c e , producing Tyndall f i g u r e s bj i n t e r n a l melting; t h e n , a f t e r r e - f r e e z i n g , we made measure~ilents of t a n 6 and con~pared them wil;h tlre p r i o r values.'

tlhen i c e i s s u b j e c t e d t o t h e m l i r r a d i a t i o n , m e l t i n g begins a t t h e c r y s t a l boundaries, while a t t h e same time t h e r e occurs, i n t h e i n t e r i o r of t h e c r y s t a l . g r a i n s , an i n t e r n a l m e l t i n g i n %he form kaown a s Tyndall f i g u r e s o r T y n d n l l ' s flowers [ 7 ] . Upon c e s s a t i o n of t h e i r r a d i a t i o n , t h e s e melted regions recongeal i n t o i c e , and '!~'nen t h i s happens t h e i n t e r n a l melt-water does n o t f r e e z e i n t h e same way a s b e f o r e : t h e r e rennin vacuous bubbles, due t o d i f f e r e n c e i n t h e s p e c i f i c volumes of i c e and water. Thus f i s s u r e s a r e opened a l o n g t h e b a s a l planes and d i s t o r t i o n i s produced. When examined i11 a d.ark room under oblique i l l u ~ n i n a t i o n , th e Tyndall f i g u r e s o r t h e f i n e c r a c k s i n t h e b a s a l planes s h i n e stronpJy by r e f l e c t e d l i g h t . ??he l'yndall f i g u r e s o r f i n e c r a c k s i n t h e s i n g l e - c r y s t a l i c e of P i ~ u r e 8 , which has t h e C-axis i n t h e lengthwise d i r e c t i o n of t h e rod, a r e v i s i b l e as a m u l t i t u d e of p a r a l l e l l i n e s .

In t h i s way, then, we can produce .m interna.1 d i s t o r t i o n i11 i c e .

Figure 9 shows t h e ter~~perature-be11avi.or of t a n 6 as measured i n poly- c r y s t a l l b e and i n s i n { ; l e - c r y s t a l i c e b e f o r e uld a f t e r exposure t o t i l e r ~ n a l r a d i a t i o n . Cul-ve 1- i s f o r p o l y c r y s t a l l i n e i c e b e f o r e i r r a d i a t i o n and i s

measured a t t h e fundamen-tal vi.bration frequency of 460 c y c l e s ; curvc 2 i s f o r t h e same specimen a f t e r i r r a d i a t i o n and d e v e l ~ p l l e n t of t h e l?yndall f i g u r e s . Let us f i r s t loolr a t t h e t a n G peak i n t h e middle range of temperatures. The graph shows t h a t t h i s peal< i s q u i t e u n a f f e c t e d by t h e i r r a d i a t i o n . The peak i n t h e v i c i n i t y of -140°C, however, has become stnaller i n conlparison t o i t s h e i g h t before i r r a d i a t i o n . And t h e grain-boundary i n t e r n a l f r i c t i o n t h a t develops i n t h e high-temperature range has, after i r r a d i a t i o n , become m r k e d l y g r e a t e r t h a n b e f o r e i r r a d i a t i o n .

Curves ( 3 ) and (1) r e p r e s e n t t h e r e s u l t of similar experiments on s i n g l e - c r y s t a l i c e . Curve ( 3 ) i s tlle v n r i a t i o n of t a n 6 b e f o r e i r r a d i a t i o n ; curvc ( 4 ) a f t e c i r r a d i a t i o n . 'The t \ . ~ o c o i n c i d e alnlost p e r f e c t l y ; t h e i n t e r n a l f r i c t i o n of s i n , y l e - c ~ y s t a l i c e i s qui-te &?affected by d i s t o r t i o n s o r Tjndrzll f i ~ t c l r e s art; i f i c i a l . 1 ~ produced w i t h i n i t .

Fro% t h e s e L~;JO e:ry;erin!ents, we niiy say a s f o l l o v ~ s

.

The i n t e r n a l f r i c t i o n a r i s i n c ; a t cl-ystal g r a i n b o ~ m d a r i e s i s mmrltecily i n c r e a s e d by thermal i r r a d i a t i o n ; t h e c r y s t a l p a i n bound.aries a r e ski-ong1.y n o d i f i e d 'uy n e l - t i n g ciue .to t h e

(11)

i r r a d i a t i o n . But t h e frequency-dependent peak of t a n 6 i n t h e i n t e n n e d i a t e temperature range i s unchanged, both in polyc r y s t a l l i n e cvld i n single-c r y s t a l i c e . Consequently t h e mechanism here causing t h e i n t e r n a l f r i c t i o n i s unre- l a t e d t o macroscopic s t r u c t u r e s such as Tynilall f i g u r e s o r i n t e r n a l cra,cks; we m y t a k e it that t h e cause l i e s i n a. microscnpic s t r u c t u r e i n t h e i c e c r y s t a l . I n p o l y c r y s t a l l i n e i c e t h e t a n 6 peak a t t h e low-temperature end i s reduced t o about h a l f - s i z e by t h e thermal i r r a d i a t i o n . The reason f o r t h i s i s not c l e a r , b u t it i s d i f f i c u l t t o s e e i n it a nlechanism of reduction of i n t e r n a l f r i c t i o n by Tyndall f i 6 u e s o r cracks. Rather we mxy t a k e it a s more l i k e l y an annealing e f f e c t ; t h e specimen i s heated t o 0°C by t h e i r r a d i a - t i o n . But t h i s conclusion must wait upon f u t u r e r e s e a r c h .

IV.

Activation Enerm

We have seen t h a t i n t h e i n t e r v a l from O 0 t o -180°C t h e i n t e r n a l f r i c t i o n of i c e e x h i b i t s t h r e e c a u s a l l y d i f f e r e n t c h a r a c t e r i s t i c v a r i a t i o n s . In p o l y c r y s t a l l i n e i c e t h e r e i s a f r i c t i o n a r i s i n g a t t h e c r y s t a l p a i n boundaries; t h e r e i s a f r i c t i o n e x h i b i t i n g t h e c h a r a c t e r i s t i c t h a t i t s peak

i s displaced with i n c r e a s i n g frequency toward t h e hirber-temperature side; t h e r e i s t h e low-temperature f r i c t i o n i n t h e v i c i n i t y of -140° t o -150°C which

e x h i b i t s no frequency-dependent displacement of I t s peak. The i n t e r n a l f r i c - t i o n of s i n g l e - c r y s t a l i c e i s of t h e frequency-dependent t y p e alone; n e i t h e r t h e grain-boundary f r i c t i o n nor t h e low-temperature peak appears. In t h i s

s e c t i o n of our paper we s h a l l d i s c u s s t h e a c t i v a t i o n energies d e r i v a b l e from t h e temperature c h a r a c t e r i s t i c s of t h e s e f r i c t i o n < ? .

I n

Figure 10 w e have t h e values of t a n 6 f o r t h e p o l y c r y s t a l l i n e i c e of Figure 4 i n t h e temperature range from 0" t o -35OC, p l o t t e d a s o r d i n a t e s Dn a logarithmic s c a l e 3l;ainst t h e r e c i p r o c a l s of t h e a b s o l u t e temperatilres a s a b s c i s s a e . The numbers of t h e curves correspond t o t h o s e of Figure 4. I f we look a t t h e low-frequency curve ( l ) , we s e e t h a t between O 0 and -2S°C t h e p l o t t e d p o i n t s l i e on a s t r a i g h t l i n e , s a t i s f y i n g t h e r e l a t i o n s h i p

-El

t a n 6 = t a n 60 exp

-

m

Here

El i s

a c t i v a t i o n energy, H i s t h e gas constant, T i s . a b s o l u t e temperature, and t a n 60 i s a. c o n s t a n t . A t temperatures below -25OC, however, t h e measure- ments d e v i a t e from t h e s t r a i g h t l i n e onto a curve. This i s because another r e l a x a t i o n mechanism which appears i n t h e middle-temperature range begins t o be superimposed. Curves ( 2 ) t o ( 4 ) r e v e a l t h a t t h i s d e v i a t i o n from l i n e a r i t y due t o t h e superimposition e f f e c t appears a t p r o g r e s s i v e l y higher temperatures as t h e v i b r a t o r y frequency i n c r e a s e s . Thus when we a r e considering only t h e i n t e r n a l f r i c t i o n a r i s i n g a t t h e c r y s t a l g r a i n boundaries, t h e p l o t t e d p o i n t s should n o t b e extended t o o f a r toward t h e lower temperatures. From t h e slope of t h e s t r a i g h t - l i n e p a r t s of t h e family of curves i n Figure 10 we f i n d t h e a c t i v a t i o n enerey

El

f o r t h e grain-boundary i n t e r n a l f r i c t i o n t o be about 17-20 ~ c a l / n l o l .

Next l e t us consider t h e i n t e r n a l f r i c t i o n developed i.n t h e middle

temperature range. In Figure 4 we have shown t h e temperature behavior of

(12)

e x h i b i t s

a

s h a r p c e n t r a l peak, from which

it

diminishes s t e e p l y on both t h e hip$-temperature and t h e low-temperature s i d e s . It i s n o t c l e a r what the mechanism i s , but it m y be t h a t on t h e high-temperature s i d e t h e v i b r a t o r y s t r a i n c l o s e l y follows t h e v a r i a t i o n s of t h e e x t e r n a l d r i v i n g f o r c e s , without m y time-lag, while on t h e low-temperature s i d e , on t h e c o n t r a r y , t h e s t r a i n i s

not a b l e t o follow t h e s t r e s s v a r i a t i o n s ; t h e phase-difference between t h e s t r e s s and s t r a i n v e c t o r s m y be

mximum

a t j u s t t h e temperature where t h e nlaximum of t z n 6 appears. The phenomenon i s forrnally s i i n i l a r t o t h e c a s e of

an a l t e r n a t i n g e l e c t r i c f i e l d a p p l i e d t h e ice; t h e d i p o l e s i n t h e i c e , t u r n i n g t o follow t h e d i r e c t i o n of t h e e l e c t r i c f i e l d , do s o with a l a g and

with r e s u l t i n g d i e l e c t r i c l o s s e s .

Figure 11 i s a r e p l o t of Figure 4 t o show t h e r e l a t i o n s h i p of

tan

6 t o t h e v i b r a t o r y frequency, with tile temperature a s t h e [ f i x e d ] parameter; t h e a b s c i s s a i s t h e a n w l a r ' frequency 2rrf i n a logarithmic s c a l e .

Tan

8 v e r s u s l o g u, g i v e s us a family of curves with almost symmetrical peaks. I f we put u+,,.~, f o r t h e a.ngu1a.r frequency a t which t h i s

tan

6 pealt occurs, t h e r e l a x a t i o n time i s

1

I - - ; -

%EX ( 4 )

I n

Figure 12, which shows

t m 6

a g a i n s t a l o g a r i t h u ~ i c s c a l e of wr, t h e p l o t t e d p o i n t s a r e n i c e l y d i s t r i b u t e d on e i t h e r s i d e of t h e well-known r e l a x a t i o n

C 11rVe :

I n Fi.e;l~re 1 3 t h e r e l a x a t i o n tirrles T, c a l c u l a t e d from equation ( 4 ) , a r e p l o t t e d a s ordinates, and t h e r e c i p r o c a l a b s o l u t e temperatures a t which t h e peaks appear a r e talcen a s a b s c i s s a e . The s t r a i g h t l i n e ( a ) i s f o r g l a c i e r i c e ; ( b ) i s f o r commercial po.lycrystalline ice; ( c ) and ( d ) a r e f o r s i n g l e - c r y s t a l i c e . I n each c a s e t h e r e l a t i o n between T and

T'~

i s l i n e a r , c a t i s f y i n g

t h e r e l a t i o n s h i p

E2

T = -rO exp

-

RT

Here C 2 i s t h e a c t i v a t i o n energy of t h e r e l z x a t i o n mechmism producing t h e i n t e r n a l f r i c t i o n peak; T, i s :3 c o n s t a n t .

E2

i s c a l c u l a t e d from t h e s l o p e s

of t h e s e straigh-1; l i n e s , and t h e l i n e s al.1 b e i n g p a r a l l e l t o each o t h e r , w e f i n d t h a t

E2

i s about 6 ~:cal/mol.

I f we now compare t h e s e values with t h o s e of o t h e r research-workers, t h e s i t u a t i o n i s as fol1o:rs. ( e ) i n Figure 1 3 shows t h e r e l a t i o n s h i p of r e l a x a t i o n time t o temperature a s obtained by ICnecer e t a l . [8] f o r round rods of s i n g l e - c r y s t a l i c e i n t o r s i o n a l v i b r a t i o n . I n t h i s c r s e t h e a c t i v a - t i o n energy i s 8.45 Kcal/mol. ?.'he teriperature range f o r t h e measurements, ho~,rever, was 0"

-

25°C. On ( f ) a r e p l o t t e d , q a i n s t T ' ~ , t h e v a l u e s found by Ilur~bel e t a l . [ 9 ] and by Auty an(: Cole [lo] f o r t h e r e l a x a t i o n tirne a s d e t e r ~ r ~ i n e d from t h e d i e l e c t r i c l o s s peak i n i c e . The a c t i v a t i o n energy f o r t h e d i e l e c t r i c r e l a x a t i o n , a s ca.lculnteci f r o m t h e s l o p e of t h i s l i n e , i s 113.25 ~<cal/mol, about twice t h e a c t i v a t i o n e n e r a r obtained by us f o r t h e

(13)

rnechca,n i c a l r e l a x a t ion. The d i e l e c t r i c r e l a x a t ion phenomenon i s a s c r i b e d t o r o t a t i o n of t h e ice-molecule d i p o l e s . Regarding t h e rneciianism r e s p o n s i b l e f o r t h e mechanical r e l a x a t i o n phenomenon a s obselvcd by us i n t h e range -30 t o 90°C, nothing d e f i n i t e can be s a i d frorrl colllprison o f a c t i v a t i o r i e n e r g i e s al-one, b u t it i s a p o j n t worth n o t i n g t h a t 6 ~ c u l / m o l i s ;)bout h a l f t h e a c t i - v a t i o n energy of evaporation, o r e q u a l t c ) t h e a c t i v a t i o n e n e r a r e q u i r e d t o break one mol.ecular bond i n i c e .

N o w we rrrust mention t h e a c t i v a t i o n energy of t h e i n t e r n a l f r i c t i o n t h a t develops i n t h e v i c i n i t y of -14:0° t o -150°C. T h i s peak diminishes with i n c r e a s e of t h e v i b r a t i o n a l frequency, and w i t h i n t h e range of experimental e r r o r t h e r e i s no v a r i a t i o n of t h e temperature a t which t h e peak occurs. F o r m l l y speaking, t h i s means t h a t t h e a c t i v a t i o n energy i s i n f i n i t e l y g r e a t . In s i n g l e c.qs.Lals p r e p r e d i n t h e 1.aboratol-y, t h e peak i n q u e s t i o n e i t h e r does n o t appear o r i s smzill. It i s n o t obsei-ved a t a l l i n i c e which, l i k e g l a c i e r i c e , has been produced. by s i n t e r i n g under e r e a t p r e s s u r e s a c t i n g over a long space of time.

V . Conclusions

I n measurements of t h e i - n t e r n a l f r i c t i o n 01 p o l y c r y s t a l l i n e and s i n g l e - c r y s t a l i c e i n t h e t e n ~ p e r a t u r e rance 0" t o -lEIO°C,

i t

was found t h a t , i n t h e c a s e of p o l y c r y s t a l l i n e i c e , the t a n

6

[component] a s c r i b a b l e t o t h e c r y s t a l boundaries a t f i r s t e x h i b i t e d

an

abrupt d e c l i n e i n tile range from 0°C t o -30°C. This [component i s completely extinguished a t te~npera,tul-es below

-,?OOc,

and

i n t h e range from -?O°C t o -90°C a f r e c l u e n c - e n d n i n t e r n a l f r i c t i o n develops. Nith f u r t h e r d e c r e a s e of tenlperature t h i s f r i c t i o n d i e s o u t , and another peal< t h e n develops i11 t h e v i c i n i t y of -140°C t o - 1 4 5 " ~ . The temperu-

t u r e a t which t h e l a s t peak a p p a r s i s independent of frequency. In s i n g l e c r y s t a l s and i n g l a c i e r i c e t h i s peak i s n o t obsenreci.

A f t e r melting -the i c e specjniens on which w e made o u r i n t e r n a l frequency determinations, t h e e l e c t r i c r e s i s t a n c e of t h e water was measured a t room temperature. The s p e c i f i c r e s i s t a n c e of t h e melt-water from b o t h t h e poly- c r y s t a l l i n e i c e and t h e s i n g l e - c r y s t a l i c e vlss t h e same, narncly 8

-

10 times t h a t of r e p e a t e d l y d i s t i l l e d water, i f t h e s p e c i f i c resist,ance of t h e l a t t e r

i s taken a s 1.3 X

l o e

R-cm. I n o t h e r v~orils, t h e cont.ent of i m p u r i t i e s i n e i t h e r t h e s i n g l e - c r y s t a l i c e o r t h e polycrystnlli.ne i c e i s about 8

-

10 t i m e s t h e c o n t e n t i n r e p e a t e d l y d i s t i l l e d water.

The temperature c h a r a c t e r i s t i c s of t a n G f o r g l a c i e r ice are q u i t e d i f f e r e n t from those of t h e cornn:erzi.al p o l y c q - s t s l l i n e i c e . It i s very

i n t e r e s t i n g t o cou!Fzre tb.2 expi-rime:_it,zl r c s u 3 . t ~ s e t Yol-th above, a n d w e s h a l l l i l i e l y have more t o s a y ibou-t them i.n a f u t u r e pi.;blication.

The a u t h o r s a r e g r a t e f u l t o Professor Takec 1107.1; a l s o t o P r o f e s s o r l J l ~ i c h i r 6 NAIUYA of HokJcaid6 Universj-ty. The i c e c l y s t a l s used i n t h e e x p e r i - ments were furnished by l41-. Gord I.lNCRiIMpL4 of our I n s t i t u t e , whose c o n t r i b u t i o n t o t h e success of our work we shou1.d l i k e - t o n o t e . !.!e a l s o t a k e t h i s oppor- t u n i t y t o express our grat;i-t~lGc f o r u s e 5 r l clliccussion of . t h i s r e s e a r c h with members of t h e Snow Research Group, m s - t i t i ~ i ; e of Low T e c ~ p e r a t u c Science, and t h e C r y s t a l P l ~ t s t i c i t y Research Group

:

:

t

:.lc!;ka:ic?6 U n i v e r s i t y .

(14)

Kenji YAMAJI

und

Daisulce IW,Onl~Z, 1956. V i s c o - E l a s t i c i t y of i c e i n t h e t e m p e r a t u r e range 0"

-

-lOG°C (~orrlnnulic:xtion I ) . Teiun I{ag~tku, A15, 171-183.

[DRB

t i - a n s l a t i o n T 6 3

J.

]

-

Daisuke I(UROI7;IA and ICenji YflP4bU17 1956. Study of t h e v i s c o - e l a s t i c i t y of snow b y a v i b r a t i o n method (11). Teion Kagaku,

-

A 1 5 , 43.

Daisuke RJRODJA and ICenji YMUJI, 1953. I n t e r n a l f r i c t i o n of poly- c r y s t a l l i n e and s i n g l e - c r y s t a l i c e . Kinzolcu R u t s u r i [ P h y s i c s of ~ e t a l s ] ,

-

4, 254.

Ryfkichi IUSHIGUCHI and Maohiro IG'LCIIT, 1955. 2kperimentnl method f o r t h e

measurement

of i n t e r n a l f r i c t i o n . Kinzoltu l3utsuri,

-

2, 116. K e i j i HIGUCHI, 1957.

A

ne:J nethod f o r r e c o r d i n g t h e g r a i n - s t r u c t u r e

of i c e . J. Glaciology,

3,

131.

Gor6 W A I C h t M , 1958. Pending t e s t s on [ r e c t a n g u l a r p l a t e s o f ] i c e . Teion I(all;alcu,

-

Al.7, 0 7 .

UkichirS, NM~AY;4, 1956. Physics o f s i n g l e c r y s t a l s

of

i c e . Kagaku

[ s c i e n c e ] ,

-

26, 272.

H.O. 1Cneser e t al., 1955. Iviechanische E e l a x a t ion von e i n k r i s t a l l i n e m E i s . Naturwiss., 15, 437.

F. Ilumbel e t a l . , 1953. I l i e l e l r t r i z i t ~ t s l t o n s t a l t e d e s E i s e s . Helv. Phys. Acta, 26, 17.

-

R.P. 11uty and H. Cole, 1952. D . i e l e c t r i c p r o p e r t i e s of i c e and s o l i d D20. J. Chen~. Phys., 20, 1309.

-

(15)

Fig. 1. Scheme of experimental apparatus.

Fig. 2. Patterns obtained with ice specimens put between crossed polaroids.

A , B. Polycrystalline ice.

C. Z-single crystal ice.

(16)

Fig. 3. Relation between tan 8 and amplitude of vibrating ice bar.

t e m p e r a t u r e

Fig. 4. Temperature dependencies of internal friction and Young's modulus of polyc-e ice.

(17)

2 S;nqle crystals

(18)

t e m p e r a t v r e

Fig. 6. Internal friction of two kinds of single crystal ice

Fig. 8 . Tyndall's figure produced by heat radiation. (Single crystal ice!

Fig. 7. Single crystal ice having interior distortion. Photogragh was taken under the crossed polaroids.

(19)

befor8 ;rrad;at;om

@

before ;rradi a t i o n

.

C femperoture

(20)

Fig. 1 0 . Relation between log (tan 6) and reciprocal absolute temperature.

(21)

W

Fig. 11. Frequency dependence of internal friction of ice.

w in angular frequency.

o r

(22)

J - I

o

-20 -40 -60 -80 -100

co

r e c i p r o c o /

o b t o i u t e

t e m p e r a t u r e

Fig. 13. Relation between relaxation time of ice and reciprocal absolute temperature.

Figure

Fig.  2.  Patterns  obtained  with  ice  specimens  put  between  crossed  polaroids.
Fig.  4.  Temperature  dependencies  of  internal  friction  and  Young's  modulus  of  polyc-e  ice
Fig.  5 .   Temperature  dependencies  of  internal  friction  of  single  crystal  ice
Fig.  6.  Internal  friction of  two  kinds  of  single  crystal  ice
+5

Références

Documents relatifs

Les résultats obtenus concernant l’activité antifongique des extraits aqueux sont représentés dans (Tableau 06). Avec les extraits des feuilles, l’activité antifongique est

Ce travail est focalisé à l’évaluation de toxicité aigue du mélange binaire d’un insecticide (Dursban) et fongicide (Mancozebe)et d’un insecticide seul (Décis) sur des

Au total, 31 parcelles agricoles ( Fig. 1 ), situées chez 10 agriculteurs représentatifs de la typologie (en termes de pratique et de gestion) et dans une station expérimentale, ont

Et dans notre travail, on a élaboré également une base de données avec cartes numérisées pour faciliter la gestion de fonctionnement du réseau d’alimentation

On étudie numériquement la convection naturelle laminaire de l’air (Pr=0.71) dans une enceinte rectangulaire, pour deux cas : Le premier cas c’est pour la paroi inferieur soumis

In particular, they know that adjectives name properties of entities named by nouns; they know that adjectives imply a contrast (i.e. values on a dimension are

The transcriptional activation of SREBP targets encoding the key enzymes of fatty acid biosynthesis (FASN) and the pentose phosphate pathway (G6PD) leads to a rapamycin-

words, it is critical to resolve between signaling intermediates in their free active and inactive forms (A * and A) from when they are bound to other intermediates, including