• Aucun résultat trouvé

MICAL IN AND IN

N/A
N/A
Protected

Academic year: 2022

Partager "MICAL IN AND IN"

Copied!
3
0
0

Texte intégral

(1)

P A R A S I T E B I O L O G Y A N D B I O C H E M I S T R Y

H o w e v e r , t w o cuticlin g e n e s , cut-l a n d cut-2, h a v e n o w b e e n isolated from C. elegans in this laboratory, using a D.

melanogaster p r o b e c o d i n g for a c o m p o n e n t o f t h e vitelline m e m b r a n e o f the egg. cut-l mRNA is 1 4 2 2 nt long, h a s four e x o n s c o d i n g for 4 2 3 a m i n o acids a n d is transpliced to SL1, t h e s p l i c e d l e a d e r p r e s e n t at the 5' e n d o f m a n y mRNA's in m o s t n e m a t o d e s ; cut-2 mRNA is 8 4 7 nt long, c o n t a i n s o n l y t w o e x o n s c o d i n g for 2 3 7 a m i n o acids, a n d is n o t transpli­

ced. Northern analysis indicates that w h i l e cut-l is transcri­

b e d stage-specifically b y w o r m s entering the d a u e r larvae stage, cut-2 mRNA is t r a n s c r i b e d during cuticle synthesis, immediatly b e f o r e e a c h moult.

Parts o f b o t h g e n e s h a v e b e e n e x p r e s s e d as fusion proteins in E. coli and h a v e b e e n u s e d to raise s p e c i f i c a n t i b o d i e s . T h e s e h a v e b e e n u s e d to study the e x p r e s s i o n pattern of the t w o g e n e s b y w e s t e r n blot, a n d to l o c a l i z e the p r o d u c t s within the c u t i c l e s o f w o r m s at different s t a g e s b y i m m u n o ­ f l u o r e s c e n c e a n d i m m u n o - e l e c t r o n m i c r o s c o p y . T h e results o b t a i n e d confirm the partial s t a g e specifity o f C U T - 1 , a n d t h e fact that C U T - 2 is a c o m p o n e n t o f t h e c u t i c l e at all stages. B o t h proteins are l o c a l i z e d o n cuticle residues after treatment with strong reducing a g e n t s , s h o w i n g t h e m to b e definitively m e m b e r s o f t h e cuticlin residue.

T h e proteins deriving from the c o n c e p t u a l translation o f the g e n e s differ substantially, a l t h o u g h t h e y b o t h b e g i n with signal p e p t i d e s a n d s h a r e a short motif r e p e a t e d 5 t i m e s in CUT-1 a n d 12 t i m e s in C U T - 2 . E a c h repetition is characteri­

z e d b y t h e p r e s e n c e o f t h e a m i n o a c i d s e q u e n c e AAPA.

T h i s s a m e m o t i f c a n also b e found in s o m e o f the vitelline m e m b r a n e p r o t e i n s o f Drosophila a n d in t h e p r o t e i n s w h i c h m a k e up the c u t i c l e o f Locusta migratoria. T h e s e p r o t e i n s are all i n v o l v e d in the formation o f i n s o l u b l e , p r o ­ t e c t i v e e x t r a c e l l u l a r l a y e r s , i m p l y i n g that t h e c o n s e r v e d d o m a i n s m a y h a v e an important functional role.

I n t e r e s t i n g l y , t h e a m i n o a c i d s e q u e n c e o f C U T - 2 s h o w s tyrosine residues that c o u l d participate in dityrosine bridge formation (dityrosine is p r e s e n t in the i n s o l u b l e residue o f parasitic n e m a t o d e c u t i c l e s ) . W e h a v e s h o w n that s o l u b l e r e c o m b i n a n t C U T - 2 , p r o d u c e d in E. coli, c a n b e p o l y m e r i ­ z e d in vitro i n t o h i g h m o l e c u l a r w e i g h t s p e c i e s b y t h e action o f HR p e r o x i d a s e in the p r e s e n c e o f H 2 O 2 . T h e pro­

d u c t s o f the r e a c t i o n b e c o m e i n s o l u b l e , c o n t a i n t y r o s i n e a n d the r e a c t i o n is inhibited b y the p r e s e n c e o f free tyro­

sine. T h i s clearly b e g s the q u e s t i o n w h e t h e r CUT-2 is res­

p o n s i b l e for the insolubility o f the cuticle.

A s e c o n d g e n e s h o w i n g significant h o m o l o g y ( > 8 0 % ) to cut-l h a s b e e n isolated for C. elegans, confirming the p o s ­ sible e x i s t e n c e o f a cuticlin g e n e family. A cut-l h o m o l o g u e h a s a l s o b e e n isolated from the plant parasitic n e m a t o d e , Meloidogyne artiella, d e m o n s t r a t i n g the strongly c o n s e r v e d nature o f the s e q u e n c e a m o n g s t n e m a t o d e s .

An i n s o l u b l e cuticlin residue is p r e s e n t in the c u t i c l e s o f all n e m a t o d e s s t u d i e d s o far. T h i s fact, p l u s t h e a p p a r e n t l y c o n s e r v e d nature o f the g e n e and the protein for w h i c h it c o d e s , h a s p r o m p t e d t h e s e a r c h for g e n e s h o m o l o g o u s to cut-l a n d cut-2 in t w o parasitic n e m a t o d e s , Ascaris lumbri- coides and Brugiapahangi.

T w o parallel a p p r o a c h e s h a v e b e e n u s e d : the first involves s c r e e n i n g a g e n o m i c l i b r a r y w i t h l a b e l l e d D N A p r o b e s m a d e from C. elegans cuticlin g e n e s ; the s e c o n d involves s c r e e n i n g a parasite c D N A e x p r e s s i o n library with the s p e ­

cific a n t i b o d i e s raised against the r e c o m b i n a n t C U T - 1 a n d C U T - 2 purified p r o t e i n s . T h e p o s i t i v e c l o n e s h a v e b e e n s u b - c l o n e d into the p B l u e s c r i p t p h a g e m i d s y s t e m a n d are at p r e s e n t b e i n g s e q u e n c e d . T h e s e q u e n c e s will b e c h e c ­ k e d for h o m o l o g y against the C. elegans cuticlin g e n e s a n d the S e q u e n c e s Data B a s e .

O n c e c u t i c l i n g e n e h o m o l o g u e s h a v e b e e n f o u n d t h e a p p r o a c h to their study will f o l l o w t w o b r o a d p a t h w a y s . Firstly transcription patterns in the parasite life-cycles will b e s t u d i e d u s i n g r e v e r s e t r a n s c r i p t a s e a n d P C R . A n d s e c o n d l y t h e inserts will b e e x p r e s s e d a n d t h e r e s u l t a n t r e c o m b i n a n t p r o t e i n s u s e d in b i o c h e m i c a l a n d i m m u n o l o g i ­ cal studies. A n t i b o d i e s c o u l d a l s o b e raised against t h e s e p r o t e i n s for u s e in l o c a l i z a t i o n a n d t i m e - c o u r s e e x p e r i ­ m e n t s , a n d hopefully to s c r e e n the c D N A libraries o f o t h e r parasitic n e m a t o d e s .

O n c e parasitic n e m a t o d e h o m o l o g u e s o f cut-l a n d cut-2 h a v e b e e n fully c h a r a c t e r i z e d , t h e r o l e s a n d f u n c t i o n s o f t h e s e clearly important p r o t e i n s will b e b e t t e r u n d e r s t o o d a n d hopefully the k n o w l e d g e c a n in s o m e w a y b e u s e d in the c o n t r o l o f the d i s e a s e s c a u s e d by t h e s e parasitic n e m a ­ t o d e s .

REFERENCES

LASSANDRO F . , SKBASTIANO M . , ZEI F . and BAZZICAUIPO P. : cut-2, a second cuticlin gene of Caenorbabditis elegans. The role of dity­

rosine formation in the crosslinking of its product. Mot. Biocbem.

Parasitol, 1993, submitted.

POLITZ S . M . and PHILIPI- M . : Caenorbabditis elegans as a model for parasitic nematodes : A focus on the cuticle. Parasitol. Today, 1992, 8, 6-12.

SEBASTIA.NO M . , LASSANDRO F . , B A Z Z I C A U I P O P . : cut-l, a Caenorbabditis elegans gene coding for a dauer-specific non col­

lagenous component of the cuticle. Dev. Biol., 1991, 146, 519- 530.

N E U R O N S A N D G E N E S I N V O L V E D I N CHE­

MICAL S E N S I T I V I T Y I N N E M A T O D E S

BAZZICALUPO P.*, HILLIARD M., LEWIS E.*, D E R I S O L., S E B A S T I A N O M.*, R I S T O R A T O R E F.*

KEYWORDS : chemoreception. nematodes, behavior, avoidance, amphid.

SUMMARY

Organelles and neurons of nematodes involved in sensing chemical signals present in the environment are described. Laser ablation of neurons has helped assign them a specific function. Genetic mutatio­

nal analysis has led to the identification of genes controlling the beha­

viour of the worms and/or some cellular properties of the

chemosensory neurons. Some conclusions on the general organization and functioning of chemoreception in nematodes can be drawn.

h e m i c a l s i g n a l s from t h e e n v i r o n m e n t a r e t h e m o s t important s e n s o r y inputs for n e m a t o d e s . T h e ability to r e c e i v e a n d interpret c h e m i c a l s i g n a l s from t h e e n v i r o n ­ m e n t is essential for parasitic n e m a t o d e s to find the host, c o m p l e t e t h e i r life c y c l e a n d r e p r o d u c e . I f b e t t e r u n d e r -

* International Institute of Genetics and Biophysics, CNR, via G.

Marconi 10, 80125 Napoli, Italy.

Article available athttp://www.parasite-journal.orgorhttp://dx.doi.org/10.1051/parasite/199401s1058

(2)

PARASITE B I O L O G Y AND BIOCHEMISTRY

s t o o d at the cellular a n d m o l e c u l a r level, c h e m o r e c e p t i o n w o u l d h a v e e n o r m o u s potential as a target for c h e m o t h e ­ rapy a n d p o s s i b l y i m m u n o p r o t e c t i o n .

U n f o r t u n a t e l y , little is k n o w n a b o u t c h e m o r e c e p t i o n in parasitic n e m a t o d e s a n d its study in t h e s e o r g a n i s m s pre­

s e n t s m a n y difficulties. H o w e v e r s o m e information is avai­

l a b l e a b o u t c h e m o r e c e p t i o n in t h e free living n e m a t o d e C.

elegans, a n d m o r e i m p o r t a n t l y a variety o f e x p e r i m e n t a l a p p r o a c h e s are a p p l i c a b l e in t h e study o f this m o d e l orga­

nism. A l t h o u g h n e m a t o d e s differ from e a c h o t h e r in size, life c y c l e , a n d o t h e r i m p o r t a n t a s p e c t s , t h e g e n e r a l p l a n a c c o r d i n g to w h i c h they are c o n s t r u c t e d is very c o n s e r v e d . T h u s a realistic strategy t o study c h e m o r e c e p t i o n in parasi­

tic n e m a t o d e s is to start with C. elegans, with t h e aim o f e v e n t u a l l y using the k n o w l e d g e a n d t h e m o l e c u l a r r e a g e n t s a n d p r o b e s derived from this study, to identify the h o m o l o ­ g o u s c o m p o n e n t s from parasitic s p e c i e s .

T h e m a i n c h e m o r e c e p t o r o r g a n s o f n e m a t o d e s a r e t h e A m p h i d s , o n e o n e a c h s i d e o f t h e h e a d . A c h e m o r e c e p t i o n f u n c t i o n is l i k e l y a l s o for t h e t w o P h a s m i d s a n d t h e s i x I n n e r L a b i a l N e u r o n s . As in o t h e r n e m a t o d e s , s e n s o r y o r g a n s in C. elegans are e a c h m a d e o f t w o n o n n e u r o n a l s u p p o r t cells, t h e s h e a t h cell a n d t h e s o c k e t cell that form a c h a n n e l a r o u n d a b u n d l e o f ciliated n e u r o n a l e n d i n g s ; in t h e c a s e o f c h e m o s e n s o r y n e u r o n s , t h e e n d i n g s r e a c h t h e e x t e r i o r t h r o u g h a g a p in t h e cuticle. In C. elegans the c e l ­ lular a n a t o m y o f t h e s e o r g a n s a n d t h e p r e c i s e a n c e s t r y o f t h e cells contributing to t h e m h a v e b e e n d e s c r i b e d . Caenorhabclitis elegans b e h a v i o u r s i n f l u e n c e d by c h e m i c a l stimuli p r e s e n t in t h e e n v i r o n m e n t i n c l u d e : orientation in gradients o f a n u m b e r o f c h e m i c a l s acting as attractants o r r e p e l l e n t s ; a v o i d a n c e o f s o m e c h e m i c a l s acting as a r e p e l ­ lent ; entry a n d exit from t h e d a u e r larvae d e v e l o p m e n t a l p a t h w a y ; e g g laying ; attraction o f m a l e s but not h e r m a ­ p h r o d i t e s t o h e r m a p h r o d i t e s . W e h a v e c o n c e n t r a t e d o u r studies o n t h e a v o i d a n c e r e s p o n s e . W h e n it e n c o u n t e r s a r e p e l l e n t c h e m i c a l . C. elegans s t o p s a n d inverts its m o v e ­ m e n t , b a c k i n g up. T h i s r e s p o n s e is relatively s i m p l e and, at least in principle, d o e s n o t require t h e integration o f infor­

m a t i o n f r o m d i f f e r e n t s i g n a l s o r f r o m t h e s a m e s i g n a l v a r y i n g in t i m e o r s p a c e . As for o t h e r c h e m o r e c e p t i o n d e p e n d e n t b e h a v i o u r , laser ablation e x p e r i m e n t s have led t o t h e identification o f t h e m a i n s e n s o r y n e u r o n s involved in this r e s p o n s e ; they are t w o n e u r o n pairs, ASH a n d ADL, w h i c h s e n d their ciliated s e n s o r y termination t o t h e a m p h i d c h a n n e l . ASH a n d ADL are a l s o t h e o n l y t w o a m p h i d n e u ­ r o n s s y n a p s i n g directly o n t o AVA, t h e m a i n i n t e r n e u r o n dri­

ving b a c k w a r d m o v e m e n t . It is p o s s i b l e therefore that t h e a v o i d a n c e r e s p o n s e is m e d i a t e d b y a relatively s i m p l e three e l e m e n t circuit.

G e n e t i c m u t a t i o n a l a n a l y s i s is, in C. elegans, e x t r e m e l y powerful a n d is t h e staring point from w h i c h t o arrive at t h e m o l e c u l a r c l o n i n g o f g e n e s ; it h a s t h e r e f o r e already- b e e n u s e d in t h e study o f c h e m o r e c e p t i o n . T h e m u t a n t s that h a v e b e e n i s o l a t e d s o far c a n b e divided into t w o main g r o u p s :

i) m u t a n t s isolated o n t h e b a s i s o f alterations in b e h a v i o u r that d e p e n d o n t h e r e c e p t i o n o f c h e m i c a l s i g n a l s . T h e s e i n c l u d e m u t a n t s a b n o r m a l for c h e m o t a x i s , che, osmotic- a v o i d a n c e , osm, d a u e r formation, daf a n d volatile c h e m i c a l sensitively odr.

ii) D y f mutants. C h e m o s e n s o r y n e u r o n s o f live wild type C.

elegans t a k e u p F l u o r e s c e i n e I s o t h i o c y a n a t e ( F I T C ) from t h e m e d i u m . F o r wild type w o r m s , c o n d i t i o n s h a v e b e e n found u n d e r w h i c h o n l y s i x n e u r o n s o f e a c h a m p h i d a n d t h e t w o n e u r o n s o f e a c h p h a s m i d t a k e up t h e dye, trans­

port it retrogradely a n d b e c o m e fluorescent. Mutants with alterations in this staining pattern h a v e b e e n isolated {dyf, for d y e filling a l t e r a t i o n ) a n d h a v e b e e n s h o w n t o h a v e various c h e m o s e n s o r y defects. T h e main a d v a n t a g e s o f this p h e n o t y p e are that it c a n b e d e t e c t e d o n single live w o r m s , m a k i n g g e n e t i c a n a l y s i s o f m u t a n t s faster ; a n d that t h e p h e n o t y p e is largely d e p e n d e n t o n s p e c i f i c p r o p e r t i e s o f c h e m o s e n s o r y n e u r o n s a n d thus c a n g e n e r a t e c h e m o r e c e p ­ tion specific mutants. Mutations in m a n y o f t h e b e h a v i o u r a l m u t a n t s a l s o alter FITC u p t a k e , resulting in u n s t a i n e d o r p o o r l y stained animals.

W e h a v e isolated 19 D y f mutants a n d h a v e studied s o m e b a s i c a s p e c t s o f their b e h a v i o u r . T h e sensitivity most often lost in t h e s e mutants is t o w a r d s the p r e s e n c e o f high o s m o ­ tic strength in t h e m e d i u m . All t h e mutants s h o w n o r m a l r e s p o n s e s t o t o u c h , i n d i c a t i n g that t h e y a r e m u t a t e d in g e n e s specifically r e q u i r e d for c h e m o r e c e p t i o n a n d are n o t g e n e r a l mutants o f t h e n e r v o u s system.

W e h a v e a l s o studied in m o r e detail dyf-1 a n e w g e n e o n LGI. B e s i d e s t h e l a c k o f s t a i n i n g o f c h e m o s e n s o r y c e l l s , mn335, t h e dyf-1 a l l e l e w e h a v e s t u d i e d , r e s p o n d s v e r y p o o r l y to high o s m o t i c strength, S D S a n d C u+ +. H o w e v e r its ability to avoid garlic a n d a r e p e l l e n t p r e s e n t in w o r m e x t r a c t s s e e m s u n a l t e r e d , as is its c a p a c i t y to r e s p o n d t o light t o u c h . Ultrastructurally t h e m a i n defect o f mn335 is shorter s e n s o r y cilia a n d a c o l l a p s e d amphidial c h a n n e l . W e h a v e m a p p e d t h e g e n e t o L i n k a g e G r o u p /, n e a r unc-38 a n d h a v e started a project to c l o n e it molecularly.

D y f mutants, i n c l u d i n g dyf-1 , identify g e n e s i n v o l v e d in t h e g e n e r a l p h y s i o l o g y o f t h e c h e m o r e c e p t o r n e u r o n s a n d / o r o f the s u p p o r t c e l l s ; their p r o d u c t s are n e c e s s a r y for t h e u p t a k e o f t h e d y e from t h e m e d i u m a n d the retro­

g r a d e transport t o t h e cell b o d y . G e n e s c o d i n g for t h e s p e ­ cific r e c e p t o r m o l e c u l e s l o c a t e d o n t h e n e u r o n a l e n d i n g s , a n d for t h e c o m p o n e n t s o f t h e c h e m o - s e n s o r y transduction p a t h w a y r e m a i n largely u n d e t e c t e d in this t y p e o f s c r e e n . In o r d e r to identify t h e s e t y p e s o f g e n e w e h a v e r e c e n t l y started to isolate b e h a v i o u r a l mutants with t h e aim o f fin­

ding t h o s e specifically u n a b l e t o s e n s e a n d a v o i d certain c h e m i c a l s but still c a p a b l e o f s e n s i n g others. W e h a v e isola­

t e d several mutants a n d are characterizing t h e m g e n e t i c a l l y a n d b e h a v i o r a l l y . W e h a v e u s e d stringent b e h a v i o r a l assays in the s c r e e n i n g stage a n d it is interesting that m o s t o f the mutants isolated d o not s h o w a D y f p h e n o t y p e . T h i s result indicates that it is p o s s i b l e to isolate mutants in a different set o f g e n e s w h i c h c o u l d i n c l u d e t h e r e c e p t o r s a n d t h e c h e ­ m o s e n s o r y p a t h w a y .

T h e a n a t o m i c a l studies, t h e laser ablation e x p e r i m e n t s a n d t h e b e h a v i o u r a l a n d ultrastructural analysis o f t h e mutants i s o l a t e d a r e p r o v i d i n g i m p o r t a n t i n f o r m a t i o n s r e g a r d i n g s o m e b a s i c features o f c h e m o r e c e p t i o n in n e m a t o d e s : 1. E a c h c h e m o s e n s o r y n e u r o n b e a r s r e c e p t o r s for m o r e t h a n o n e c h e m i c a l .

2. R e c e p t o r s for c h e m o a t t r a c t a n t a n d for d a u e r formation are p r e s e n t o n m o r e than o n e c h e m o s e n s o r y n e u r o n . 3. Most b e h a v i o r a l mutants, a l t h o u g h isolated o n t h e basis

• Parasite. 1994. / . I S 59

(3)

PARASITE BIOLOGY AND BIOCHEMISTRY

o f a single altered b e h a v i o u r , a r e p l e i o t r o p i c a n d therefore d e f e c t i v e in o t h e r c h e m i c a l sensitivities.

4. T h e D y f p h e n o t y p e is a s s o c i a t e d with t h e l o s s o f sensiti­

vity t o m a n y different c h e m i c a l s . Alterations in t h e s h a p e o r matrix c o n t e n t o f t h e amphidial c h a n n e l a l s o result in a D y f p h e n o t y p e .

5. W h i l e w a t e r s o l u b l e c h e m i c a l s s e e m t o h a v e r e c e p t o r s o n the n e u r o n s w h o s e cilia a r e e x p o s e d t o t h e o u t s i d e (ASH a n d A D D , attraction t o a n d repulsion b y volatile c h e m i c a l s are m e d i a t e d b y r e c e p t o r s p r e s e n t o n t h e amphidial wing cells AWA, AWES a n d A W C .

R E F E R E N C E S

BARGMANN C . I . , THOMAS J . H . and HORVITZ H . R . : Chcmosensory cell function in the behavior and development of Caenorbabditis ele­

gans. Cold Spring Harbor Symp. Quant. Biol.. 1990, LV, 529-538.

BARGMANN C . I . , HARTWEIG E. and HORVITZ H . R . : Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell, 1993,

74, 515-527.

CHALFIE M. and WHITE J.-G. : The nervous system in The Nematode Caenorbabditis elegans. Wood W . B . (ed.), Cold Spring Harbor Lab. C . S . H . , New York, 1988, 337-391.

WHITE J . G . , SOUTHGATE E., THOMSON J . N . and BRENNER S. : The struc­

ture of the nervous system o f the nematode Caenorbabditis ele­

gans. Philos. Trans. R. Soc. London, Ser. B., 1986, 314, 1-340.

N - A C E T Y L A T I O N O F P O L Y A M I N E S A N D BIOGENIC A M I N E S I N PARASITIC N E M A ­ T O D E S

AISIEN S.O.*, DAVIDS G**, HELLMUND C**, NIEMANN G.**

AND WALTER R.D.**

KEYWORDS Polyamines. biogenic amines. N-acetylase. nematodes.

T

h e p r e v i o u s l y d e s c r i b e d p o l y a m i n e N - a c e t y l a s e from Fasciola bepatica h a s b e e n o b s e r v e d to have an additio­

nal function, t h e acetylation o f b i o g e n i c a m i n e s (Aisien a n d W a l t e r , 1 9 9 2 , 1 9 9 3 ) . It w a s c o n c l u d e d that N - a c e t y l a t i o n plays a major role in t h e a m i n e m e t a b o l i s m o f trematodes. In continuation o f t h e s e o n g o i n g studies o n t h e p r o c e s s o f N- acetylation in parasitic helminths, w e h a v e d e t e c t e d b i o g e n i c a m i n e acetylation in t h e tissue dwelling filaria Onchocerca volvulus a n d t h e intestinal parasite Ascaris suum. T h e aim o f o u r study w a s t o a s c e r t a i n if o u r p r e v i o u s finding that a single e n z y m e is r e s p o n s i b l e for d i a m i n e , p o l y a m i n e a n d b i o g e n i c a m i n e acetylation in trematodes, is a feature c o m ­ m o n to all h e l m i n t h s . Results from investigation using A.

suum indicate that t w o i n d e p e n d e n t e n z y m e s are respecti­

vely r e s p o n s i b l e for p o l y a m i n e a n d b i o g e n i c a m i n e acetyla­

t i o n . C h r o m a t o g r a p h y o f t h e 1 0 0 , 0 0 0 g s u p e r n a n t o n DEAE-cellulose r e v e a l e d t w o e n z y m e activity p e a k s , b o t h o f w h i c h have activity for histamine. T h e first p e a k w a s o b s e r ­ v e d to c a t a l y s e o n l y b i o g e n i c a m i n e acetylation w h i l e t h e s e c o n d a c e t y l a t e d p u t r e s c i n e a n d o t h e r d i a m i n e s . O n t h e basis o f the Km- v a l u e s o b t a i n e d with b o t h e n z y m e s for hista­

m i n e , p e a k II s e e m s t o b e m o r e specific for this substrate

* Department of Zoology, University of Benin, Benin-City, Nigeria.

** D e p a r t m e n t o f B i o c h e m i c a l Parasitology, Bernhard-Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.

with a Km- v a l u e o f 3 7 uM c o m p a r e d to p e a k I w h i c h h a d a Km- v a l u e o f 500LIM. In contrast t h e Km- v a l u e s o b t a i n e d for b i o g e n i c a m i n e s with p e a k I w e r e as follows : T y r a m i n e , 0 . 9 uM, tryptamine, 1.7 uM, o c t o p a m i n e , 2 9 uM, serotonin, 9 . 5 uM a n d ß-phenylethylamine, 1.5 uM. Epinephrine, n o r e p i n e ­ phrine a n d d o p a m i n e w e r e n o t physiological substrates for t h e N - a c e t y l a s e . T h e e n z y m e h a s a m o l e c u l a r m a s s o f a p p r o x i m a t e l y 3 0 k D a a n d w a s slightly inhibited b y c o e n ­ z y m e A, a product o f t h e acetylation p r o c e s s . T h e specificity o f p e a k II for diamines a n d histamine a n d its lack o f activity for p o l y a m i n e s indicates that this e n z y m e is most probably the novel putrescine acetylase previously reported b y Wittich and Walter ( 1 9 9 0 , 1 9 9 1 ) from O. volvulus a n d A. suum.

A S S E S S M E N T O F THE POLYAMINE M E T A ­ B O L I S M O F FILARIAL W O R M S A S A T A R ­ GET F O R C H E M O T H E R A P Y

MÜLLER S.*, H U N T E R K.J.**, K O N D U R S*, HELLMUND C.*, FAIRLAMB A.H.** & WALTER R.D.*

KEYWORDS : Polyamines. metabolism, chemotherapy, filaria. N-acetyltransfe- rase. polyamine oxidase. S-adenosylmethionine decarboxylase.

Polyamines a r e essential for t h e proliferation a n d diffe­

rentiation o f c e l l s a n d o r g a n i s m s . T h e p r e s e n c e o f poly­

a m i n e s h a s b e e n d e m o n s t r a t e d in Onchocerca volvulus a n d a l l i e d p a r a s i t e s a n d t h e i n v e s t i g a t i o n o f t h e p o l y a m i n e m e t a b o l i s m h a s i d e n t i f i e d u n u s u a l p a t h w a y s w h i c h a r e p o t e n t i a l c h e m o t h e r a p e u t i c t a r g e t s . T h e s e p a t h w a y s a r e crucial for parasite survival a n d differ in s o m e b i o c h e m i c a l a s p e c t s from t h e h o s t c o u n t e r p a r t s , thus a l l o w i n g for t h e rational d e s i g n o f drugs for a parasite-specific c h e m o t h e r a ­ p e u t i c attack. A p r o p o s e d s c h e m e o f t h e p o l y a m i n e m e t a ­ b o l i s m in filarial w o r m s is s h o w n in Figure 1.

S i n c e t h e p r e s e n c e o f o r n i t h i n e d e c a r b o x y l a s e ( O D C ) acti­

vity is q u e s t i o n a b l e , t h e initial s t e p in t h e b i o s y n t h e s i s o f p o l y a m i n e s a p p e a r s t o b e l a c k i n g a n d t h u s t h e p a r a s i t e d e p e n d s o n u p t a k e from t h e host for its p o l y a m i n e supply.

An i n t e r c o n v e r s i o n p a t h w a y f o r p o l y a m i n e s h a s b e e n d e m o n s t r a t e d w h i c h d o e s n o t i n v o l v e t h e p o l y a m i n e N - a c e - tyltransferase, t h e rate limiting s t e p in t h e i n t e r c o n v e r s i o n o f p o l y a m i n e s in m a m m a l s . A n o v e l t y p e o f p o l y a m i n e o x i ­ d a s e h a s b e e n identified w h i c h is s o l e l y r e s p o n s i b l e for t h e i n t e r c o n v e r s i o n a n d d e g r a d a t i o n o f p o l y a m i n e s . In addition, a p a r a s i t e - s p e c i f i c N - a c e t y l t r a n s f e r a s e for p u t r e s c i n e w a s found w h i c h is involved in t h e d e g r a d a t i o n a n d e x c r e t i o n o f e x c e s s p o l y a m i n e s .

D e p l e t i o n o f p o l y a m i n e levels in filarial w o r m s is thought t o h a v e c y t o s t a t i c i f n o t c y t o t o x i c e f f e c t s , a s h a s b e e n s h o w n previously in t h e c h e m o t h e r a p y o f c a n c e r a n d p r o ­ t o z o a n infections b y D L - a - d i f l u o r o m e t h y l o r n i t h i n e ( D F M O ) . Filarial w o r m s a n d o t h e r h e l m i n t h s l a c k o r n i t h i n e d e c a r ­ b o x y l a s e , t h e t a r g e t f o r D F M O . T h u s , a s t h e p a r a s i t e d e p e n d s o n t h e u p t a k e o f p o l y a m i n e s from t h e h o s t tissues, inhibition o f transport m e c h a n i s m s resulting in rapid d e p l e ­ tion o f p o l y a m i n e s s h o u l d b e e x p l o i t a b l e for c h e m o t h e r a p y .

* D e p a r t m e n t o f B i o c h e m i c a l Parasitology, B e r n h a r d Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359 Hamburg. Germany.

** Department o f Medical Parasitology. London School o f Hygiene

& Tropical Medicine, Keppel St, London, WC1E 7HT, U.K.

60

Porosità 199Л 1 I S

Références

Documents relatifs

Synergy between chemical environment and size is a unique way to control the relaxation temperature of the photoinduced state in ultra-small -11 nm- CsCoFe Prussian

le centre océanographique que nous projetons de faire demande un maximum de dégagement et d'espace libre , d'une totale flexibilité dans l'aménagement que ce soit dans sa

(a) Lim1 expression was analyzed in tumoral tissues of 6 patients, in both primary tumor tissues and corresponding metastasis for 4 patients and in metastatic tissues

For partial order the symmetry is broken (0 < || < 1) and the bond lengths are intermediate between the fully HS and LS states. When the phase transition is continuous,

During acquisition of motor learning, the Purkinje cells activity is proposed to control plas- ticity in the cerebellar nuclei, by generating instructive signals that regulate

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

– Corollary 3.8 guarantees that

Motor neuron progenitor cells can be induced to regenerate motor neurons at larval stages by mechanical lesion or motor neuron ablation and they react to similar signals (e.g.