• Aucun résultat trouvé

Dans tous les cas, le transistor bipolaire est commandé par le courant IB

N/A
N/A
Protected

Academic year: 2022

Partager "Dans tous les cas, le transistor bipolaire est commandé par le courant IB"

Copied!
6
0
0

Texte intégral

(1)

Introduction : Les modes de fonctionnement du transistor bipolaire.

Dans tous les cas, le transistor bipolaire est commandé par le courant IB.

- Le régime linéaire. Le courant collecteur est proportionnel au courant de base : IC = βIB .

Ce mode de fonctionnement est utilisé pour réaliser des sources de tension ou de courant, ainsi que des étages amplificateurs divers.

- Le régime de commutation. Le transistor se trouve dans l’état bloqué (jonctions BE et BC bloquées, c’est à dire IB = 0) ou dans l’état saturé (jonctions BE et BC passantes, soit IB > IBMINI).

Ce mode de fonctionnement permet de réaliser un interrupteur à courant unidirectionnel à l’aide d’un transistor.

Ce chapitre ne concerne que le fonctionnement du transistor bipolaire en régime linéaire et avec des courants continus : Nous analysons ici quelques exemples de réalisation de sources de tension et de courant ; nous continuons par l’analyse de la polarisation du transistor dans les étages amplificateurs les plus courants.

1 . Réalisation de sources de tension constante.

1.1 Rappel : Régulation par diode Zéner.

Une diode zéner peut conduire en direct, ou en inverse (mode « zéner »)

On exploite la conduction en inverse pour laquelle la tension aux bornes de la diode dépend assez peu de l’intensité du courant qui la traverse.

Dans l’étage de la figure de droite, la diode zéner conduit en inverse :

- Si la tension d’entrée Ue est supérieure à UZ

- Si la valeur de la charge RU est suffisamment grande

Tant que ces 2 conditions sont réunies, la tension US aux bornes de la charge est égale à UZ et dépend donc

assez peu de la valeur de Ue (régulation « amont ») et de celle de la charge RU (régulation « aval ») 1.2 Alimentation stabilisée à transistor parallèle.

Le principe de base est représenté ci-contre : Le fonctionnement satisfaisant de ce système nécessite que la diode régule en zéner et que le transistor fonctionne en régime linéaire.

Dans ces conditions, la tension de sortie s’écrit : US = UZ + VBE, avec VBE ≈ 0,7V

R

Ue Dz Us Ru

Ie Is

Iz

R

Ru R’

Ie Is

Ue Us

Dz Iz

Ic Tr

0,7V UZ

IZ>0 ID>0

Conduction directe Conduction inverse

(2)

1.3 Alimentation stabilisée à transistor série.

Dans cette structure, le fonctionnement correct correspond à un transistor en régime linéaire et une diode zéner conductrice en inverse.

Dans ces conditions, US = UZ –VBE ≈ UZ – 0,7V

2 . Sources de courant.

On utilise ici aussi une diode zéner qui travaille en conduction inverse pour fixer le courant collecteur d’un transistor :

Si Ue > UZ alors VBM = UZ = VBE + REIE

D’où IC

E BE E Z

R V

I = U −

L’intensité IC est ainsi indépendante de la charge RU

(et de la valeur de Ue)

IC est fixée par la valeur de RE et par le choix de la diode zéner.

Remarque : Miroirs de courant.

Ces montages ont pour objectif la production d’un générateur de courant I2 commandé par un autre courant (I1).

1er montage

Tr1 et Tr2 sont identiques (diffusés sur le même substrat) VBE1 = VBE2 IB1 ≈ IB2

avec β >> 1, I1 ≈ β1IB1 et I2 ≈ β2IB2

d’où:

1 2 1

I2

I ≈ ββ

Montage bien adapté aux CI

2ème montage IR1 = I1 – IB2 ≈ I1

IR2 = I2 + IB2 ≈ I2

VBE1 + R1I1 = VBE2 + R2I2 avec VBE1 ≈ VBE2 ;

d’où

2 1 1 2 RR II ≈

Le fonctionnement ne dépend pas des β des 2 transistors ; on peut utiliser des transistors discrets et l’utilisateur choisit R1 et R2.

Ie

Ue

R

Ru Is

Us Ic Tr

Dz

Iz I

Ie

Ue

Is

Us Ru

R

Tr I

Iz

Dz RE

Ic B

M

E C

Tr1 Tr2

I1 I2

IB1 IB2

> 0,6V

R1 R2

Tr1 Tr2

I1 I2

IB1 IB2

> 0,6V

(3)

3 . Etage Darlington

Le montage Darlington est utilisé pour obtenir un transistor équivalent à très grand gain. Il peut être réalisé avec 2 transistors de même type ou avec 2 transistors complémentaires.

Dans les étages ci-dessous, le transistor TR1 (« driver ») est caractérisé par 1 et le transistor TR2 par 2

Exemple du montage 1 : Soit IB = IB1 le courant de base du transistor équivalent ;

Le courant de collecteur de ce transistor est IC = IC1 +IC2 = 1IB1 + 2IB2 = 1IB1 + 2( 1 + 1)IB1

Soit finalement : IC = ( 1 + 2 + 1 2)IB = EQ.IB ;

Le « gain » EQ du transistor équivalent est bien plus grand que 1 ou 2. 3 . Polarisation des étages amplificateurs.

Schéma électrique de principe

Les générateurs de Thévenin {VBB, RB} et {VCC, RC} sont choisis pour fixer un point de fonctionnement au transistor : On parle de point de repos du transistor.

Les valeurs des courants et des tensions relatives au transistor polarisé sont nommées coordonnées de repos du transistor.

On distingue différentes classes de polarisation du transistor, selon la position de son point de repos.

RB

RC

IB

IC

IE

VBE

VCE

VBB

VCC

Tr2

Tr1

IB1

IB2=IC1

IC2

2

Tr2

Tr1

IB1

IB2=IC1

IC2

3 Tr1

Tr2

IB1 IC2

IB2=IE1

IC1

1

E C

B

IB

VBE

IC

VCE

0

Droite de charge statique

Droite d’attaque

statique

Caractéristique de transfert en

charge

(4)

3.1 Polarisations en classe A.

Le transistor fonctionne en régime linéaire, soit IC = IB.

Idéalement, en classe A, le point de repos du transistor est localisé au milieu de la droite de charge.

Dans un même lot de transistors, le est sujet à une très forte dispersion ; de plus, varie notablement avec la température du transistor : Il y a donc lieu de choisir un dispositif de polarisation qui fixera un point de repos indépendant de , ceci afin d’assurer l’interchangeabilité du composant sans nuire aux propriétés de l’étage amplificateur projeté.

- Polarisation par la base.

B BE B VccR V

I = −

β −

= B

BE C VccR V I

VCE = VCC - RCIC

- Polarisation par l’émetteur.

VCC = REIE + VBE + RBIB

IE ≈ IC et IC = βIB

+ β

≈ −

E B

BE E cc

C R R

V I V

I

VCE ≈ 2VCC – (RC + RE)IC

IC peut être rendu indépendant de par le choix

>> βB

E R

R .

- Polarisation avec rétroaction au collecteur.

VCC ≈ VBE + RBIB + RCIC

+ β

≈ −

C B BE C Rcc R

V I V

VCE ≈ VCC - RCIC

Ici, IC devient indépendant de pour

>> βB

C R

R

RC

RB

IB

IC

VBE

VCE

VCC

RC

IB

IC

VBE

VCE

VCC

RE VCC

RB

IE

RC

IB

IC

VBE

VCE

VCC

RB

(5)

- Polarisation par pont.

R1 et R2 sont choisies de telle sorte que IB soit faible devant I1 ;

En remplaçant le diviseur {R1 ; R2} par son modèle de Thévenin, il vient :

BE E E 2 B

1 2 cc 1

2 1

1R V RR RR I R I V

R R+ − + = +

avec IC ≈ IE = βIB

2 1

2 E 1

BE CC 2 1

1

C

R R

R R R 1

V R V

R R I

⋅ + +β + −

et VCE = VCC – (RC + RE)IC

IC ne dépend pas de si

2 1

2 E 1

R R

R . R R 1

+

>> β 3.2 Polarisation en classe B.

En classe B, le transistor est polarisé à courants de base et de collecteur nuls : Il est bloqué.

Transistor NPN Transistor PNP Etage « push-pull »

Avantage de ce type de polarisation : Le transistor ne consomme aucune puissance au repos ; ceci est particulièrement important dans le cas des amplificateurs de puissance.

Afin d’améliorer certains défauts de la polarisation en classe B, il existe une polarisation en classe AB

On donne à droite l’exemple d’un étage push-pull en classe AB : Les résistances R sont choisies de telle sorte que les transistors soient à la limite de conduction, mais sont encore bloqués, soit

VBE ≈ 0,6V, avec IB = IC = 0.

RU

Vcc

T1 RU

Vcc

T2

RU

Vcc

Vcc

T2

T1

RC

IB

IC

VBE

VCE VCC

RE

IE

R2

R1

I1

RU

Vcc

Vcc

T2

T1

R

R D1

D2

(6)

3.3 Polarisation en classe C.

En classe C, le transistor est polarisé dans l’état bloqué, avec VBE ≤ 0V

Ce type de polarisation est utilisé dans certains amplificateurs de puissance fonctionnant à fréquence fixe. (Étages terminaux d’émetteurs)

3.4 Autres classes de polarisation.

Il en existe de nombreuses ; parmi elles, nous citons la classe D qui consiste à utiliser le transistor dans les états bloqué et saturé, avec un rapport cyclique de fonctionnement variable ; cette classe se rencontre dans les amplificateurs à découpage.

2 variantes des classes A et B consistent en les classes G et H, mises au point dans les années 1970 par certains fabricants d’amplificateurs audio haute fidélité.

Voir ci-contre le principe d’une polarisation en classe G : Les éléments du circuits sont dimensionnés de telle sorte que les transistors T1 et T2 fonctionnent en classe A et que T’1 et T’2 fonctionnent en classe B.

RC

0 0

VBE<0 VCE

VCC

RU

V’CC

VCC

VCC

V’CC

T’1

T1

T2

T’2

Références

Documents relatifs

Connecter la borne + d'un multimètre sur la base du transistor puis passer successivement la borne - sur l'émetteur et sur le collecteur.. Dans ce cas, les deux jonctions sont

1- Montage émetteur commun (EC) : C’est le montage le plus utilisé dont lequel l'entrée se fait sur la base et la sortie sur le collecteur.. Utilisé généralement dans les

L'effet transistor : Lorsque l'on injecte un courant i B dans la base du NPN, on autorise, si les tensions V BE et V CE sont correctement polarisées, un courant d'électrons

En fonctionnement normal d’un transistor, la jonction base - émetteur doit être polarisée en direct et la jonction base - collecteur doit être polarisée en inverse. Les

L'effet transistor apparaît lorsqu'on polarise la jonction base - émetteur en direct et la jonction base - collecteur en inverse... Fonctionnement à courant de base

Le transistor à effet de champ (TEC) Field Effect

L'application des lois générales de l'électricité permet de calculer les paramètres caractéristiques du circuit.. Amplificateur en

Remettez vous dans les conditions de la mesure du gain en tension en charge (R L branchée), niveau d'entrée 10mV crête à crête, fréquence 1 kHz. • Mesurer au multimètre la