• Aucun résultat trouvé

Bifurcation delay - the case of the sequence: stable focus - unstable focus - unstable node

N/A
N/A
Protected

Academic year: 2021

Partager "Bifurcation delay - the case of the sequence: stable focus - unstable focus - unstable node"

Copied!
18
0
0

Texte intégral

(1)

HAL Id: hal-00354175

https://hal.archives-ouvertes.fr/hal-00354175

Submitted on 19 Jan 2009

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires

Bifurcation delay - the case of the sequence: stable focus - unstable focus - unstable node

Eric Benoît

To cite this version:

Eric Benoît. Bifurcation delay - the case of the sequence: stable focus - unstable focus - unstable

node. Discrete and Continuous Dynamical Systems - Series S, American Institute of Mathematical

Sciences, 2009, 2 (4), pp.911-929. �hal-00354175�

(2)

stable fous - unstable fous - unstable node

Eri Benoît

January19,2009

Abstrat

Letusgiveatwodimensionalfamilyofrealvetorelds.Wesupposethatthereexistsastationarypoint

where the linearized vetor eld hassuessively a stable fous, anunstable fous and anunstable node.

Whenthe parametermovesslowly,a bifurationdelay appears dueto theHopf bifuration. Thestudied

questioninthisartileistheontinuationofthedelayafterthefous-nodebifuration.

AMSlassiation: 34D15,34E15,34E18,34E20,34M60

Keywords: Hopf-bifuration,bifuration-delay,slow-fast,anard,Airy,relief.

1 Introdution

"Singularperturbations"isastudieddomainfrommanyyearsago. Sine1980,manyontributionswerewritten

beause new toolswere applied to the subjet. The main studied objetsare the slow fast vetor elds also

known assystems with two time-sales. Wewill givethe problem herewith amorepartiular point of view:

thebifuration delay,asin artiles[8,2,9,7℄. Wewritethestudiedsystem: εX˙ =f(t, X, ε),whereεisareal

positiveparameterwhih tendstozero. Forabetterunderstandingoftheexpressiondynami bifurationit is

bettertowrite thesystemafteraresalingofthevariable:

X˙ = f(a, X, ε)

˙

a = ε

whereaisa"slowlyvarying"parameter.

The main objetsin this study are theeigenvaluesof the linearpartof equation X˙ =f(a, X,0) near the

quasi-stationarypoint. Indeed,theygiveaharaterizationofthestabilityoftheequilibriumofthefastvetor

eldatthispoint. Theaimofthisstudyistounderstandwhathappenswhenthestabilityofaquasi-stationary

pointhanges. Abifurationourswhenatleastoneoftheeigenvalueshasanullrealpart.

Inthisartilewerestritourstudytotwo-dimensionalrealsystems. Inthissituation,thegeneribifurations

are: thesaddle-nodebifuration,theHopfbifuration andthefous-nodebifuration.

Thesaddle-nodebifurationissolvedbytheturningpointtheory: whentherealpartofoneoftheeigenvalue

beomes positive, there is no delay and a trajetory of the systems leaves the neighborhood of the quasi-

stationary point when it reahes the bifuration. For this study, the study of one-dimensional systems is

suient: we have a deomposition of the phase spae where only the one-dimensionalfator is interesting.

Thereexistmanyartilesonthissubjet,wewillbeinterestedpartiularlyby[3℄wherethemethod ofrelief is

used. Theartile[6℄introduesthegeometrialmethodsofFenihel's manifold.

TheHopfdelayedbifurationiswellexplainedin[10℄, wewillupgradetheresultsinparagraph2below.

Inafous-nodebifuration, thestabilityofthequasistationary pointdoesnothange,then, loally,there

isnoproblemofanardsorbifurationdelays. Indeed,whenthereis abifurationdelayat aHopf-bifuration

point,itis possibleto evaluatethevalueofthedelay,and themainquestionisto understandtheinuene of

thefousnodebifurationtothisdelay.

Inparagraph2,theHopfbifurationaloneisstudied,aswellasthefous-nodebifurationfollowingaHopf

bifurationinparagraph3.

Laboratoire deMathématiques et Appliations, Université dela Rohelle, avenueMihelCrépeau, 17042 LA ROCHELLE

and/orprojetCOMORE,INRIA,2004routedesLuioles06902SOPHIA-ANTIPOLISourriel:ebenoituniv-lr.fr

(3)

steadystateinthewhole domain,sothistrajetoryhasaninnitedelay. Theusedmethods arereal, andthe

systemhastobesmooth(atuallyonlyC2). Inparagraphs2.2et3.2,weavoidthisveryspeialhypothesis. It isheresupposedthatthesystemisanalyti,andwestudythesolutionsonomplexdomains. Unfortunately,I

havenotaproofforthemainresultofthisartile. Butitseemstomethattheproblemisinteresting,andthe

resultsareargumented.

WeuseNelson'snonstandardterminology(seeforexample[5℄). Indeed,almostallsentenesanbetranslated

in lassialterms,where ε isonsidered asavariableand notasaparameter. Often, thetranslationis given onfootnotes.

2 The delayed Hopf bifuration

Theproblemis studiedand essentiallyresolvedin [10℄. Wegiveheretheproofsto improvetheresultsandto

xtheideasforthemainparagraphoftheartile. Themaintoolistherelief'stheoryofJ.L.Callot,explained

in[4℄.

Thestudiedequationis

εX˙ =f(t, X, ε) (1)

wheref isanalytionadomainDofC×C2×C.

Hypothesis and notations

H1 Thefuntionf isanalyti. Ittakesrealvalueswhentheargumentsarereal.

H2 Theparameterεisreal, positive,innitesimal 1

.

H3 Thereexists ananalytifuntion φ,dened onaomplexdomainDt sothat f(t, φ(t),0) = 0. Theurve X =φ(t) is alled the slow urve of equation(1). We assumethat the intersetion ofDt with the real

axisis aninterval]tm, tM[.

H4 Letusdenoteλ(t)andµ(t)fortheeigenvaluesofthejaobianmatrixDXf,omputedatpoint(t, φ(t),0).

Weassumethat ,fortreal,thesignsoftherealandimaginarypartsaregivenbythetablebelow:

t tm a tM

ℜ(λ(t)) - 0 +

ℜ(µ(t)) - 0 +

ℑ(λ(t)) - - -

ℑ(µ(t)) + + +

Then,whentinreasesfromtm totM,thequasi-steadystateisrstanattrativefous,thenarepulsive fous,with aHopfbifurationat t=a.

2.1 Input-output funtion when there exists a big anard

Inthissetion,weassumethatthereexistsabiganardX˜(t)i.e. asolutionofequation(1)suhthat2X˜(t)≃φ(t)

foralltintheS-interiorof]tm, tM[. Wenowwanttostudytheotherssolutionsofequation(1)byomparison

with.

Themaintoolforthatisasequeneofhangeofunknowm: rst,weperformatranslationonX,depending

ont toputthebiganardontheaxis:

X = ˜X(t) + Y

Itgivesthesystem

εY˙ = g(t, Y, ε) with g(t, Y, ε) =f(t,X˜(t) +Y, ε)−f(t,X˜(t), ε)

1

Inlassialterms,weassumethatεleavesinasmallomplexsetor: |ε|boundedandarg(ε)]δ, δ[.

2

Withoutnonstandardterminology,abiganardisasolutionofequation(1)dependingontheparameterεsuhthat

t]tm, tM[, lim

ε>0,ε→0

X˜(t, ε) =φ(t)

(4)

ThematrixDXf(t, φ(t),0)hastwoomplexonjugatedistinteigenvalues(seehypothesisH4),thenthereexists alineartransformation P(t)whih transformsthejaobianmatrixinaanonialform. We denethehange

ofunknown

Y =P(t)Z

Thenewsystem,hasthefollowingform (wewroteonlytheinterestingterms):

εZ˙ = h(t, Z, ε) with h(t, Z, ε) =

α(t) −ω(t) ω(t) α(t)

Z+O(ε)Z+O(Z2) , λ(t) =α(t)−iω(t)

Thenexthange isgivenbythepolaroordinates:

Z =

rcosθ rsinθ

εr˙ = r(α(t) +O(ε) +O(r)) εθ˙ = ω(t) +O(ε) +O(r)

Thelastoneisanexponentialmirosope 3

:

r = expρ ε

ρ˙ = α(t) +O(ε) +eρεk1(r, θ, ε)

εθ˙ = ω(t) +O(ε) +eρεk2(r, θ, ε) (2)

While ρ is non positive and non innitesimal, r is exponentially small and the equation (2) gives a good approximationof ρ with ρ˙ =α. When ρ beomes innitesimal, with a moresubtle argument (see [1℄)using dierentialinequations,weanprovethatrbeomesnoninnitesimal. Thisgivesthepropositionbelow:

Proposition 1 Let us assumehypothesis H1 toH4(Hopf bifuration) for equation(1). However, we assume

that there exists aanard X(t)˜ going along4 the slow urve at least on ]tm, tM[. Then if X(t) goes along the

slow urveexatly 5

on ]te, ts[ with[te, ts]⊂]tm, tM[,then Z ts

te

ℜ(λ(τ))dτ = 0

Theinput-output relation(betweente andts)is dened byRts

te ℜ(λ(τ))dτ = 0. It is desribedby itsgraph

(seegure1). Inthisase,thisrelationisafuntion.

Figure1: Theinput-outputrelationforequation(3)whenthereexistsabiganard.

3

Allthepreeedingtransformationswereregularwithrespettoε.Thislastoneissingularatε= 0.

4

AsolutionX˜(t, ε)goesalongtheslowurveatleaston]t1, t2[if

t]t1, t2[, lim

ε>0,ε→0

X(t, ε) =˜ φ(t)

5

AsolutionX˜(t, ε)goesalongtheslowurveexatly on]te, ts[ifit goesalongtheslowurveatleast on ]te, ts[,andifthe

interval]te, ts[ismaximalforthisproperty.

(5)

Inthisparagraph, tbeomesomplex,in the domainDt. Weassumethat forallt in Dt, thetwoeigenvalues

λ(t)andµ(t)are distint. Itis aneessaryonditiontoapplyCallot'stheoryofreliefs.

WedenethereliefsRλ andRµ by:

Fλ(t) = Z t

a

λ(t)dt , Rλ(t) =ℜ(Fλ(t)) Fµ(t) =

Z t a

µ(t)dt , Rµ(t) =ℜ(Fµ(t))

It iseasyto seethat λ(t) =µ(t),and Fλ(t) =Fµ(t), thenRλ(t) = Rµ(t). ThetwofuntionsRλ andRµ

oinideonthereal axis. WewilldenoteR(t).

Denition1 Wesay thatapath γ:s∈[0,1]7→ Dt goesdown the relief Rλ if andonly if d

dsRλ(γ(s))<0 for

allsin [0,1].

Denition2 Letus give apoint te suh that (te, φ(te),0) ∈ D. We say that Dt isa domain below te if and

only if for all t in the S-interior of Dt, there existtwo paths in Dt, from te tot,the rst one goes down the

relief Rλ andthe seondonedown Rµ.

Theorem2(Callot) Let us assume that Dt is a domain below te. A solution X(t) of equation (1) with

an initial ondition X(te) innitesimally lose to φ(te) is dened at least on the S-interior of Dt where it is

innitesimally losetoφ(t).

Letusapplythistheoremtothefollowingexample,hosenasthetypialexamplesatisfyinghypothesisH1

toH4(Hopfbifuration).

εx˙ = tx+y+εc1

εy˙ = −x+ty+εc2

(3)

Theeigenvaluesareλ=t−ietµ=t+i. ThelevelurvesofthetworeliefsRλ(t) = 12(t−i)2andRµ(t) = 12(t+i)2

aredrawnongure2.

Figure2: Thelevelurvesofthetworeliefsof equation(3),andadomainbelowte

Generially 1

thereis nosurstabilityat pointt =i(see [3℄forthedenition ofsurstability). Consequently, wehavethefollowingresultsforallequationssuhthatthereliefsareonthesametypeasthose ofgure2:

Denition3 Letusgive tc apoint2 where the eigenvaluevanishes: λ(tc) = 0. Thevalue of therelief atpoint tc isaritial valueof therelief Rλ. The bump3 istherealnumber t biggerthana,minimalsuhthatRλ(t)

isaritial value. Theanti-bumpisthe real numbert∗∗ smallerthana,maximalsuhthatRλ(t∗∗)isaritial

value.

1

Idonotknowtheexatgenerihypothesis. Wehavetoombinetheonstraintsgivenbythesurstabilitytheoryof[3℄andthe

fatthattheequation(1)isreal

2

Insomeases,itispossiblethattcisinnite. ForεX˙ =

sint cost

cost sint

«

X+O(X2) +O(ε)wehavetc= +i.

3

Thename"bump"isatranslationofthefrenhname"butée"

(6)

Forequation(3),thebumpist= 1andtheanti-bumpt∗∗=−1.

Theorem3 Atrajetoryof equation(1)an goalong the slowurve X=φ(t)exatly on]te, ts[ ifandonlyif

oneofthe following isveried:

te< t∗∗ and ts=t te=t∗∗ and ts> t

t∗∗ < te< a and a < ts< t and R(te) =R(ts)

Thistheoremisillustratedbythegraphoftheinput-outputrelation,drawnongure3.

Figure3: Theinput-outputrelationforequation(3)

3 Delayed Hopf bifuration followed by a fous-node bifuration

Thestudiedequationis

εX˙ =f(t, X, ε) (4)

wheref isanalytionadomainDofC×C2×C,andsatisesthefollowinghypothesis:

Hypothesis and notations

HFN1 Theanalytifuntionf takesrealvalueswhentheargumentsarereal.

HFN2 Theparameterεisreal, positive,innitesimal.

HFN3 There exists an analyti funtion φ, dened on aomplex domain Dt suh that f(t, φ(t),0) = 0. The

urveX =φ(t)isalledtheslowurveofequation1. WeassumethattheintersetionofDtwiththereal

axisis aninterval]tm, tM[.

HFN4 Letusdenoteλ(t)andµ(t)fortheeigenvaluesofthejaobianmatrixDXf,omputedatpoint(t, φ(t),0).

Weassumethat ,fortreal,thesignsoftherealandimaginarypartsaregivenbythetablebelow:

t tm a b tM

ℜ(λ(t)) - 0 + + +

ℜ(µ(t)) - 0 + + +

ℑ(λ(t)) - - - 0 0

ℑ(µ(t)) + + + 0 0

Then, when t inreases on the real interval ]tm, tM[, we have suesively an attrative fous, a Hopf

bifuration att =a, arepulsivefous, afous-node bifurationat t=b andarepulsivenode. At point t=b,thetwoeigenvaluesoinide. Weassumethatλ(t) =µ(t)onlyat pointb. Atually,intheomplex

plane, the two eigenvalues are the two determinations of a multiform funtion dened on a Riemann

surfaewithasquarerootsingularityatpointb.

However, there is asymmetry: if the funtion

is dened with a ut-o on the positivereal axis, it

satises

√s=−√

sandwethenhave

µ(t) = λ(t)

(7)

Rλ(t) =ℜ Z t

a

λ(t)dt

and Rµ(t) =ℜ Z t

a

µ(t)dt

arethetwodeterminationsofamultiformfuntionwithasquarerootsingularityatpointt=b. However,

there is a symmetry: if the funtion

is dened with a ut-o on the positive real axis, it satises

√s= −√

s and we havethen: Rµ(t) = Rλ(t)exept on the ut-ohalf line [b,+∞[. For real t > b,

wehoosedeterminationsofsquareroot suhthat λ(t)< µ(t). WeassumethatRλ hasauniqueritial

pointwithritialvalueRc. Weassumethat Rλ(b)< Rc. Anexampleisgivenandstudiedinparagraph

3.2.1.

3.1 Input-output funtion when there exists a big anard

Weassume now that there exists abig anard X(t)˜ i.e. a solutionof equation (1) suh that X˜(t) ≃φ(t) for

all t in the S-interior of ]tm, tM[. The study below is similar to paragraph 2.1. The added diulty is the

oinideneofthetwoeigenvaluesatpointb whihdonotallowtodiagonalizethelinearpart.

ThersthangeofunknownisX = ˜X(t) +Z whihmovesthebiganard ontheaxisX = 0: εZ˙ = A(t)Z+O(ε)Z+O(Z2) , A(t) =DXf(t, φ(t),0)

Letusdenote

α(t) β(t) γ(t) δ(t)

theoeientsofthematrixA(t). Asinparagraph2.1,thehangeofunknowns Z =

rcosθ rsinθ

, r = expρ ε

givesthenewsystem:

ρ˙ = α(t) cos2θ+ (β(t) +γ(t)) cosθsinθ+δ(t) sin2θ+O(ε) +eρεk1(r, θ, ε)

εθ˙ = γ(t) cos2θ+ (δ(t)−α(t)) cosθsinθ−β(t) sin2θ+O(ε) +eρεk2(r, θ, ε) (5)

Fornonpositiveρ(morepreisely,forinnitesimalr),theseondequationisaslow-fastequation. Itsslowurve

isgivenby

θ = arctan

δ(t)−α(t)± q

α(t)2−2α(t)δ(t) +δ(t)2+ 4β(t)γ(t) 2β(t)

Ithastwobranheswhenλandµarereals, oneisattrative,theotherisrepulsive: seegure4.

When θ goes alonga branh of theslowurve, (and when r is innitesimal),an easy omputation shows that ρ˙ is innitely lose to one of the eigenvaluesλ or µ. The repulsive branh orresponds to the smallest

eigenvalue(whih isreal positive). Whent < b, theangleθ movesinnitelyfast,and anaveragingproedure

isneededtoevaluatethevariationofρ:

hρ˙i =

Rθ1+2π θ1

˙ ρ θ˙dθ Rθ1+2π

θ1 1 θ˙

Aneasyomputationshowsnowthat,intheS-interiorofthedomaint < b,ρ <0,wehave hρ˙i ≃ α(t) +δ(t)

2 = ℜ(λ(t)) =ℜ(µ(t))

Let us give an initial ondition (t, θ) between the two branhes of the slow urve and ρ negative non

innitesimal(intheexample,weantaket= 0.8,θ= 0,ρ=−0.03). Forinreasingt,theurve(t, θ(t))goes

alongtheattrativebranhoftheslowurve,whileρbelievesnegativenon innitesimal. Fordereasingt,the

solutiongoesalongtherepulsivebranh,thenθmovesinnitelyfastwhileρbelievesnegativenoninnitesimal.

Consequently, we know the variation of ρ(t) (see gure 4). As in paragraph 2.1, amore subtle argument is

neededtoprovethatwhenρbeomesinnitesimal,thevariablerbeomesnoninnitesimalandthetrajetory

X leavestheneighborhoodoftheslowurve.

Fromthisstudy, allthebehavioursof ρ(t)areknown,dependingontheinitial ondition. Theyaredrawn

ongure5.

(8)

Figure4: Oneofthetrajetoriesofsystem0.002 ˙X =

t 1 t−0.3 t

X drawn withthe variables(θ, ρ). The

slowurveis alsodrawn

Figure 5: Thepossiblebehavioursofρ(t).

Proposition 4 Let us give an equation of type (6) with hypothesis HFN1 to HFN5. Assume also that there

exists a big anard X(t)˜ going along the slow urve on the whole interval ]tm, tM[. If a trajetory X(t) goes

alongthe slow urveexatly onan interval ]te, ts[with [te, ts]⊂]tm, tM[,then Z ts

te

ℜ(λ(τ))dτ ≤ 0 ≤ Z ts

te

ℜ(µ(τ))dτ

Conversely, iftheinequalities abovearesatised,thereexistsatrajetorygoing alongthe slowurveexatly

on]te, ts[.

Theinput-outputrelationisdesribedbyitsgraph,drawnongure6.

We ouldgivemorepreise results ifweonsider the two variablesr and θ forthe input-output relation.

Indeed,whenthepoint(te, ts)isintheinteriorofthegraphoftheinput-outputrelation,weknowthat,attime ofoutput,θ isgoingalongtheattrativeslowurvewhihorrespondstotheuniquefasttrajetorytangentto

theeigenspae ofthebiggesteienvalueµ.

3.2 The fous-node bifuration is a bump

Hereisthemainpartofthisartile. Today,Iamnotabletoprovetheexpetingresults,butIhavepropositions

inthisdiretion. Toexplaintheproblem,I willgiveonjetures.

Letusdenetheanti-bump t∗∗ andthetwobumpstλandtµ asin denition3:

Rλ(tc) = Rµ(tc) = Rλ(t∗∗) = Rµ(t∗∗) = Rλ(tλ) = Rµ(tµ)

Références

Documents relatifs

More generally, this preliminary result can be extended to all existing results which are using the Jensen’s inequality, especially the case of time varying delay or sampled

We want to develop mixed models of community classification articulated around the network’s sparse skeleton: a unique subset of nodes which share the same properties rather than

estabilidade e projetar ontroladores de realimentação para sistemas lineares om

Our purpose is to give a proof of the existence and smoothness of the invariant manifolds in the title for a system of ordinary differential equations defined in a

Thus, in this case, our problem of analytic classification boils down to describing the analytic conjugacy classes of vector fields of the form X under the action of the group

Even though there are international standards for point of care testing (ISO 22870 Point- of-care testing (POCT) – Requirements for quality and competence) and point of care

Classification math´ ematique par sujets (2000). — Normal form, Singularity, Foliation... Poincar´e proved that the vector field X is actually linear in con- venient

When expressed in relation to body weight, pancreas, pancreatic protein weights and enzyme activities measured were higher in Roe deer than in calf.. The 1 st original feature is