• Aucun résultat trouvé

MECHANICAL HYSTERESIS IN INDIUM-THALLIUM ALLOYS

N/A
N/A
Protected

Academic year: 2021

Partager "MECHANICAL HYSTERESIS IN INDIUM-THALLIUM ALLOYS"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: jpa-00214549

https://hal.archives-ouvertes.fr/jpa-00214549

Submitted on 1 Jan 1971

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MECHANICAL HYSTERESIS IN INDIUM-THALLIUM ALLOYS

K. Entwistle

To cite this version:

K. Entwistle. MECHANICAL HYSTERESIS IN INDIUM-THALLIUM ALLOYS. Journal de

Physique Colloques, 1971, 32 (C2), pp.C2-113-C2-113. �10.1051/jphyscol:1971223�. �jpa-00214549�

(2)

JOURNAL DE PHYSIQUE Colloque C2, suppliment au no 7 , tome 32, Juillet 1971, page C2-113

MECHANICAL HYSTERESIS IN INDIUM-THALLIUM ALLOY S

by

K. M. ENTWISTLE University of Manchester

Alloys near the composition In-20 at.

%

T1 are examples of a class of material that has a twinned non-cubic structure and possesses high mechanical hysteresis. The present investigation is concerned with the mechanism by which this high damping is gene- rated.

It is well established that the application of stress to the twinned tetragonal structure moves the twin boun- daries in the sense that gives partial relief of the applied strain. It is further observed that the boundary move- ment lags behind the stress during cyclic straining. The strain corresponding to the boundary hysteresis can be deduced from the twin crystallography and the unit cell parameters and agrees with the measured hyste- resis. So it is clear that the hysteresis arises from the irreversible boundary movements. The purpose of this investigation was to establish the cause of this irre- versible movement.

The torsional hysteresis of 2 mm diameter cylinders of polycrystalline In-T1 alloys was measured by plotting torque-twist curves during cycles of stress between constant strain limits over the frequency range 0.004 to 3.0 C/s and for temperatures from

-

65 to f 45 OC.

The hysteresis loops for 18,20 and 22 at.

%

T1 reached a maximum area at temperatures which depended on frequency through an activation energy of about 18,000 cal. mole. This is close to the published value for the tracer diffusion of T1 in In of 15,500 cal .mole, which is not a particularly reliable figure because of doubts in the interpretation of the experimental data.

The relationship between these two energies suggests that the mechanical hysteresis might be explained by the existence of a force on the twin boundariescaused by an ordering of T1 atoms relative to the orientation of the C axis of the tetragonal cell. If boundaries are suddenly moved at low temperatures the orientation of the C axis will change in the swept-out region and the T1 atoms, which will not have time to jump to the new preferred sites, find themselves in high energy positions. This generates a force which will return the boundaries to their original position when the stress is removed. The rubber-like behaviour at low tempe- ratures is thus explained. At higher temperatures the atoms rapidly move to the newly preferred sites, the boundary is stabilised in the new position, and a permanent deformation results.

These mechanical characteristics are reproduced by the model of a Maxwell Solid, comprising a spring and dash-pot in series, and so the possibility that this model reproduces the behaviour of In-Tl was explored. This was done by comparing the hysteresis and the stress relaxation behaviour. When the twin boundaries in the In-Tl alloy are suddenly displaced, the stress required t o keep the strain constant steadily relaxes ultimately to zero, as is the case with the Maxwell Solid.

It did not prove to be possible to relate the kinetics of stress relaxation, however, to the hysteresis beha- viour. The reasons for this will be discussed, in terms of the likely existence of several mechanisms contri- buting to the deformation behaviour.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1971223

Références

Documents relatifs

modifies the ozone distribution and consequently the opacity between 200 and 300 nm, the predicted change in the trace species photodissociation rate and

that : The coercive force of a symmetrical loop having the vertex at (Hv, Jy) is lower than the field strength corresponding, on the magnetization curve, to the

2014 The coercive force of an infinite ferromagnetic cylinder is calculated as a function of the radius and of the inclination of the axis to the applied field.. For this

interprotofilament shear [33,34] and tubulin conforma- tional switching [35]) have been recently used to explain the surprising length dependent stiffness in clamped MT

- Experimental values of the inverse of the initial slope of surface (T;') and volume (T;') hysteresis curves versus the inverse of the square root of the thickness

While much is known of the damping properties of constructional materials at room temperature, less is known of these properties at very low temperatures, and even less when cyclic

Moreover the behaviour observed at intermediate reaction times (not shown) is in agreement with that reported in /5/ for the same system: because of

In comparison with the djtfractoqram correspondinq to the powders milled durins 60 hours, whlch exhibit a sinqle widened peak centered close to main a-Fe (and FelsSi.95