• Aucun résultat trouvé

AN ORIGIN OF THE EQUILIBRIUM LIQUID-LIKE LAYER ON ICE

N/A
N/A
Protected

Academic year: 2021

Partager "AN ORIGIN OF THE EQUILIBRIUM LIQUID-LIKE LAYER ON ICE"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00226315

https://hal.archives-ouvertes.fr/jpa-00226315

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

AN ORIGIN OF THE EQUILIBRIUM LIQUID-LIKE LAYER ON ICE

N. Fukuta

To cite this version:

N. Fukuta. AN ORIGIN OF THE EQUILIBRIUM LIQUID-LIKE LAYER ON ICE. Journal de Physique Colloques, 1987, 48 (C1), pp.C1-503-C1-509. �10.1051/jphyscol:1987169�. �jpa-00226315�

(2)

JOURNAL DE PHYSIQUE

Colloque C1, suppl6ment au n o 3, Tome 48, mars 1987

AN ORIGIN OF THE EQUILIBRIUM LIQUID-LIKE LAYER ON ICE

N. FUKUTA

D e p a r t m e n t o f M e t e o r o l o g y , U n i v e r s i t y o f U t a h , S a l t L a k e C i t y , UT 8 4 1 1 2 , U.S.A.

Resume - Les r a i s o n s de l a f o r m a t i o n d ' u n e couche q u a s i - l i q u i d e s u r l a g l a c e o n t @t@ recherchees en examinant l a n a t u r e de l a couche de s u r f a c e . La l i a i s o n hydrogene dans l a g l a c e q u i e n t r a i n e l a d i l a t a t i o n de 1 'eau d u r a n t l e g e l e t l a compression dans une d i r e c t i o n p e r p e n d i c u l a i r e dans l a couche s u p e r f i c i e l l e s o n t responsables des e f f e t s de f u s i o n p a r p r e s s i o n d s u r f a c e de l a g l a c e . En p r e n a n t un modele de sphere r i g i d e avec un p o t e n t i e l i n t e r m o l 6 c u l a i r e a d d i t i f 1 l a puissance ( - i ) l a d i s t r i b u t i o n de p o t e n t i e l t o t a l a 6 t @ c a l c u l e e a i n s i que l a f o r c e i n t e g r e e 2 t r a v e r s l a s u r f a c e . I 1 a e t e m o n t r e que l a p r e s s i o n i n t e g r e e t o t a l e e s t p r o p o r t i o n n e l l e 1 l a puissance ( - i + 4 ) de l a p r o f o n d e u r e t l a tempera- t u r e de l a couche q u a s i - l i q u i d e e s t p r o p o r t i o n n e l l e 2 c e t t e puissance. La r e l a - t i o n e s t expos@e p o u r l e cas 013 i = 6. L ' e x i s t e n c e s p e c i f i q u e d ' u n e couche q u a s i - l i q u i d e a S t 6 pr4vue dans l e cas des s o l i d e s s u b i s s a n t une f u s i o n p a r aug- m e n t a t i o n de p r e s s i o n .

A b s t r a c t

-

Mechanism o f l i q u i d - l i k e l a y e r f o r m a t i o n on i c e was pursued by Pxam- i n i n g t h e n a t u r e o f t h e s u r f a c e l a y e r . I t was f o u n d t h a t t h e hydrogen bond o f i c e which makes w a t e r expand upon f r e e z i n g and t h e compression i n t h e normal d i r e c t i o n w i t h i n t h e s u r f a c e l a y e r a r e r e s p o n s i b l e t o cause t h e p r e s s u r e m e l t - i n g e f f e c t on t h e i c e s u r f a c e . Assuming a r i g i d sphere model w i t h ( - i ) - t h power i n t e r m o l e c u l a r p o t e n t i a l and t h e a d d i t i v i t y , a scheme was developed t o compute t h e d i s t r i b u t i o n o f t h e t o t a l p o t e n t i a l and t h a t o f t h e i n t e g r a t e d f o r c e a c r o s s t h e s u r f a c e . I t was shown t h a t t h e t o t a l i n t e g r a t e d p r e s s u r e i s a p p r o x i m a t e l y p r o p o r t i o n a l t o t h e ( - i + 4 ) - t h power o f t h e d e p t h and t h e temp- e r a t u r e o f t h e l i q u i d - l i k e l a y e r i s p r o p o r t i o n a l t o t h i s power. The r e l a t i o n - s h i p was shown f o r i = 6 case. Based on t h i s t r e a t m e n t , s p e c i f i c e x i s t e n c e o f t h e l i q u i d - l i k e l a y e r was p r e d i c t e d on p r e s s u r e - m e l t i n g s o l i d s .

I - INTRODUCTION

E x i s t e n c e o f e q u i l i b r i u m l i q u i d - l i k e l a y e r on t h e s u r f a c e o f i c e has been a s u b j e c t o f i n v e s t i g a t i o n e v e r s i n c e Michael Faraday became engaged i n experiments f o r adhe- s i v e p r o p e r t i e s of i c e i n 1842 /I/. A number o f e x p e r i m e n t a l evidences, though m o s t l y i n d i r e c t , have accumulated e v e r s i n c e /2, 3, 4, 5, 6, 7 , 8, 9, 10, 11/. I t appears t h a t t h i s phenomenon i s r a t h e r u n i q u e w i t h t h e s o l i d phase o f water, i - e . , i c e .

To e x p l a i n e x i s t e n c e o f t h e l i q u i d - l i k e l a y e r , a number o f a t t e m p t s have been made:

Gurney /12/ t r i e d t o reason t h a t i t i s based on vacancies t h a t appear i n t h e s t r e s s - f r e e s u r f a c e l a y e r of i c e w h i c h i s b e l i e v e d t o c o l l a p s e i n t o t h e l i q u i d form. How- e v e r , t h e vacancies a r e no more f a v o r a b l e w i t h t h e l i q u i d t h a n w i t h t h e s o l i d be- cause i c e h o l d s more volume t h a n water. Weyl /13/ p r e s e n t e d a d i f f e r e n t v i e w based on an e l e c t r i c a l double l a y e r which he assumed t o possess t h e c h a r a c t e r i s t i c s o f l i q u i d l a y e r . H i s c o n t e n t i o n l a c k e d c o n v i c t i o n why t h e l a y e r has t o be l i q u i d - l i k e . F l e t c h e r /14, 15, 16/ f o r m u l a t e d a t h e o r y o f l i q u i d - l i ke l a y e r based on i n t e r a c t i o n s

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987169

(3)

C1-504 JOURNAL DE PHYSIQUE

of v a r i o u s molecular e l e c t r i c f i e l d s and described q u a n t i t a t i v e l y the r e l a t i o n s h i p between t h e l a y e r thickness and t h e temperature. Lacmann and S t r a n s k i /17/ handled t h e l i q u i d - l i k e l a y e r based on complete w e t t a b i l i t y of water on i c e , which was n o t e x p e r i m e n t a l l y s u b s t a n t i a t e d /I/. These treatments do n o t l e a d t o the p o s s i b l e and e x c l u s i v e existence o f t h e s u r f a c e l a y e r on t h e s o l i d phase o f water substance. I n the meantime, based on the treatment o f Romkens and M i l l e r /18/, which considered pressure m e l t i n g i n i c e a t t h e i n t e r f a c e between mineral p a r t i c l e s , G i l p i n /19/ e s t - imated the temperature dependency o f the l a y e r thickness a t t h e i n t e r f a c e between i c e and a s u b s t r a t e b u t n o t i n the f r e e i c e surface.

I n t h i s paper, we s h a l l f i r s t examine the f o r c e balance and t h e r e l a t i o n s h i p among v a r i o u s thermodynamic energies w i t h i n t h e s u r f a c e l a y e r o f ice. Then, a p p l y i n g an i n t e r m o l e c u l a r p o t e n t i a l t o an i d e a l i z e d surface, we s h a l l describe t h e f o r c e o r t h e pressure a c t i n g normal t o t h e s u r f a c e and the p o t e n t i a l a r i s i n g from it. F i n a l l y , t h i s pressure d i s t r i b u t i o n w i l l be used t o estimate t h e pressure m e l t i n g e f f e c t o f i c e i n t h e surface l a y e r o r t h e r e l a t i o n s h i p between t h e thickness o f t h e l i q u i d - l i k e l a y e r and t h e temperature.

I 1 - THE SURFACE LAYER

A surface c a r r i e s an energy and a surface energy i s t h e energy t o form t h e surface.

The surface may be c r e a t e d by s e p a r a t i n g a bulk. A f t e r t h e separation, t h e s u r f a c e normally r e l a x e s t o s e t t l e i n a lowest p o s s i b l e energy s t a t e . A f r e e energy t o form such a surface i s c a l l e d a surface f r e e energy o r s u r f a c e tension.

L e t us consider an unrelaxed surface o f i s o t r o p i c condensed phase w i t h d e n s i t y d i s - c o n t i n u i t y f o r s i m p l i c i t y . Place t h e x-axis and t h e y - a x i s i n t h e plane i n v o l v i n g centers o f the surface molecules and the z - a x i s i n t h e d i r e c t i o n perpendicular t o the plane p o i n t i n g i n s i d e the condensed phase. The b u l k o f a condensed phase holds a s t a t e of lowered i n t e r m o l e c u l a r p o t e n t i a l s i n t h r e e d i r e c t i o n s . I n t h e bulk, since i t i s i s o t r o p i c t h e p o t e n t i a l l o w e r i n g i s t h e same i n every d i r e c t i o n . I n t h e surface l a y e r , h a l f o f t h e t o t a l l o w e r i n g i s l o s t . The surface energy here, there- fore, i s t h i s increase o f energy due t o f o r m a t i o n of t h e unrelaxed s u r f a c e w i t h t h e increase e q u a l l y assigned t o each d i r e c t i o n . According t o Bikerman /20/, t w o - t h i r d s o f t h i s t o t a l surface energy corresponds t o t h e surface f r e e energy. When t h i s s u r - face i s created by separation, t h e f o r c e p r e v i o u s l y balanced i n a l l d i r e c t i o n s be- comes unbalanced i n t h e z - d i r e c t i o n and t h i s f o r c e imbalance leads t o compression w i t h i n t h e surface l a y e r , being countered by t h e i n t e r m o l e c u l a r r e p u l s i v e f o r c e due t o overlapping o f mplecular e l e c t r o n i c s h e l l s .

Water i s a r a t h e r s p e c i a l substance i n view o f t h e f a c t t h a t i t expands d u r i n g f r e e z i n g due t o b u l k y hydrogen bond f o r m a t i o n i n the s o l i d . Because o f t h i s nature, according t o Le Chatelier-Braun's law, i c e m e l t s under pressure. This suggests a p o s s i b i l i t y o f d e s c r i b i n g t h e seemingly unique existence o f the l i q u i d - l i k e l a y e r on i c e from t h e pressure m e l t i n g e f f e c t . So, i n t r o d u c i n g an i n t e r m o l e c u l a r p o t e n t i a l , we s h a l l evaluate the pressure i n t h e surface l a y e r o f i c e .

I n t e r m o l e c u l a r a t t r a c t i v e p o t e n t i a l s are given i n a sum o f t h e form

@ = -Ar-' (1)

where A and i a r e constants, and @ sometimes depends on o t h e r f a c t o r s such as d i p o l e o r i e n t a t i o n . Here f o r s i m p l i c i t y , we d i s r e g a r d a l l f a c t o r s o t h e r than t h e d i s t a n c e between t h e molecular centers, r , and assume r i g i d spheres f o r molecules and a d d i t i - v i t y o f t h e a t t r a c t i v e p o t e n t i a l s . Since a d d i t i v i t y o f t h e p o t e n t i a l i s assumed, summation of d i f f e r e n t p o t e n t i a l s can be c a r r i e d o u t w i t h o u t any d i f f i c u l t y . So, we consider here t h e most dominant a t t r a c t i v e p o t e n t i a l o n l y and proceed.

The f o r c e a r i s i n g from t h e p o t e n t i a l i s given by i t s d e r i v a t i v e , o r

f = -& = d r

(4)

We now have t o sum t h e z-component of t h e f o r c e i n t h e h a l f space w i t h i n t h e con- densed phase. F i g u r e 1 i l l u s t r a t e s t h e c o m p u t a t i o n a l system. The o r i g i n o f a cy- l i n d r i c a l c o o r d i n a t e i s p l a c e d a t t h e c e n t e r o f one o f t h e s u r f a c e molecules and t h e r a d i a l d i s t a n c e i n t h e x-y p l a n e i s expressed b y p , and t h e d i s t a n c e between t h e n e a r e s t two molecules by d.

,-

- -

--

/

COMPENSATED

PORTION

F i g . 1. Summation o f i n t e r m o l e c u l a r a t t r a c t i v e f o r c e s .

We t a k e t h e f o l l o w i n g scheme of f o r c e i n t e g r a t i o n . F i r s t , t h e x-component o f t h e f o r c e a c t i n g on t h e m o l e c u l e a t t h e c o o r d i n a t e o r i g i n w i l l be i n t e g r a t e d w i t h r e - s p e c t t o p i n t h e e n t i r e space i n t h e condensed phase and expressed as a f u n c t i o n of z. The same procedure w i l l be r e p e a t e d f o r t h e succeeding m o l e c u l e s on t h e z - a x i s . Then, t h e s e f o r c e s w i l l a g a i n be p r o j e c t e d i n t o t h e z - a x i s o r i n t e g r a t e d i n t h e p - d i r e c t i o n , t o express t h e f o r c e d i s t r i b u t i o n i n t h e z - d i r e c t i o n . F i n a l l y , by i n t e g r a t i o n of t h e d i s t r i b u t i o n , we o b t a i n t h e i n t e g r a l d i s t r i b u t i o n o f t h e t o t a l f o r c e o r t h e p r e s s u r e . I n t e g r a t i o n o f t h i s f o r c e a t t h e t o p o f t h e s u r f a c e l a e r g i v e s t h e t o t a l energy due t o t h e t o t a l f o r c e i n t h e z - d i r e c t i o n . As s t a t e d agove, t h i s energy s h o u l d c o r r e s p o n d t o t h e s u r f a c e t e n s i o n , t h e c o n s t a n t i n t h e expres- s i o n can be e s t i m a t e d , and t h i s c o n s t a n t w i l l be used t o d e s c r i b e t h e i n t e g r a l f o r c e o r p r e s s u r e d i s t r i b u t i o n i n t h e z - d i r e c t i o n . F i n a l l y , t h e p r e s s u r e t e r m of t h e p r e s s u r e m e l t i n g w i l l be a p p l i e d t o t h i s d i s t r i b u t i o n t o o b t a i n t h e h e i g h t and temp- e r a t u r e r e l a t i o n s h i p o f t h e l i q u i d - l i k e l a y e r .

I 1 1

-

ESTIMATION OF THE LIQUID-LIKE LAYER

F o r t h e purpose o f f o r c e i n t e g r a t i o n , t h e space i n s i d e t h e condensed phase i s d i v i - ded i n t o two p a r t s ; a column o f r a d i u s d w i t h c e n t e r on t h e z - a x i s and t h e r e s t of t h e space. Since c o n t r i b u t i o n t o t h e f o r c e f r o m t h i s column i s s m a l l , t h i s space w i l l be i g n o r e d f o r t h e r e s t o f t h i s t r e a t m e n t . As a l r e a d y mentioned, a t t h e end o f t h i s computation, t h e c o n s t a n t t e r m w i l l be e v a l u a t e d i n comparison w i t h t h e s u r f a c e f r e e energy, o n l y t h e v a r i a b l e p a r t s o f i n t e g r a t i o n w i l l be handled.

By d e s c r i b i n g t h e p o s i t i o n o f t h e m o l e c u l e on t h e z - a x i s w i t h t h e f i r s t s u b s c r i p t and t h e d i r e c t i o n o f i n t e g r a t i o n w i t h t h e f o l l o w i n g ones, t h e t o t a l f o r c e a c t i n g on t h e m o l e c u l e a t t h e c o o r d i n a t e o r i g i n i s g i v e n as (see F i g . 1)

(5)

JOURNAL DE PHYSIQUE

where n i s t h e number o f molecules i n a u n i t volume. The i n t e g r a n d o f e x p r e s s i o n ( 3 ) g i v e s t h e f o r c e d i s t r i b u t i o n as a f u n c t i o n o f z. As can be seen i n F i g . 1, t h e d i s t r i b u t i o n F which i s t h e same as F , b e g i n s a t 0 = z / d = 3 p o s i t i o n s t a r t i n g from e = 3'6alue of b a s i c F d i s t f % u t i o n , and so on.

OPZ

P r o j e c t i o n o f t h e v a r i a b l e p a r t o f t h i s d i s t r i b u t i o n i n t o t h e z - a x i s g i v e s a d i s t r i - b u t i o n

Changing t h e summation i n t o i n t e g r a t i o n f r o m an average l o w e r l i m i t o f ( 2 e + 3 ) / 4 and t a k i n g t h e v a r i a b l e p a r t o n l y , e x p r e s s i o n ( 4 ) becomes

The t o t a l i n t e g r a l f o r c e i n t h e z - d i r e c t i o n becomes, b y i n t e g r a t i n g e x p r e s s i o n ( 5 ) f o r l a r g e e o r 1 << e and r e p l a c i n g e w i t h z / d

T h i s i s t o say t h a t , f o r z >> d,

where B i s a c o n s t a n t . F d i s t r i b u t i o n by d o u b l e n u m e r i c a l i n t e g r a t i o n o f expres- s i o n ( 4 ) shows t h a t e x p r e T s i o n ( 7 ) h o l d s w e l l w i t h t h e l a y e r f o r e = z / d > 4 b u t when e approaches u n i t y , t h e n u m e r i c a l l y i n t e g r a t e d v a l u e s become s m a l l e r t h a n ex- p r e s s i o n ( 7 ) .

The t o t a l p o t e n t i a l a r i s i n g from t h e f o r c e g i v e n b y e x p r e s s i o n ( 7 ) may be o b t a i n e d by i n t e g r a t i o n o f t h e e x p r e s s i o n t o t h e top-most l a y e r ;

As a l r e a d y d i s c u s s e d above, t h i s ET i s supposed t o c o r r e s p o n d t o t h e s u r f a c e f r e e energy o f i c e o r uSG, where s u b s c r i p t s S and G s t a n d f o r s o l i d and gas, we have

Since o i s an energy p e r u n i t area, a p p l i c a t i o n o f e q u a t i o n ( 9 ) t o e q u a t i o n ( 7 ) l e a d s t 8 a r e l a t i o n s h i p ,

I V - PRESSURE MELTING

From t h e well-known thermodynamic t r e a t m e n t , t h e p r e s s u r e t h a t l o w e r s t h e m e l t i n g

(6)

p o i n t o f i c e by A T i s g i v e n as

where dp/dT = -1.35 x l o 7 N/m2K. Among i n t e r m o l e c u l a r a t t r a c t i v e p o t e n t i a l s , t h e one r e p r e s e n t e d by i = 6 i s o f t e n dominant. So, l e a v i n g d e t a i l e d compution i n v o l - v i n g m w e a p p r o p r i a t e p o t e n t i a l s f o r t h e f u t u r e , we e s t i m a t e t h e r e l a t i o n s h i p be- tween t h e t h i c k n e s s o f t h e l i q u i d - l i k e l a y e r and t h e f r e e z i n g p o i n t d e p r e s s i o n a p p l y i n 9 t h i s i = 6 p o t e n t i a l . S u b s t i t u t i n g p i n e q u a t i o n ( 1 1 ) w i t h t h a t i n e q u a t - i o n ( 7 ) under t h e c o n d i t i o n g i v e n by e q u a t i o n ( 1 0 ) and u s i n g e q u a t i o n ( 9 ) w i t h d = 2.76 x 1 0 - l o m and oSG = 0.109 N/m, we have

where z i s i n meters. F i q u r e 2 shows t h i s r e l a t i o n s h i p i n comparison w i t h t h a t

F i g . 2. Thickness o f t h e l i q u i d - l i k e l a y e r e s t i m a t e d as a f u n c t i o n o f m e l t i n g p o i n t d e p r e s s i o n

e s t i m a t e d by F l e t c h e r 1161. I n t h e f i g u r e , i t i s a p p a r e n t t h a t t h e t h i c k n e s s o f t h e l i q u i d - l i k e l a y e r , z, e s t i m a t e d i n t h e p r e s e n t work and t h a t o f F l e t c h e r show

(7)

CI-508 JOURNAL DE PHYSIQUE

a reasonable agreement. The former i s s l i g h t l y s m a l l e r than t h e l a t t e r and drops more r a p i d l y as t h e temperature lowers. However, t h e n u m e r i c a l l y estimated value o f t h e i n t e g r a l f o r c e o r the pressure i s lower than t h e value o f equation (12) which uses i = 6 c o n d i t i o n . I n a d d i t i o n , t h e r e are a t t r a c t i v e p o t e n t i a l s i n hydrogen bond o f i c e w i t h i < 6 1211. This suggests t h a t t h e tendency o f the curve r e p r e s e n t i n g equation ( 1 2 ) i s l i k e l y t o move towards t h a t o f F l e t c h e r ' s curves.

Being based on our present v i e w p o i n t o f pressure m e l t i n g , existence of t h e l i q u i d - l i k e l a y e r i s p r e d i c t e d j u s t below the m e l t i n g p o i n t on t h e s o l i d phase o f sub- stances which expanq d u r i n g f r e e z i n g . Such substances a r e n o t common and water be- longs t o t h e category. For normal substances which s h r i n k d u r i n g freezing, l i q u i d - l i k e l a y e r f o r m a t i o n should n o t happen and simple assignment o f t h e excessive f r e e energy a t t h e surface t o the phase e q u i l i b r i u m may produce a misleading r e s u l t o f t h e l i q u i d - l h k e l a y e r f o r m a t i o n on any s o l i d surface.

ACKNOWLEDGMENT

-

This work was supported by D i v i s i o n of Atmospheric Sciences, National Science Foundation under Grant ATM-82-18966.

REFERENCES

/1/ Hobbs, P.V., I c e Physics, Oxford Univ. Press 1974

/2/ J e l l i n e k , H.H.G., J . C o l l o i d I n t e r f a c e Sci. 25 (1967) 192 - 205

/3/ Maeno, N., i n Physics and Chemistry o f I c e , E x Whalley, E. Royal S o c i e t y o f Canada, Ottawa 1973, p. 140

/4/ Kvl i v i d z e , V.I., Kiselev, V.E., Kurzaev, V.F. and Ushakova, L.A., S u r f . Sci.

44 (1974) 60

-

68

/5/ G s o n , D. and F l e t c h e r , N.H., J. Chem. Phys. 62 (1975) 4444 - 4449 /6/ Mazzega, E., d e l Pennino, U., L o r i a , U. and Mantovani, S., J. Chem. Phys.

64 (1976) 1028 - 1031

/7/ G g o u r e t t e , B., Boned, C. and Royer, R., J. Physique 2 (1976) 955

-

964 /8/ Barer, S.S., K v i l i v i t z e , V.I., Kurzaev, A.B., Sobolev, V.D. and Churaev, N.V.,

Dokl. Akad. Nauk SSSR 235 (1977) 601 - 603

/9/ Golecki, I. and Jaccard, C., J. Phys. C.: S o l i d S t a t e Phys. 11 (1978) 4229

-

4237

/ l o / V a l e r i , S. and Mantovani, S., J. Chem. Phys. 69 (1978) 5207

-

5208

/11/ Beaglehole, D. and Nason D., Surface Science 96 (1980) 357

-

363

1121 Gurney, C., Proc. Phys. Soc. 62 (1949) 639 - 648 /13/ Weyl, W.A., J. C o l l o i d S c i . 5 7 1 9 5 1 ) 389

-

405

1141 F l e t c h e r , N.H., P h i l . Mag. 7 (1962) 255 - 269 /15/ F l e t c h e r , N.H., P h i l . Mag. 8 (1963) 1425 - 1426 /16/ F l e t c h e r , N.H., P h i l . Mag. 78 (1968) 1287 - 1300

/17/ Lacmann, R. and S t r a n s k i , I x . , J. C r y s t a l Growth 13/14 (1972) 236

-

240

1181 Rb'mkens, M.J.M. and M i l l e r , R.D., J. C o l l o i d I n t e r f a c e Sci., 42 (1973) 103

-

111

/19/ G i l p i n , R.R., J . C o l l o i d I n t e r f a c e Sci. 68 (1978) 235 - 251

1201 B i kerman, J. J., Surface Chemistry: Theory and A p p l i c a t i o n , Academic Press 1958

/21/ Fukuta, N. and Paik, Y., J. Appl. Phys. 3 (1973) 1092 - 1100

COMMENTS

V.F. PETRENKO

I did not understand what kind of space charge distribution did you used calculating the acting force ?

Answer :

Space charge distribution was not considered as I stated in the condition of the present treatment. However, I can say that both the charge effect and the present

(8)

pressure melting effect come from the energy of initial unrelaxed surface formation.

I cannot tell how they are related each other.

E. GAFFNEY

If this is an important mechanism for formation of a liquid-layer, then we should be able to see such a layer on bismuth just below its melting point (which should be at low enough temperatures to permit such observation).

Answer :

I agree. That is what I have been saying these days. Of course, as I said in the conclusion, we have to be careful about the surface purity of the sample to avoid alloy formation and oxide film.

R. GAGNON

Is there an explanation as to why the refractive index of the liquid-like layer is less than that of water at O°C.

Answer :

I don't know why it is but the observation presented in this symposium earlier shawed it was closer to water than to ice.

Références

Documents relatifs

1 In the different policies that I consider, the changes in mortality risk faced by different age classes remain moderate, so that v i can be interpreted as the Value of

tipping-over of the director has been observed conosco- pically as a backward and forward movement of the conoscopic cross [lo]. In a z/2-twisted planar layer the

So, usual diffractometer was remodeled for the study of thin films (Rigaku TFD System). To increase an intensity of diffracted X-ray from the thin film, we kept

Chronic osteomyelitis treatment is complex, due to the difficulty to achieve therapeutic drug levels at the site of infection by systemic administration.. Our objective was to

The first step in reaching this objective is confronting the main issues and difficulties that challenge the research on moralities: the unresolved universalism versus

IncP, TcR, vector for lacZ transcriptional fusions 0.4 kb Sca I– Pst I DNA fragment containing the xcpP promoter cloned in pMP220 0.4 kb Pst I– Sca I DNA fragment containing the

defined multiple security properties that protect against parameter subversion: subversion soundness (S-SND) means that no adversary can generate a malicious CRS together with a

In what remains of the paper, we make a detailed compar- ison of this experiment with the best previous constraints on GWEP/SEP violation. In Section 6.1 we make a more