• Aucun résultat trouvé

Growth of solutions of an n-th order linear differential equation with entire coefficients

N/A
N/A
Protected

Academic year: 2021

Partager "Growth of solutions of an n-th order linear differential equation with entire coefficients"

Copied!
6
0
0

Texte intégral

(1)

KODAI MATH. J. 25 (2002), 240–245

GROWTH OF SOLUTIONS OF AN n-th ORDER LINEAR DIFFERENTIAL EQUATION WITH ENTIRE COEFFICIENTS

Benharrat Belai¨di and Saada Hamouda

Abstract We consider a di¤erential equation fðnÞþ A

n1ðzÞ fðn1Þþ    þ A1ðzÞ f =

þ A0ðzÞ f ¼ 0, where A0ðzÞ; . . . ; An1ðzÞ are entire functions with A0ðzÞ 2 0. Suppose that there exist a positive number m, and a sequenceðzjÞj A N with limj!þyzj¼ y, and also two real numbers a; b ð0 a b < aÞ such that jA0ðzjÞj b eajzjj

m

and jAkðzjÞj a ebjzjj m

as j! þy ðk ¼ 1; . . . ; n  1Þ. We prove that all solutions f 2 0 of this equation are of infinite order. This result is a generalization of one theorem of Gundersen ([3], p. 418).

1. Introduction

For n b 2, we consider a linear di¤erential equation fðnÞþ An1ðzÞ fðn1Þþ    þ A1ðzÞ f0þ A0ðzÞ f ¼ 0;

ð1:1Þ

where A0ðzÞ; . . . ; An1ðzÞ are entire functions with A0ðzÞ 2 0. Let rð f Þ denote

the order of an entire function f , that is, rð f Þ ¼ lim

r!þy

log Tðr; f Þ

log r ¼ limr!þy

log log Mðr; f Þ

log r ;

where Tðr; f Þ is the Nevanlinna characteristic function of f (see [6]), and Mðr; f Þ ¼ maxjzj¼rj f ðzÞj.

It is well-known that all solutions of (1.1) are entire functions, and if some of the coe‰cients of (1.1) are transcendental, then (1.1) has at least one solution with order rð f Þ ¼ þy.

The question which arises is: What conditions on A0ðzÞ; . . . ; An1ðzÞ will

guarantee that every solution f 2 0 of (1.1) has infinite order?

In this paper we prove three results concerning this question. Accord-ing to [5], [7, pp. 199–209], [8, pp. 106–108], [9, pp. 65–67], we know that if

240

2000 Mathematics Subject Classification: Primary 34M10; Secondary 30D35. Keywords: Linear di¤erential equations, entire functions, finite order of growth. Received October 10, 2001; revised May 1, 2002.

(2)

A0ðzÞ; . . . ; An1ðzÞ are polynomials with A0ðzÞ 2 0, then every solution f of (1.1)

is an entire function with finite rational order. In the study of the di¤erential equation

f00þ AðzÞ f0þ BðzÞ f ¼ 0; ð1:2Þ

where AðzÞ and BðzÞ 2 0 are entire functions, Gundersen proved the following result:

Theorem 1.1 ([3, p. 418]). Let AðzÞ and BðzÞ 2 0 be entire functions, and let a, b, y1 and y2 be real numbers with a > 0, b > 0 and y1<y2. If

jBðzÞj b expfð1 þ oð1ÞÞajzjbg ð1:3Þ

and

jAðzÞj a expfoð1Þjzjbg ð1:4Þ

as z! y with y1aarg z a y2, then every solution f 2 0 of (1.2) has infinite

order.

Remark. Theorem 1.1 was recently extented for an n-th order linear dif-ferential equation (see [1]).

In the same paper, Gundersen also proved the following:

Theorem 1.2 ([3, p. 417]). Let AðzÞ and BðzÞ be entire functions such that either (i) rðAÞ < rðBÞ or (ii) A is a polynomial and B is transcendental. Then every solution f 2 0 of (1.2) has infinite order.

2. Statement and proof of results

In this paper we prove the following results:

Theorem 2.1. Suppose that there exist a positive number m, and a sequence of points ðzjÞj A N with limj!þyzj¼ y, and two real numbers a, b ð0 a b < aÞ

such that jA0ðzjÞj b eajzjj m ð2:1Þ and jAkðzjÞj a ebjzjj m ðk ¼ 1; . . . ; n  1Þ; ð2:2Þ

as j! þy. Then every solution f 2 0 of (1.1) has infinite order. From Theorem 2.1, we deduce the following two results:

(3)

Corollary 2.2. Suppose that

maxfrðAkÞ : k ¼ 1; . . . ; n  1g < rðA0Þ:

ð2:3Þ

Then every solution f 2 0 of (1.1) has infinite order.

Corollary 2.3. Suppose that A1ðzÞ; . . . ; An1ðzÞ are polynomials and A0ðzÞ is transcendental. Then every solution f 2 0 of (1.1) has infinite order.

Corollary 2.2 and Corollary 2.3 were proved by Z.-x. Chen and S.-a. Gao in [2]. In this paper, we give another proof.

In the proof of Theorem 2.1, we need the following lemma:

Lemma 2.4 ([4, p. 89]). Let w be a transcendental entire function of finite order r. Let G¼ fðk1; j1Þ; ðk2; j2Þ; . . . ; ðkm; jmÞg denote a finite set of distinct pairs

of integers satisfying ki> jib0 for i¼ 1; . . . ; m, and let e > 0 be a given constant.

Then there exists a set E H½0; 2pÞ with linear measure zero such that, if c0 A ½0; 2pÞ  E, then there is a constant R0¼ R0ðc0Þ > 1 such that for all z satisfying

arg z¼ c0 with jzj b R0 and for all ðk; jÞ A G, the following estimate hold:

wðkÞðzÞ wð jÞðzÞ         a jzjðkjÞðr1þeÞ:

Proof of Theorem 2.1. Suppose that f 2 0 is a solution of (1.1) with rð f Þ < þy. We can write (1.1) as

1 A0ðzÞ fðnÞ f þ Xn1 k¼1 AkðzÞ A0ðzÞ fðkÞ f ¼ 1: ð2:4Þ

Then by Lemma 2.4, there exists a set E H½0; 2pÞ with linear measure zero such that, if c0A½0; 2pÞ  E, then there is a constant R0¼ R0ðc0Þ > 1 such that for all zj satisfying arg zj¼ c0with jzjj b R0 and for all k¼ 1; 2; . . . ; n, we have

fðkÞðzjÞ fðzjÞ         a jzjjkc ðk ¼ 1; . . . ; n; c¼ r  1 þ eÞ: ð2:5Þ

Then by (2.1), (2.2) and (2.5), we obtain that AkðzjÞ A0ðzjÞ         fðkÞðz jÞ fðzjÞ         a 1 eðabÞjzjjmjzjj kc ðk ¼ 1; . . . ; n  1; c¼ r  1 þ eÞ: ð2:6Þ Since lim j!þy 1 eðabÞjzjjmjzjj kc¼ 0 ðk ¼ 1; . . . ; n  1; c ¼ r  1 þ eÞ; we see lim j!þy AkðzjÞ A0ðzjÞ         fðkÞðz jÞ fðzjÞ         ¼ 0 ðk ¼ 1; . . . ; n  1Þ:

(4)

We have also from (2.1) and (2.5) that 1 A0ðzjÞ         f ðnÞðz jÞ fðzjÞ         aeajz1jjmjzjj nc ðc ¼ r  1 þ eÞ; ð2:7Þ which implies lim j!þy 1 A0ðzjÞ         f ðnÞðz jÞ fðzjÞ         ¼ 0: ð2:8Þ

Letting j! þy in the relation 1 A0ðzjÞ fðnÞðzjÞ fðzjÞ þX n1 k¼1 AkðzjÞ A0ðzjÞ fðkÞðzjÞ fðzjÞ ¼ 1;

we get a contradiction. Thus every solution f 2 0 of (1.1) has infinite order. Next, we give two examples that illustrates Theorem 2.1.

Example 1. Consider the di¤erential equation f00 f0 e2zf ¼ 0: ð2:9Þ

In this equation, for z¼ zj¼ j ! y, we have

jA0ðzjÞj ¼ je2zjj ¼ e2jb e2jzjj;

jA1ðzjÞj ¼ 1 a e0:jzjj:

It is easy to see that the conditions (2.1) and (2.2) in Theorem 2.1 are sat-isfied. The two linearly independent functions f1ðzÞ ¼ ee

z

and f2ðzÞ ¼ ee

z

are solutions of (2.9) with rð f1Þ ¼ rð f2Þ ¼ þy.

Example 2. Consider the di¤erential equation

f000 ð3 þ 6ezÞ f00þ ð2 þ 6ezþ 11e2zÞ f0 6e3zf ¼ 0:

ð2:10Þ

In this equation, for z¼ zj¼ ð1 þ iÞ j ! y, we have

jA0ðzjÞj ¼ j6e3zjj ¼ 6e3j> e3j¼ e3ð ffiffi 2 p =2Þjzjj; jA1ðzjÞj ¼ j2 þ 6ezjþ 11e2zjj a 19e2j< eð5=2Þj¼ e5ð ffiffi 2 p =4Þjzjj and jA2ðzjÞj ¼ jð3 þ 6ezjÞj a 9ej< eð5=2Þj¼ e5ð ffiffi 2 p =4Þjzjj:

Hence the conditions (2.1) and (2.2) of Theorem 2.1 are verified. The three linearly independent functions f1ðzÞ ¼ ee

z , f2ðzÞ ¼ e2e z and f3ðzÞ ¼ e3e z are solutions of (2.10) with rð f1Þ ¼ rð f2Þ ¼ rð f3Þ ¼ þy.

(5)

Example 3. Consider the di¤erential equation

fðnÞþ Pn1ðezÞ fðn1Þþ    þ P1ðezÞ f0þ beazf ¼ 0;

ð2:11Þ

where a A R with a > 0, b A C?, and P1; . . . ; Pn1 are polynomials such that

max1akan1degðPkÞ < a. It follows from Theorem 2.1 that every solution f 2 0

of (2.11) has infinite order.

Proof of Corollary 2.2. Let max1akanfrðAkÞg ¼ b < rðA0Þ ¼ a. Then for

a given e, 0 < e <ða  bÞ=2, we have jAkðzÞj < ejzj bþe ðk ¼ 1; . . . ; n  1Þ ð2:12Þ and jA0ðzÞj > ejzj ae ð2:13Þ

for su‰ciently large jzj. Then by (2.13), there exists a number a > 1 such that jA0ðzÞj > eajzj

bþe

ð2:14Þ

for su‰ciently large jzj. By making use of (2.12), (2.14) and Theorem 2.1, we get our result.

Proof of Corollary 2.3. As in the proof of Corollary 2.2, we obtain immediately Corollary 2.3.

Acknowledgement. The authors would like to thank the referee for his/her helpful remarks and suggestions.

References

[ 1 ] B. Belai¨di and S. Hamouda, Orders of solutions of an n-th order linear di¤erential equation with entire coe‰cients, Electron. J. Di¤erential Equations, 2001 (2001), No. 61, 5 pp. [ 2 ] Z.-x. Chen and S.-a. Gao, The complex oscillation theory of certain non-homogeneous linear

di¤erential equations with transcendental entire coe‰cients, J. Math. Anal. Appl., 179 (1993), 403–416.

[ 3 ] G. G. Gundersen, Finite order solutions of second order linear di¤erential equations, Trans. Amer. Math. Soc., 305 (1988), 415–429.

[ 4 ] G. G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2), 37 (1988), 88–104.

[ 5 ] G. G. Gundersen, E. M. Steinbart and S. Wang, The possible orders of solutions of linear di¤erential equations with polynomial coe‰cients, Trans. Amer. Math. Soc., 350 (1998), 1225–1247.

[ 6 ] W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.

[ 7 ] G. Jank und L. Volkmann, Einfu¨hrung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Di¤erentialgleichungen, UTB fu¨r Wissenschaft: Grosse Reihe, Birkha¨user Verlag, Basel, 1985.

(6)

[ 8 ] G. Valiron, Lectures on the General Theory of Integral Functions, translated by E. F. Collingwood, Chelsea Publishing, New York, 1949.

[ 9 ] H. Wittich, Neuere Untersuchungen u¨ber eindeutige analytische Funktionen, Zweite, korri-gierte Auflage, Ergebnisse der Mathematik und ihrer Grenzgebiete 8, Springer-Verlag, Berlin, 1968. Department of Mathematics University of Mostaganem B. P 227 Mostaganem-Algeria e-mail: belaidi.benharrat@caramail.com belaidi@univ-mosta.dz Department of Mathematics University of Mostaganem B. P 227 Mostaganem-Algeria e-mail: Hamouda.saada@caramail.com

Références

Documents relatifs

Still, it is an active research area, ranging from the foundations (e.g., the formal semantics of textual mod- elling languages) to novel applications (e.g., applying textual

Given that profitability is only dependent on the gap between leader and follower, no innovation will be undertaken by the leader i.e. Now, using the fact that each firm chooses its

l’attachement, on peut renvoyer à la production notable en géographie et en psychologie sociale sur ces thèmes, comme dans les travaux de F.. 5 Afin d’étudier les mécanismes et

6 في ةفينح بيأ ماملإا يرضن ناك ،اهيضاقو ةفوكلا تيفم ،ماملإا ةملاعلا ،يراصنلأا ،ىليل بيأ نب نحمرلا دبع نب دممح وه ،ءلابنلا ملاعأ يرس ،بيهذلا نيدلا سشم(.هقف 2 /

Psychological illness, such as depression or schizophrenia, is often associated with incorrect beliefs and may not be associated with other diseases such as high blood pressure

The mitochondrial protein import machinery is complex because a heterogeneous set of proteins needs to be correctly targeted to several different compartments within the

Closer observations of F-actin dynamics within droplets showed network remodeling with both filament nucleation at the vicinity of the boundary and filament transport directed

The results of this chapter indicate that coordinated economies, characterized by skilled production, a stronger manufacturing sector, widespread primary education, lower levels