• Aucun résultat trouvé

Adsorption of polymers onto iron oxides: Equilibrium isotherms

N/A
N/A
Protected

Academic year: 2021

Partager "Adsorption of polymers onto iron oxides: Equilibrium isotherms"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: hal-03252456

https://hal.archives-ouvertes.fr/hal-03252456

Submitted on 8 Jun 2021

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives| 4.0 International

License

isotherms

C.H. Veloso, L.O. Filippov, I.V. Filippova, S. Ouvrard, A.C. Araujo

To cite this version:

C.H. Veloso, L.O. Filippov, I.V. Filippova, S. Ouvrard, A.C. Araujo. Adsorption of polymers onto

iron oxides: Equilibrium isotherms. Journal of Materials Research and Technology, Elsevier, 2020, 9

(1), pp.779-788. �10.1016/j.jmrt.2019.11.018�. �hal-03252456�

(2)

j materres technol.2020;9(1):779–788

w w w . j m r t . c o m . b r

Availableonlineatwww.sciencedirect.com

Original

Article

Adsorption

of

polymers

onto

iron

oxides:

Equilibrium

isotherms

C.H.

Veloso

a,b,∗

,

L.O.

Filippov

a,∗

,

I.V.

Filippova

a

,

S.

Ouvrard

c

,

A.C.

Araujo

b

aUniversitédeLorraine,CNRS,GeoRessouces,F-54000,Nancy,France

bArcelorMittalGlobalResearchandDevelopment,VoieRomaine,BP3032057283Maizières-lès-Metz,France cUniversitédeLorraine,CNRS,LSE,F-54000,Nancy,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received28June2019 Accepted10November2019 Availableonline12December2019

Keywords: Hematite Magnetite Depressant Adsorption Isotherm

a

b

s

t

r

a

c

t

Theinteractionsofpolymers(cornstarch,dextrinfrommaizestarch,humicacidsodium saltandsodiumcarboxymethylcellulose)withironoxides(hematiteandmagnetite)have beeninvestigatedbymeasuringadsorptionisothermsandbyelectrophoresis.Accordingto theelectrophoresismeasurementsatpH7bothironoxidespresentnegativesurfacecharge andpositiveatpH5.TheequilibriumadsorptionisothermswerethendeterminedatpH7 foralltheadsorbatesexceptforhumicacidwhichwasstudiedatpH5,duetoitsanionic characteristics.TheequilibriumdataofbothironoxideswerestudiedusingFreundlichand LangmuirmodelsanditwasfoundtobestfittotheFreundlichone.ThevaluesforFreundlich constantsindicatethatthemechanismthatcontributesmosttotheadsorptionprocessin all experimentswasthehydrogenbonding.However,thecoexistenceofmorethanone adsorptionmechanismiswhatbestexplainstheprocessitself,inadditiontoexplaining thedifferencesfoundamongsttheoriesovertheyears.

©2019TheAuthors.PublishedbyElsevierB.V.Thisisanopenaccessarticleunderthe CCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1.

Introduction

Innature,ironoccursboundtomorethe1200different min-eralsbutonlyfromveryfewitcanbeeconomicallyextracted. Amongalltheseminerals,hematite(␣-Fe2O3)andmagnetite

(Fe3O4)arethemainironoxidesfoundinironoresfromwhich

metallicironcanbeeconomicallyextracted.Priortothe pro-ductionofmetalliciron,separationprocesses arerequired. Theseprocessesalwaysexploresomeintrinsicpropertiesof themineralstogenerateacontrastbetweenthemandhave

Correspondingauthors.

E-mails:carlos.veloso@arcelormittal.com(C.Veloso),lev.filippov@univ-lorraine.fr(L.Filippov).

adifferentiatingability:shape,specificgravity,magnetic sus-ceptibilityandsurfacereactivity.

Amongthe techniquescurrentlyappliedtoprocessiron ores, magnetic separation is the most used one [1], how-ever facedtothe challenges thatthe mineralindustry has beenexperiencingwiththeemergenceofrawmaterials con-taininglessmineralsofinterestandexhibitinglesscontrast between them, this technique hasoften proved inefficient and/orinsufficient.Theexplorationoflow-gradeironoresis veryoftenassociatedwithmorecomplexmineralogical com-position [2], requiringfiner grinding toachieve the desired

https://doi.org/10.1016/j.jmrt.2019.11.018

2238-7854/©2019 The Authors. Publishedby Elsevier B.V. This isan open access articleunder the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

(3)

Nomenclature

Ci initialconcentationofsolution(mgL-1)

Ce concentration atadsorption equilibrium (mg L-1)

KF Freundlich constant related to adsorption

capacity(mg1-1/nL1/ng-1)

KL Langmuirconstant(Lmg-1)

n Freundlich isotherm constant related to adsorptionintensity

qe equilibrium adsorptioncapacityofadsorbent (mgm-2)

qec equilibriumcapacityobtainedfrommodel(mg

m-2)

qee equilibrium capacity obtained from experi-ment(mgm-2)

qm monolayer adsorption capacity of adsorbent

(mgm-2)

r2 coefficientofdetermination

R dimensionlessseparationfactor 2 chi-squareerrorfunction

WL wavelenght

mineralliberation.Flotationprocesswhichinvolvestheuseof thephysical-chemistrypropertiesofthemineralstoseparate them,appearsinthiscaseasasolutiontoproducehighgrade concentrates,beingabletobeappliedtoveryfineparticlesand complexessilicatesganguesystems[3,4].Itsfirstindustrial applicationdebutedin1954[5]andsincethenalotofresearch hasbeenconductedinflotationofironores[1,2,4,6–19].The surfacechemistryofironoxideshasbeeninvestigatedover theyearsaimingtofindsolutionsmostlyforenvironmental issuesrelatedtothepresenceofthesechemicalspecies.The abilityofironoxidestoadsorbmetalions[20–22],inorganic anions[20]and organiccompounds[23–25]were theobject ofseveralstudiestohaveabetterunderstandingofthe sur-faceandthecollectoranddepressantadsorptionbehaviour ofthese minerals. However,an in-depth study ofhow the maindepressantsusedinthisprocessadsorbontheminerals surfacehasneverbeenconductedinasystemicway.Several studiespresentedtheadsorptionofnaturalpolysaccharides (dextrin,starch)onmineralsurfacesthroughchemical inter-actionswithsuperficialmetalhydroxides.KhoslaandBisiyaw havesuggestedastarchadsorptionmechanismoncalciteand hematitesurfacesaschemicalcomplexformations[26].This facthasbeensupportedbystudiesofstarch adsorptionon the hematite and Filippov et al. studies on the Fe-bearing amphiboles[27].Eventhechemicalinteractionwasproposed asthemainmechanismofpolysaccharideadsorptionon min-eralsurfacesthetotallydifferentmechanismswereobserved bydifferentresearchersforthesamemineral-polysaccharide system.However,fortheflotationsystemitiscrucialto under-standhowtheadsorptionofeachreagenttakesplaceonthe mineralssurfacesandwhatistheadsorptioncapacityofeach onetohavemoreinformationabouttherateofovercoatingof themineralsandwhichadsorptionprocessesareinvolved.

The aims of this study were to determine extents of adsorptionofpolymersontoironoxides, andtoinvestigate

Table1–Chemicalanalysesofpuremineralsamples.

Sample Elementalanalyses(%ofoxides)

FeO Fe2O3 SiO2 Al2O3 CaO MgO TiO2

Hematite 0.43 98.20 0.28 0.10 0.12 0.08 0.01

Magnetite 29.90 68.91 0.44 0.45 0.02 0.04 0.08

Table2–SpecificsurfaceareaofpuremineralsbyBET method.

Mineral BETsurfacearea(m2g-1)

Hematite 0.9±0.2

Magnetite 1.4±0.2

the mechanismsinvolvedineach process.The

experimen-taldataweretreatedandmodelledaccordingtoadsorption

theories. Despite the Langmuiradsorption isotherms have

beenoriginallydevelopedtodescribegas-solid-phase

adsorp-tion, it havebeen widely usedfor other phasesystems as

well[25,28–35].Thistheoryreferstoahomogeneous adsorp-tion and the empiricalmodel assumesthat theadsorption occursonlyinamonolayerhavingnointeractionsbetweenthe adsorbed molecules.Freundlich adsorptionisotherms were alsoinvestigatedtocomparewiththatLangmuiradsorption isotherms.Freundlichmodeldoesnotlimittheadsorptionto theformationofmonolayeranditiswidelyusedtodescribe heterogeneoussurfaces,asexpectedforthecaseofadsorption ofpolymersonironoxides.

2.

Materials

and

methods

2.1. Materials

2.1.1. Ironoxides

Hematite(␣-Fe2O3)andmagnetite(Fe3O4)samplesare from

Brazilandpresentahighdegreeofpurity.Theywereprepared inthesamewayasthesilicatesamplesdescribedby[1],being the fractionbelow38␮musedfortheadsorptiontestsand thefractionbelow5␮mfortheelectrophoreticmeasurements. TheidentitiesoftheironoxideswereconfirmedbyXRF(X-ray fluorescence)(Table1)andbyXRD(X-raydiffraction)analyses (Fig.1).

ThechemicalanalysesshowthatFeOandFe2O3valuesare

very closetothe theoretical valuesforhematite and mag-netite,indicatinganexcellentlevelofpurityofthesamples used.TheXRDdiffractograms(Fig.1)showonlythe charac-teristicpeaksofthemagnetiteandhematite,supportingthe resultsoftheXRFanalysis.

2.1.2. Reagents

The reagents –corn starch (C6H10O5)n, dextrinfrom maize

starch(C6H10O5)n,humicacidsodiumsalt(C9H8Na2O4)n and

sodium carboxymethyl cellulose (CMC) (C8H16NaO8)n, used

during the adsorption tests were purchased from Sigma Aldrich, Table 2 presents the average molecular weight informedbythesupplier.

(4)

j mater res technol.2020;9(1):779–788

781

Fig.1–X-raydiffractionspectrumofhematite(a)andmagnetite(b).

Polymer Averagemolecularweight Cornstarch 500,000

Dextrinfrommaizestarch 20,000 Humicacidsodiumsalt 500,000 Sodiumcarboxymethylcellulose 700,000

Cornstarchpreparationwascarriedout withits gelatin-isationbyadding NaOHata 5:1ratio anddeionised water whileaqueoussolutionsofallotherreagentswereprepared withdeionisedwater.Astocksolutionat1000mgL-1ofeach

depressantwasprepareddaily,to avoiddegradationofthe compoundsasdiscussedbyBalajeeandIwasaki[9]. Analyt-icalgradeHClandNaOHwereusedaspHmodifiersforthe adsorptiontests.

2.2. Specificsurfaceareameasurements

Thespecificsurfacearea(areaperunitmassorvolume)of themineralswasdeterminedbyamulti-pointBET method withN2adsorption,usingBelsorpmini-IIequipmentfromBel

JapanInc.Thismethodconsistsofmodellingtheportionof

theisothermthatcorrespondstotheendoftheadsorptionof thefirstlayerofthegas.Finally,thesurfaceareaisdetermined usingt-plotmethodbyconsideringthevolumeofN2adsorbed

forthetotalcoatingofthesolid.TheresultsfortheBETsurface areaofeachmineralarepresentedinTable2.

2.3. Electrophoreticmobilitymeasurements

Measurements were performed with a Zetaphoremetre IV, modelZ3000apparatus.Anelectricfieldof80±1Vcm-1was

employedduringthezetapotentialdeterminations.Theywere carriedoutinanindifferentelectrolytesolution(KCl)of con-centration10-2MatpHfrom2to12.Thepuremineralpowder

ofsizefractionbelow5␮mwasaddedtodeionisedwaterto prepareadilutesuspensionusedforthemeasurements.The suspensionwas thenpassedthroughanultrasonicbathto bewell disaggregated and thenkeptconstantly under stir-ring. The pH value was adjusted through the addition of analyticalgradeHClorKOHsolutions.ForeachpHvaluethe electrophoretic mobility was determined from atleast 100 particlesandtheZetaPotentialwascalculatedbythe Smolu-chowskiequation.Theexperimentswererepeatedtwice,and

(5)

theresultswereaveraged.Thestandarddeviationwas calcu-latedusingtheaverageofallvalues.

2.4. Adsorptionstudies

The adsorption determination was made by a TOC (Total Organic Carbon) analysis using a Shimadzu analyser TOC-VCSHand itsvalueisthedifferencebetweentheTC (Total Carbon)andIC(InorganicCarbon).Forthetests,1gofeach mineralwasplacedina100mLvolumeflaskwithtotal depres-santsconcentrationsrangingfrom25to300mgL-1.After1h

of conditioning on a digital horizontal shaker at23±2◦C, thesolid-liquidseparationwasperformedinacentrifugeat 10,000Gandtheliquidphasewasthenpassedthroughthe TOC analyser.The quantity of reagent adsorbed was then determinedfromthe differencebetweentheinitial(Ci)and

residual (Ce)concentrations. All theadsorption testswere

madeinduplicateandthestandarddeviationpresentedwere calculated from the average value of adsorption quantity results.

2.5. Theory

2.5.1. Adsorptionisothermsmodels

Twowell-known adsorptionisothermsmodels, namely Fre-undlich [36] and Langmuir [37], were used to explain the adsorptionofthereagentsontothesurfaceoftheironoxides.

2.5.2. Freundlichisotherm

qe=KFC1/ne (1)

Eq.1canberearrangedintolinearformas:

logqe=logKF+1nlogCe (2)

whereqeistheamountofreagent(mg)adsorbedperunitarea ofironoxide(m2)atequilibrium;C

e istheequilibrium con-centration(mgL-1)ofreagent;K

FistheFreundlichadsorption isothermconstant



mg1-1/nL1/ng-1



thatindicatesthe

adsorp-tioncapacity ofthe adsorbentandnisalsothe Freundlich adsorptionisothermconstantwhichrepresentsanindication ofthedeviationfromlinearity.AplotlogqeagainstlogCegives astraightlineofslope1/n andinterceptKFbymeansofwhich theconstantscanbedetermined.

2.5.2.1. Langmuirisotherm.

qe=1q+mKKLCe

LCe (3)

Eq.3canalsobelinearizedinto: 1 qe = 1 qm+ 1 KLqm 1 Ce (4)

whereqmisthevalueofqeatsaturationand,KLisLangmuir’s adsorptionisothermconstant



Lmg-1



,whichisrelatedtothe

energyofadsorption.Byplotting1/qe against1/Ce,the

con-stantsqmandKLcanbedeterminedfrominterceptandslope

ofthestraightline,respectively.

Fig.2–ZetaPotentialofironoxidesasfunctionofpH.

Table3–IEPsreportedbyotherauthors.

Mineral pHIEP Hematite 5.4a;5.7a;6.0b;6.6a;6.2-6.5e;4.8g Magnetite 4.8c;5.0d;6.5a;4.4f a [39]. b [40]. c [41]. d [42]. e [43]. f [44]. g [45]. 2.5.3. Erroranalysis

Thebest-fittingisotherm,whenlinearizationisused,hasbeen veryoftendeterminedwiththeuseofthecoefficientof deter-mination(r2).Hoprovedthatthiscoefficientisnotappropriate

forcomparingwhichmodelfitsbestthe experimentaldata andsuggestedtheChi-squaretest(2)asamethodthatdoes

notpresentsignificantlyimpactwiththedifferentequations’ forms[38]. Chi-squaretest considersthe experimentaland modelcalculateddataandcanbedeterminedby:

2=

 

(qee−qec)2

qec



(5)

whereqeeisthesamevalueofqecomingfromtheexperiments andqecisthesameequilibriumcapacityoftheadsorbent

cal-culated accordingtothemodel. Thelowestthe valueof2

-test,thebest,provingthatexperimentaldatafitwellintothe model.

3.

Results

and

discussion

3.1. Electrophoreticmobilitymeasurements

Fig.2showsthezetapotentialoftheironoxidesasafunction ofpH.Fromthesamefigureonecanseethattheisoelectric points(IEPs)ofhematiteandmagnetitewereachievedatpH valuesof6.2and5.4,respectively.Table3showsreported val-uesobtainedbyotherresearchersforthoseminerals.

(6)

j mater res technol.2020;9(1):779–788

783

Fig.3–AmountadsorbedasfunctionofpHforeachdepressantstudied.

TheIEPofbothhematiteandmagnetitesamplesarequite well aligned with the reported values published by other authorsasshowninTable3.Thevaluesvariationismostofthe timerelatedtothenaturalvariationinthecrystalstructureor evenwiththemethodsofsamplepreparationand measure-ments,aswellasdifferencesinsupportingelectrolytes.Also, theuseofnaturalandsyntheticmineralshasbeenreportedas animportantfactorthatjustifiesthedifferentvaluesachieved. Thezetapotentialvaluesobtainedareintotalagreement with the theory ofpH dependence, since Fig. 2 shows an importantvariationofthesevalueswiththepH.Inaqueous medium,iron oxides are hydroxylated and the addition of acids(H+)willleadtoapositivevalueofZetaPotentialwhile

theadditionofbases(OH-)willleadtoanegativevalueofZeta Potential.

3.2. EffectofpHonadsorption

TheeffectofpHintherange5–11ontheadsorptionofthe reagentsontheironoxidessurfaceswasinvestigated(Fig.3). AlmostnoadsorptionwasobservedforCMCintohematite andmagnetitesurfaces.Humicacidanddextrinshowed bet-teraffinityfortheseminerals,butcornstarchisbyfarthebest performer. According to the electrophoreticmeasurements (Fig.2)atpH7bothironoxidespresentnegativesurfacecharge andpositiveatpH5.SincehumicacidandCMCareanionic polymersandatlowerpHvalues,thecarboxylicacidicgroups becomeprotonatedandlessnegativelycharged[46],ahigher adsorptionwasexpectedatapHvaluebelowtheirIEP.This behaviourwasslightlyobservedforhumicacid,howeverCMC showedalmostnoadsorptionwiththeinitialconcentration usedforthepHtests.BasedonthepHvaluethatshowedthe highestadsorptionforeachpolymer,theequilibrium adsorp-tionisothermspresentedlaterweredeterminedatpH7forall theadsorbatesexceptforhumicacidwhichwasobtainedat pH5,thisisexactlythesamebehaviourobservedinaprevious studyusingthesamepolymersontosilicatesminerals[1].

3.3. Adsorptionisotherms

Adsorptionisothermsareapowerfultooltodeterminehow adsorbatesmoleculesinteractwithadsorbentssurfaces.The understandingoftherelationshipbetweenexperimentaldata

Fig.4–FreundlichmodellinearizationforCMCadsorption onhematiteandmagnetite.

andproposedmodelscanbeextremelyusefulforthese inter-pretations.

Theexperimentaldatawerefittedintwodifferentmodels: theFreundlichoneusedtodescribeheterogeneoussystems, assumingthatsitesofadsorptionwithdifferentadsorption freeenergyoccurinparallel,notrestrictingtheformationof multiplelayers[36]and the Langmuirone,whichare used tohomogeneoussystemsinwhichconstantadsorptionfree energiesareobserved[37].Fromthelinearizationofthe exper-imental data it is possible to determine all the constants foreachmodelandevaluatethefittingqualityofeachone (Figs.4–11).

Freundlichconstant KF hasalinearcorrelation withthe adsorptioncapacityoftheadsorbent,whichmeansthatthe greater this constant, the greater adsorption capacity. Fre-undlichconstantncanalsoindicatesthetypeofadsorption thattakesplace.Whenn=1,theisothermislinear,andthe adsorption sites are homogenous (as in Langmuir model); whenn<1,thepresenceofmoreadsorbateintheabsorbent enhancesthefreeenergiesoffurtheradsorption;finally,when n>1,theaddedadsorbatesareboundwithweakfree ener-gies.

(7)

Table4–R-valuesisothermclassification. Rvalue Isotherm R=0 Irreversible 0<R<1 Favourable R=1 Linear R>1 Unfavourable

Fig.5–Freundlichmodellinearizationforcornstarch adsorptiononhematiteandmagnetite.

TheLangmuirmodelinotherhandisusedmostofthetime

topredictifanadsorptionsystemisfavourableornotunder

specificexperimentalconditions.Tryingtoclassifytheshape

oftheisotherms bygroups,Langmuir,1918,introducedthe

conceptofadimensionlessequilibriumparameter (R):

R=1+1K

LCi (6)

FromthevaluesobtainedbytheEq.6,theclassificationcan

bedoneaspresentedinTable4

AlltheobtainedvaluesofFreundlichandLangmuirmodel’s parametersaredepictedinTable5forbothminerals investi-gated.

Bothn andR valuesindicate that theadsorptionofthe reagentsonthesurfaceofthesetwomineralsisfavourable. Consideringonlythevaluesofr2,therewouldbe

experimen-taldatathatwouldfitbetterintotheFreundlichmodeland othersthatwouldfitbetterintotheLangmuirone.However, asstatedinsection2.5.2,2-testisabettermethodoferror

thanr2analysisandfromthevaluesshownonTable5,itis

clearthatFreundlichmodelfitsbestinalltheexperimental data.

The experimental equilibrium adsorption isotherms of CMC,corn starch,dextrinandhumicacidonhematiteand magnetitearepresentedinFigs.12–15.Thecirclesandsquares representtheexperimentaldataandthelinesthemodelthat bestfitthisdata–Freundlichmodel.

ThevaluesoftheFreundlichconstantKFarehigherforcorn

starch,showingthatthispolymerhasmoreadsorption capac-itythan theothers.Corn starchhashigh affinitywithiron oxides,throughinitialhydrogenbonds[47]leadingtothe

for-Fig.6–Freundlichmodellinearizationfordextrin adsorptiononhematiteandmagnetite.

Fig.7–Freundlichmodellinearizationforhumicacid adsorptiononhematiteandmagnetite.

Fig.8–LangmuirmodellinearizationforCMCadsorption onhematiteandmagnetite.

(8)

j mater res technol.2020;9(1):779–788

785

Table5–AdsorptionparametersofFreundlichandLangmuirisothermsmodels.

Material Adsorbate Freundlich Langmuir

KF n r2 2 KL R qm r2 2

Hematite Cornstarch 0.38 1.44 0.9372 0.7872 0.006 0.86 28.08 0.938 1.975

CMC 0.01 1.39 0.8478 0.2695 0.001 0.96 4.12 0.962 0.379

Dextrin 0.03 1.28 0.9252 0.1987 0.006 0.98 23.14 0.922 0.622

Humicacid 0.07 1.51 0.9284 0.2239 0.005 0.88 5.30 0.944 0.267

Magnetite Cornstarch 0.10 1.27 0.9372 0.6575 0.001 0.95 26.88 0.985 1.149

CMC 0.006 1.02 0.9961 0.0149 0.0005 0.98 11.31 0.999 0.019

Dextrin 0.08 2.21 0.9069 0.1005 0.019 0.67 1.17 0.949 0.154

Humicacid 0.09 1.71 0.9505 0.1609 0.013 0.74 2.56 0.976 0.183

mationofchemicalcomplexes[6,27].Thishigh affinitydue

totheformationofcomplexeswasnotobservedinthisstudy fortheother polymers.Humicacid adsorptionisrelatedto anionicinteractionbetweenmineralsandreagentsrendering theadsorptionquitestable.Dextrinresultswereunexpected sincethispolymershouldhavethesametrendofcornstarch, thisshowsthatchainlengthplaysanimportantroleinthe adsorptionmechanismsofpolymers.CMCadsorptionwaslow onbothironoxidessurfacesmainlyduetotheinfluenceof thesubstitutiondegreethatwaslowwhichleadstoalow sol-ubilityofthispolymer.Thedifferenceinmagnitudebetween theadsorptionofcornstarch ontohematiteand magnetite seemstoberelatedtothedifferencesbetweentheircrystalline structures.Whileinhematitetheoxygensionsarearranged inahexagonalwithFe3+ ionsoccupyingoctahedralsites,in

magnetitetheoxygenionsarearrangedinacubicwithFe3+

ionsdistributedbetweenoctahedralandtetrahedralsitesand Fe2+ionsinoctahedralsites.Weissenbornetal.[27]

demon-stratedthattheamylopectinhasastrongcomplexingability forFe3+inthesolutionforamolarratioof5.6:1and100:1and

suggestedtotranslatethe complexationofiron(III)in solu-tiontothecomplexationofiron(III)atomsonthesurfaceof hematite.Thus, the presenceofiron(II) inoctahedral posi-tioninthe magnetitestructuremayimpactthe adsorption behaviourofthestarchonthemagnetitesurface.The con-formationaleffectsbetweenthehydroxylgroupsofpolymers andtheinteratomicdistanceonthemagnetiteneedtobe con-sideredandmayrestrictalsocomplexationonthemagnetite surface.

Themechanism ofpolysaccharidesadsorptionhasbeen the object of study of several researchers over the years. Hydrogenbondingstandsoutbetweentheothers forbeing reportedbyseveralresearchers[9,48,49].Hydrophobic interac-tions[32,50,51]andchemicalcomplexation[6,26,27,52]were also proposed. Nakatani [53] found that glucose adsorbed muchmorestronglyonabasicaluminasurfacethanonan acid one, this fact associated with other researchers find-ings [54], made possible the proposition of an acid-base interaction between polysaccharides and minerals, mean-ing thatthese interactions are responsible fordetermining theadsorptionmechanism ashydrogenbonding or chemi-calcomplexation,dependingonthebasicityoftheminerals surface.

Inthe present study,humic acid showed a slightly dif-ferenceinthe amountadsorbed whenpHisvariated..The samebehaviourwasreportedbyseveralstudiesleadingwith humicsubstances[24,25,33,55–57].Theincreaseordecrease

Fig.9–Langmuirmodellinearizationforcornstarch adsorptiononhematiteandmagnetite.

Fig.10–Langmuirmodellinearizationfordextrin adsorptiononhematiteandmagnetite.

in theamount adsorbed relatedtothe pH valueis consis-tentwiththepropositionofacomplexation-ligandexchange mechanism for humic substances [57] and also with the possibilityofaprotonationofsurfacehydroxylstoform com-plexes[33].Ingeneral,ananionadsorptionatoxidessurfaces involves ligandexchangewithsurfaceFe-OH+

2 andFe−OH

(9)

Fig.11–Langmuirmodellinearizationforhumicacid adsorptiononhematiteandmagnetite.

Fig.12–AdsorptionisothermforCMCadsorptionon hematiteandmagnetite(initialpH7.0±0.3).

Fig.13–Adsorptionisothermforcornstarchadsorptionon hematiteandmagnetite(initialpH7.0±0.3).

hydroxylandH2O.Analysingallpossibleexplanationsforthe

adsorptionmechanismsofhumicsubstances,whatisclear isthat different mechanisms can coexist inan adsorption process. Some authors have even quantified the contribu-tionofthosemechanisms(e.g.,vanderWaals interactions, ligandexchangeandcationbridging)forthewholeprocess

[46,58].

Fig.14–Adsorptionisothermfordextrinadsorptionon hematiteandmagnetite(initialpH7.0±0.3).

Fig.15–Adsorptionisothermforhumicacidadsorptionon hematiteandmagnetite(initialpH5.0±0.2).

It isalso worth noting that the constant n has avalue greaterthan1forallstudiedcases,indicatingthatall equilib-riumadsorptionisothermsareassociatedwithaweakbound process,eventhose thatmayhavehigher adsorption ener-gies.

Theobservedvariationsintheadsorptionmechanismsof polymersreportedbyseveralauthorsovertheyearscanbe explainedbythedifferencesintermsofheterogeneityof sam-plesandintheintrinsicvariationsoftheconditionsofeach experiment.

From this study it was possible to prove by the mod-ellingofexperimentalisothermsthatFreundlichmodelfits better the adsorption of these polymers on the surface of hematite and magnetite. Freundlich model constant n indicatesthathydrogenbondingisthemainadsorption mech-anismpresentintheseinteractions.However,aspreviously discussed, the coexistence ofadsorption mechanisms is a widely studied subject and our experimental results com-binedwiththeliteraturereviewallowsustostatethatinthe polysaccharides (corn starch,CMC and dextrin)and humic substance(humic acid)adsorptionbyironoxides(hematite and magnetite),thecoexistenceofadsorptionmechanisms is clearly what happens at different degrees and intensi-ties.

(10)

j mater res technol.2020;9(1):779–788

787

4.

Conclusions

Theequilibriumadsorptiondatawerefittedtotwoisotherm modelsandtheresultsshowedthatforallexperimentsthe Freundlichmodelfitsbettertheexperimentaldatathanthe Langmuirone.Itisprovedherethatthe2-testisabettertool

toanalysethefitofmodelswhencomparedtor2.Thevalueof

KFindicatesthatcornstarchhasahigheradsorptioncapacity

inbothironoxides,whichisexpectedgiventhewidelyuseof thispolymerinthemineralprocessingindustry.

Theadsorptionmechanismthatmostcontributestothe adsorptionprocess in all experiments waslikely hydrogen bonding,provedbythevalueoftheconstantnbeinggreater than1inallcases,indicatingthattheadsorbatesarebound withweakfreeenergies.However,thecoexistenceof adsorp-tion mechanisms is forus whatbest explainsthe process itself,inadditiontoexplainingthedifferencesfoundbetween theoriesovertheyears.

r

e

f

e

r

e

n

c

e

s

[1] VelosoCH,FilippovLO,FilippovaIV,OuvrardS,AraujoAC. Investigationoftheinteractionmechanismofdepressants inthereversecationicflotationofcomplexironores.Miner Eng2018;125:133–9,

http://dx.doi.org/10.1016/j.mineng.2018.05.031.

[2]FilippovLO,SeverovVV,FilippovaIV.Anoverviewofthe beneficiationofironoresviareversecationicflotation.IntJ MinerProcess2014;127:62–9,

http://dx.doi.org/10.1016/j.minpro.2014.01.002.

[3]CrabtreeEH,VincentJD.Historicaloutlineofmajorflotation developments.Frothflotation.50thanniversary,RockyMt. FundSer.AIME.;1962.p.51.

[4]FilippovLO,FilippovaIV,SeverovVV.Theuseofcollectors mixtureinthereversecationicflotationofmagnetiteore: theroleofFe-bearingsilicates.MinerEng2010,

http://dx.doi.org/10.1016/j.mineng.2009.10.007.

[5]FrommerDW.Ironoreflotation:practice,problems,and prospects.JAmOilChemSoc1967;44:270–4,

http://dx.doi.org/10.1007/BF02639274.

[6]FilippovLO,SeverovVV,FilippovaIV.Mechanismofstarch adsorptiononFe-Mg-Al-bearingamphiboles.IntJMiner Process2013,http://dx.doi.org/10.1016/j.minpro.2013.05.010. [7]MoreiraGF,Pec¸anhaER,MonteMBM,LealFilhoLS,StavaleF.

XPSstudyonthemechanismofstarch-hematitesurface chemicalcomplexation.MinerEng2017;110:96–103,

http://dx.doi.org/10.1016/j.mineng.2017.04.014.

[8]QuastK.Literaturereviewontheuseofnaturalproductsin theflotationofironoxideores.MinerEng2017;108:12–24,

http://dx.doi.org/10.1016/j.mineng.2017.01.008.

[9]BalajeeSR,IwasakiI.Adsorptionmechanismofstarchesin flotationandflocculationofironores.Trans.SME/AIME 1969;244:401–6.

[10]KarB,SahooH,RathSS,DasB.Investigationsondifferent starchesasdepressantsforironoreflotation.MinerEng 2013;49:1–6,http://dx.doi.org/10.1016/j.mineng.2013.05.004. [11]dosSantosID,OliveiraJF.Utilizationofhumicacidasa

depressantforhematiteinthereverseflotationofironore. MinerEng2007;20:1003–7,

http://dx.doi.org/10.1016/j.mineng.2007.03.007.

[12]HouotR.Beneficiationofironorebyflotation-Reviewof industrialandpotentialapplications.IntJMinerProcess 1983,http://dx.doi.org/10.1016/0301-7516(83)90010-8.

[13]LimaNP,PeresAEC,MarquesMLS.EffectofslimesonIron oresflotation.Int.J.Min.Eng.Miner.Process2012;1:43–6,

http://dx.doi.org/10.5923/j.mining.20120102.04. [14]PeresAEC,CorreaMI.Depressionofironoreswithcorn

starches.MinerEng1996;9:1227–34,

http://dx.doi.org/10.1016/S0892-6875(96)00118-5.

[15]AraujoAC,VianaPRMM,PeresAECC.Reagentsinironores flotation.MinerEng2005;18:219–24,

http://dx.doi.org/10.1016/j.mineng.2004.08.023.

[16]VieiraAM,PeresAEC.Theeffectofaminetype,pH,andsize rangeintheflotationofquartz.MinerEng2007,

http://dx.doi.org/10.1016/j.mineng.2007.03.013. [17]TurrerHDG,PeresAEC.Investigationonalternative

depressantsforironoreflotation.MinerEng2010;23:1066–9,

http://dx.doi.org/10.1016/j.mineng.2010.05.009. [18]FilippovLO,DuvergerA,FilippovaIV,KasainiH,ThiryJ.

SelectiveflotationofsilicatesandCa-bearingminerals:the roleofnon-ionicreagentoncationicflotation.MinerEng 2012,http://dx.doi.org/10.1016/j.mineng.2012.07.013. [19]FilippovaIV,FilippovLO,SeverovVV.Flotationofsilicates

ganguefromhematitecontainingproducts;2007.p.123–6,

http://dx.doi.org/10.1051/names2007043.

[20]BreeuwsmaA,LyklemaJ.Physicalandchemicaladsorption ofionsintheelectricaldoublelayeronhematite(␣-Fe2O3).J ColloidInterfaceSci1973;43:437–48,

http://dx.doi.org/10.1016/0021-9797(73)90389-5.

[21]KinniburghDG,SyersJK,JacksonML.Specificadsorptionof traceamountsofcalciumandstrontiumbyhydrousoxides ofIronandAluminum1.SoilSciSocAmJ1975;39:464,

http://dx.doi.org/10.2136/sssaj1975.03615995 003900030027x.

[22]ForbesEA.ThespecificadsorptionofdivalentCd,Co,Cu,Pb, ANDZn.SoilSciSocAmJ1976;27:154–66.

[23]EvansLT,RusselEW.Theadsorptionofhumicandfulvic acidsbyclays.J.SoilSci1959;10:119–32,

http://dx.doi.org/10.1111/j.1365-2389.1959.tb00672.x. [24]ParfitRL,FraserAR,FarmerVC.Adsorptiononhydrous

oxides.Iii.Fulvicacidandhumicacidongoethite,Gibbsite andimogolite.J.SoilSci1977;28:289–96,

http://dx.doi.org/10.1111/j.1365-2389.1977.tb02237.x. [25]TippingE.Theadsorptionofaquatichumicsubstancesby

ironoxides.GeochimCosmochimActa1981;45:191–9,

http://dx.doi.org/10.1016/0016-7037(81)90162-9.

[26]KhoslaNK,BisiyawAK.Mineral-collector-starchconstituent interactions.ColloidsSurf1984;9:219–35,

http://dx.doi.org/10.1016/0166-6622(84)80165-1.

[27]WeissebornPK,WarrenLJ,DunnJG.Selectiveflocculationof ultrafineironore.1.Mechanismofadsorptionofstarchonto hematite.ColloidsSurfacesAPhysicochem.Eng.Asp 1995;99:11–27,

http://dx.doi.org/10.1016/0927-7757(95)03111-P.

[28]HavelcováM,MizeraJ,S ´ykorováI,PekaˇrM.Sorptionofmetal ionsonligniteandthederivedhumicsubstances.JHazard Mater2009;161:559–64,

http://dx.doi.org/10.1016/j.jhazmat.2008.03.136.

[29]WangJ,SomasundaranP.Adsorptionandconformationof carboxymethylcelluloseatsolid-liquidinterfacesusing spectroscopic,AFMandalliedtechniques.JColloidInterface Sci2005;291:75–83,

http://dx.doi.org/10.1016/j.jcis.2005.04.095. [30]FooKY,HameedBH.Insightsintothemodelingof

adsorptionisothermsystems.ChemEngJ2010;156:2–10,

http://dx.doi.org/10.1016/j.cej.2009.09.013.

[31]YanJ,JiangT,YaoY,LuS,WangQ,WeiS.Preliminary investigationofphosphorusadsorptionontotwotypesof ironoxide-organicmattercomplexes.J.Environ.Sci.(China) 2016;42:152–62,http://dx.doi.org/10.1016/j.jes.2015.08.008. [32]WieJM,FuerstenauDW.Theeffectofdextrinonsurface

(11)

Process1974;1:17–32,

http://dx.doi.org/10.1016/0301-7516(74)90024-6.

[33]DavisJA.Adsorptionofnaturaldissolvedorganicmatterat theoxide/waterinterface.GeochimCosmochimActa 1982;46:2381–93,

http://dx.doi.org/10.1016/0016-7037(82)90209-5. [34]TippingE,HeatonMJ.Theadsorptionofaquatichumic

substancesbytwooxidesofmanganese.Geochim CosmochimActa1983;47:1393–7,

http://dx.doi.org/10.1016/0016-7037(83)90297-1.

[35]VimonsesV,LeiS,JinB,ChowCWK,SaintC.Kineticstudy andequilibriumisothermanalysisofCongoRedadsorption byclaymaterials.ChemEngJ2009;148:354–64,

http://dx.doi.org/10.1016/j.cej.2008.09.009.

[36]FreundlichH.ÜberdieadsorptioninLösungen.ZFã¼rPhys Chemie/internationalJResPhysChemChemPhys

1907;57U:385–470,http://dx.doi.org/10.1515/zpch-1907-5723. [37]LangmuirI.Theadsorptionofgasesonplanesurfacesof

glass,micaandplatinum.JAmChemSoc

1918;40(9):1361–403,http://dx.doi.org/10.1021/ja02242a004. [38]HoY-S.Selectionofoptimumsorptionisotherm.CarbonNY

2004;42:2115–6,

http://dx.doi.org/10.1016/j.carbon.2004.03.019. [39]ParksGA.Theisoelectricpointsofsolidoxides,solid

hydroxides,andaqueoushydroxocomplexsystems.Chem Rev1965;65:177–98,http://dx.doi.org/10.1021/

cr60234a002.

[40]MontesS,MontesAtenasG,ValeroE.Howfineparticleson haematitemineralultimatelydefinethemineralsurface chargeandtheoverallfloatabilitybehaviour.J.South. AfricanInst.Min.Metall2007;107:689–95.

[41]KolarikLO,DixonDR,FreemanPA,FurlongDN,HealyTW. Effectsofpretreatmentsonthesurfacecharacteristicsofa naturalmagnetite,in:finePart.Process1980:652–65,chapter 34.

[42]Erdemo ˇgluM,SarikayaM.Effectsofheavymetalsand oxalateonthezetapotentialofmagnetite.JColloidInterface Sci2006;300:795–804,

http://dx.doi.org/10.1016/j.jcis.2006.04.004.

[43]HenriquesA,PeresAEC,CorreadeAraujoA,AlmeidaTM. Caracterizac¸ãodehematitaeestudodopotencialzeta,in: XXIIIEnc.Nac.Trat.MinérioseMetal.extrativa,Gramado; 2009.p.15–22.

[44]HenriquesAB.Caracterizac¸ãoeestudodaspropriedades eletrocinéticasdosmineraisdeferro:hematita,goethitae magnetita,UniversidadeFederaldeMinasGerais,Belo Horizonte;2012.p.223(inPortuguese).

[45]RohemPec¸anhaE,daFonsecadeAlbuquerqueMD,Antoun SimãoR,deSallesLealFilhoL,deMelloMonteMB. Interactionforcesbetweencolloidalstarchandquartzand

hematiteparticlesinmineralflotation.ColloidsSurfacesA Physicochem.Eng.Asp2019;562:79–85,

http://dx.doi.org/10.1016/j.colsurfa.2018.11.026. [46]ArnasonTS,KeilRG.Mechanismsofporewaterorganic

matteradsorptiontomontmorillonite.MarChem 2000;71:309–20,

http://dx.doi.org/10.1016/S0304-4203(00)00059-1.

[47]PeresAEC,CorreaMI.Depressionofironoxideswithcorn starches.MinerEng1996;9:1227–34.

[48]SteenbergE,HarrisPJ.Adsorptionofcarboxymethylcellulose, guargum,andstarchontotalc,sulfides,oxides,and salt-typeminerals.SouthAfrJChemEng1984;37:85–90.

[49]AfenyaPM.Adsorptionofxanthateandstarchonsynthetic graphite.IntJMinerProcess1982;9:303–19,

http://dx.doi.org/10.1016/0301-7516(82)90037-0. [50]MillerJD,LaskowskiJS,ChangSS.Dextrinadsorptionby

oxidizedcoal.ColloidsSurf1983;8:137–51,

http://dx.doi.org/10.1016/0166-6622(83)80081-X.

[51]MillerJD,LinCL,ChangSS.Coadsorptionphenomenainthe separationofpyritefromcoalbyreverseflotation.IntJCoal PrepUtil1984;1:21–38,

http://dx.doi.org/10.1080/07349348408945537. [52]SomasundaranP.Adsorptionofstarchandoleateand

interactionbetweenthemoncalciteinaqueoussolutions.J ColloidInterfaceSci1969;31:557–65,

http://dx.doi.org/10.1016/0021-9797(69)90056-3. [53]NakataniJ,OzawaS,OginoY.Adsorptiveinteractionsof

glucoseandcarbondioxidewithbasicsitesoveralumina.J. Chem.Soc.FaradayTrans1990;86:1885–8,

http://dx.doi.org/10.1039/FT9908601885. [54]LiuQ,ZhangY,LaskowskiJS.Theadsorptionof

polysaccharidesontomineralsurfaces:anacid/base interaction.IntJMinerProcess2000;60:229–45,

http://dx.doi.org/10.1016/S0301-7516(00)00018-1.

[55]MurphyEM,ZacharaJM,SmithSC,PhillipsJL.Thesorption ofhumicacidstomineralsurfacesandtheirrolein contaminantbinding.SciTotalEnviron1992;117–118:413–23,

http://dx.doi.org/10.1016/0048-9697(92)90107-4.

[56]JardinePM,McCarthyJF,WeberNL.Mechanismsofdissolved organiccarbonadsorptiononsoil.SoilSciSocAmJ

2010;53:1378,

http://dx.doi.org/10.2136/sssaj1989.03615995005300050013x. [57]GuB,SchmittJ,ChenZ,LiangL,McCarthyJF.Adsorptionand

desorptionofdifferentorganicmatterfractionsoniron oxide.GeochimCosmochimActa1995;59:219–29,

http://dx.doi.org/10.1016/0016-7037(94)00282-q. [58]FengX,SimpsonAJ,SimpsonMJ.Chemicaland

mineralogicalcontrolsonhumicacidsorptiontoclay mineralsurfaces.OrgGeochem2005;36:1553–66,

Figure

Table 2 – Specific surface area of pure minerals by BET method.
Fig. 1 – X-ray diffraction spectrum of hematite (a) and magnetite (b).
Fig. 2 – Zeta Potential of iron oxides as function of pH.
Fig. 3 – Amount adsorbed as function of pH for each depressant studied.
+4

Références

Documents relatifs

Much work in organic SIMS is devoted to interpreting fingerprint spectra (low mass region, up to m/z of 200) in order to have a better understanding of

Equilibrium adsorption isotherm constants determined with the Langmuir, Freundlich, and Dubinin-Radushkevich model fits for the adsorption of Diazepam, Oxazepam, and Codeine onto

Phenolic acids interactions with clay minerals: A spotlight on the adsorption mechanisms of Gallic Acid onto montmorillonite... Phenolic acids interactions with clay minerals: a

competition between adsorption and entropic repulsion of a single self-avoiding polymer trapped in quenched media consisting of parallel, adsorbing rods distributed at

species from curve a; (b) theoretical evolution of the coverage according to the Langmuir model considering the presence of one adsorbed NH 3ads species with an heat of adsorption

Enfin, pour la partie induite de l’aimantation, il semble qu’il y ait bien six inconnues avec d’une part les trois moments dipolaires induits ou trois susceptibilités et d’autre

Dans la section II, nous proposons un descripteur de formes pour la représentation des symboles graphiques en se basant sur le contexte de forme avec une extension du

adsorption behavior of star polymers and linear chains differ in an important way The deformation of linear chains upon adsorption is due, solely to the interaction with the surface