• Aucun résultat trouvé

Understanding of iron extraction mechanisms from phosphate and sulfuric media using DEHCNPB

N/A
N/A
Protected

Academic year: 2021

Partager "Understanding of iron extraction mechanisms from phosphate and sulfuric media using DEHCNPB"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02417823

https://hal.archives-ouvertes.fr/hal-02417823

Submitted on 18 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Understanding of iron extraction mechanisms from

phosphate and sulfuric media using DEHCNPB

B. Fries, C. Marie, V. Pacary, H. Mokhtari, Mc. Charbonnel

To cite this version:

B. Fries, C. Marie, V. Pacary, H. Mokhtari, Mc. Charbonnel. Understanding of iron extraction mechanisms from phosphate and sulfuric media using DEHCNPB. PhD day AREVA Mines, Jun 2016, Paris, France. PhD day AREVA Mines, 2016. �hal-02417823�

(2)

MINING BU

Perspectives

• Quantification of sulfur in the organic phase in a way to determine [SO

42-

]/ [Fe

3+

] ratio (ICP-AES)

• Study of the extraction of water during the extraction of iron (Karl-Fischer)

• EXAFS measurements of organic phase to validate proposed structures of complexes

• Comparison with iron extraction from the phosphoric medium using an analog molecule

Sulfuric medium

Phosphoric medium

PhD’s Day, June 9

th

2016, AREVA Paris La Défense

Understanding of iron extraction mechanisms from

phosphate and sulfate media using DEHCNPB

FRIES Boris

a

, MARIE Cécile

a

, PACARY Vincent

a

, MOKHTARI Hamid

b

, CHARBONNEL Marie-Christine

a

a : CEA/DEN Marcoule, Département de recherche sur les procédés pour la mine et le recyclage du combustible, Service d’études des procédés de dissolution et de séparation ,

30207 Bagnols-sur-Cèze, France

b : AREVA MINES , Service d’Etudes de Procédés et Analyses, 87250 Bessines-sur-Gartempe, France

Contacts : boris.fries@cea.fr

References

[1] : Gabriel.S et al., Annals of Nuclear Energy, 58., p213-220,2013.

[2] : Brevet PCT WO 2013/167516 A1 ; 14/11/2013.

[3] : Norme ASTM C967-08.

[4] : Wilke. M et al., American Mineralogist, 86, pp714

–730, 2001

Extraction

Scrubbing

Stripping

Acid

Uranium + Impurities

DEHCNPB / TPH

H

2

SO

4

Na

2

CO

3

Impurities

U

U, Imp

U

Raffinate

Context

Uranium extraction from phosphate ores

Low amount of U, but large quantity available (~4Mt)

[1]

Uranium with high amounts of other metals (U/Fe selectivity)

Historic process: Synergistic mixture HDEHP/TOPO

di-(2-ethylhexyl) phosphoric acid

Novel bifunctional extractant: DEHCNPB

[2]

⇨ D

U

~20x higher than with HDEHP/TOPO*

⇨ FS(U/Fe) ~35x higher*

⇨ Pilot scale trial demonstration

⇨ Used for the extraction of uranium from sulfuric medium

Lower performances of the « sulfate » process → U leaks in raffinates

Di-(2-ethylhexyl)carbamoyle

nonyl phosphate butyl

Objective

Explain the differences between the two processes

Understanding of extraction mechanisms, speciation in organic phases

Development of a thermodynamical model simulating both processes

U extraction process

Solvent treatment

Uranium extraction by DEHCNPB in TPH

Phosphoric medium: [H

3

PO

4

]=5M

Sulfuric medium: [SO

42-

]=1.4M , pH = 1

Iron scrubbing

Scrubbing of extracted iron by concentrated sulfuric acid

Stripping of uranium in alkali medium (carbonates)

Back-extraction of uranium in aqueous phase (concentrated U)

Fe/U< 0.15%

[3]

Mo/U<0.1%

[3]

Ti/U et Zr/U<0.01%

[3]

Experimental studies

Tri-octyl phosphine oxyde

0 50 100 150 200 250 300 350 400 450 500 0 200 400 600 800 1000 1200 1400 1600 1800 2000 1 2 3 4 5 6 7 8

Iron

conce

ntration

in

the

organi

c

ph

as

e

(mg/L

)

Ur

aniu

m

conce

ntration

i

n

the

organi

c

ph

as

e (mg/L

)

Stage number

Concentration profiles – extraction stages

[U]org

[Fe]org

0.0E+00 5.0E-04 0.1E-02 0.2E-02 0.2E-02 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70

D

Fe

D

U

Contact time (min)

Extraction kinetic

Uranium Fer

0 0,5 1 1,5 2 2,5 0 5 10 15 20 25 30 35 40 45

Iron

conce

ntration

in

the

organi

c

ph

as

e

at

equi

li

brii

um

(g.

L

-1

)

Iron concentration in the aqueous phase at equilibrium (g.L

-1

)

0.E+00 1.E-01 2.E-01 3.E-01 4.E-01 5.E-01 0 500 1000 1500 2000 2500 0 20 40 60 80 100 120

D

Fe

D

U

Contact time (min)

Extraction kinetic

D(U)

D(Fe)

y = 1.243x + 1.508

R² = 0.993

-1,00 -0,80 -0,60 -0,40 -0,20 0,00 0,20 0,40 0,60 0,80 1,00 -0.2 -0.2 -0.2 -0.1 -0.1 -0.1 -0.1

log

(D

Fe

)

log[DEHCNPB]

Graphical slope analysis

y = 1.622x – 0.137

R² = 0.999

-4 -3,5 -3 -2,5 -2 -1,5 -1 -2,20 -2,00 -1,80 -1,60 -1,40 -1,20 -1,00 -0,80

lo

g(D

Fe

)

log [DEHCNPB]

Graphical slope analysis

Conclusion

⇨ Two processes with ≠ performances → Uranium leaks in raffinates

⇨ Iron is suspected of interfering with uranium extraction from a sulfuric medium

⇨ Different iron extraction mechanisms depending on the initial medium

⇨ Predominant iron specie in sulfuric acid FeSO

4+

is most likely extracted

Comparative study

0 50 100 150 200 250 300 350 400 450 500 0 200 400 600 800 1000 1200 1400 1600 1800 2000 1 2 3 4 5

Iron

conce

ntration

in

the

organi

c

ph

as

e

(mg/L

)

Ur

aniu

m

conce

ntration

in

the

organi

c

ph

as

e

(mg/L

)

Stage number

Concentration profiles – extraction stages

[U]org

[Fe]org

⇨ Uranium leaks

⇨ Sulfate medium: Higher [Fe]

org

⇨ How does the initial media influences the

extraction of iron?

0,E+00 1,E-02 2,E-02 3,E-02 4,E-02 5,E-02 6,E-02 7,E-02 8,E-02 7105 7107 7109 7111 7113 7115 7117

(E)

Energy (eV)

DEHCNPB 0.1M/TPH - Fe 1 g/L

DEHCNPB 0.1M/TPH - Fe 50 g/L

Fe(II) Reference

Fe(III) Reference

Uranium and iron extraction profiles during pilot scale trials; solvent: DEHCNPB 0.1M / Dodecane. Feed solution: industrial phosphoric acid,H3PO4 5M, CU=119ppm, CFe=5.7g/L. O/A=0.1 ; T=40°C

Uranium and iron extraction profiles during pilot scale trials; solvent: DEHCNPB 0.05M / TPH. Feed solution: Synthetic « Imouraren » solution, [SO42-]=1.42M, pH=1, CU=360ppm, CFe=4.1g/L, O/A=0.125 ; T=25°C

Uranium and iron distribution coefficients as a function of extraction time; solvent: DEHCNPB 0.1M / TPH. Aqueous phase: [H3PO4]=5M, CU=1g/L , CFe=10g/L ; O/A=1 ; T=25°C.

Uranium and iron distribution coefficients as a function of extraction time; solvent: DEHCNPB 0.1M / TPH. Aqueous phase: [SO42-]=1.6M, pH=1, C

U=1g/L , CFe=10 g/L ; O/A=1 ; T=25°C.

Logarithmic plot of iron distribution coefficient as a function of extractant concentration; solvent: DEHCNPB 0.01M - 0.1M / TPH. Aqueous phase: [H3PO4]=5M, CFe=3g/L ; O/A=1 ; T=25°C.

Logarithmic plot of iron distribution coefficient as a function of extractant concentration; solvent: DEHCNPB 0.022M-0.25M / TPH. Aqueous phase: [SO42-]=1.7M, pH=1, CFe=3.8g/L ; O/A=1 ; T=25°C.

Iron extraction isotherm. Solvent: DEHCNPB 0.1 M/ TPH. Aqueous phase: [SO42-]=1.7M, pH=1, CFe from 0.5g/L to

50g/L ; O/A=1 ; T=25°C. Normalized K-edge spectra of iron – pre-edge region. Samples : DEHCNPB 0.1M/TPH after extraction of iron from a sulfuric medium. Fe(II) reference: Fe2(SO4)3(NH4)2 0.05M with Hydroxylamine 1M. Fe(III) reference: Fe2(SO4)3 0.05M with hydrogen peroxyde 1M

Step

Phosphate process

Sulfate process

Extraction

10 ppm

23 ppm

Stripping

< 3 ppm

70 ppm

⇨ Contact time required to reach equilibrium

⇨ Sulfate medium: Higher D

Fe

and D

U

↘ when

iron reaches equilibrium

⇨ Selectivity issue?

Element

Phosphate medium

Sulfate medium

U

5 min

5 min

Fe

Unmeasurable

40 min

Different iron extraction mechanisms according to the initial medium?

Graphical slope analysis

⇨ Lower average stoichiometries of

Fe-DEHCNPB complexes formed from the sulfate

medium.

 

)

log(

.

)

log(

D

Fe

n

HL

libre

Iron extraction from a sulfuric medium

Hypotheses :

✘ Extraction of Fe

2+

Solution potential measurements

allowed to estimate that 5% to

15% of iron is divalent in the

sulfuric medium

✔ Co-extraction of SO

4

2-

Direct measurement of sulfur

Sulfur in organic phases at

equilibrium thanks to ICP-AES

⇨ Extraction of FeSO

4+

?

Determination of iron oxydation state in organic phases

[4]

XANES measurments: Only trivalent iron is present in the organic complexes

Fe

2+

Fe

3+

Iron

* Extraction at 22°C of an aqueous phase containing 250mg/L of uranium several grams per liter of iron in H3PO4 5M, DU=3.8

andSF(U/Fe)=200 avec HDEHP/TOPO (80%/20% ; 0.25M), and DU=72 and SF(U/Fe)=6500 with DEHCNPB (0.1M).

[HL]/[Fe]

org

=3

Feed

Feed

During the pilot scale trials

Extraction kinetic

Références

Documents relatifs

As cancer stem cells are one of the causes of tumor resistance [4], metformin hybrid molecules may become a novel therapeutic option to treat glioblastoma. Metformin and cancer:

We apply here the standard Lagrangian relaxation mechanism (see e.g. [31]) to the second stage prob- lems (3) to build a cutting planes model of the recourse function v. The interest

Florent Foucaud, Eleonora Guerrini, Matjaz Kovse, Reza Naserasr, Aline Parreau, et al.. Extremal graphs for the identifying code problem.. The problem of finding an identifying code

Teaching by competences is important for primary school children, and also it is important in the physical education and sport session regarding the child’s

For a representative sample of 26 genotypes (corresponding to the 18 genotypes already used as controls with eight other genotypes without seedless cultivars, maximising together

6 Nucléiste, Département d’imagerie médicale, Centre hospitalier universitaire de Québec-Université Laval, Québec (Québec) Canada; 7 Professeur adjoint, Département de radiologie

Moreover, the quadrupole splitting E, attributed to each configuration of In distribution increases by 0.17 mm/s per Indium : the splitting of the 'E, ground level

Ce travail de thèse a pour objectifs de (1) déterminer l’effet instantané (sans acclimatation) et sur le long terme (acclimatation) de l’augmentation de la température