• Aucun résultat trouvé

Interpolation Letween weighted U-spaces

N/A
N/A
Protected

Academic year: 2022

Partager "Interpolation Letween weighted U-spaces "

Copied!
15
0
0

Texte intégral

(1)

Interpolation Letween weighted U-spaces

Jo~N E. GILBERT University of Texas

1 . I n t r o d u c t i o n

One of the main problems in a n y application of interpolation space theory is the identification of the interpolation space (~o, ~ 1 ) ~ generated from a pair of Banach spaces c2(~0, ~ 1 by a given interpolation m e t h o d ~. The importance of interpolation space theory stems in part from the frequency with which (~o, fiF1)r is identified with classical Banach spaces and the deeper understanding the theory t h e n brings to these spaces. Applications to Lorentz Leq-spaces a n d to Lipschitz spaces are g o o d e x a m p l e s (cf. [4], for example).

In this paper the interpolation spaces (~0,/~o~,)o, ~ generated b e t w e e n weighted LP-spaces b y the (real) J-, K - m e t h o d s of Peetre will be characterized. W i t h o u ~ real loss of generality w e shall a s s u m e ~o o ~ 1. T h e ~)diagonab) spaces (L~0,/~o~1)o,v, it is k n o w n already, coincide with another weighted LV-space:

( L v v 1 - o o 0 < 0 < 1

. . . . , Lo>,)o,~ = L ~ , ~' = ~ o ~o~,

([7], [15]) a n d the associated interpolation t h e o r e m reduces to the Stein-Weiss extension of the classical IV[. Riesz theorem to spaces with changes of measure.

Peetre began the characterization of the ~)off-diagonab) cases by identifying v 1 < p < oo, with one of a family of spaces introduced by Beurling (L~o, L~)o, ~,

([3]) in connection with problems of spectral synthesis. I-Ierz later generalized Beurling's definition and considerably clarified Beurling's paper though without systematic recourse to interpolation space theory ([11]). I n sections 4 and 5 we complete the characterizations of (LV~o, LV)o,q, 1 _~ q _~ oo, and identifications with the Beurling spaces. With these characterizations as well as the theory of (homogeneous) Besov spaces the various results of ~ e r z can be obtained very easily using simple interpolation space techniques (see [6]).

The Beurling spaces have been considered in m a n y contexts other t h a n specbral synthesis (cf. [9], [10], [12], [13], [18]) with various characterizations being obtained

(2)

2 3 6 J O H N E. G I L B E R T

or used. I n section 3 we obtain one simple characterization (theorem (3.1)) from which all characterizations follow as special eases. This theorem, in addition, com- pletes other results of Peetre ([17] theorem (2.1)). Since the only property of LP- spaces needed is the fact that Le is an Leo-module via pointwise multiplication, the results in w 3 are presented from the point of view of Banach Function spaces

~ ; however, this section can be read equally well substituting Le for ~)d.

Some applications of these results to harmonic analysis appear in [1] and [2].

2. Elements of interpolation space theory

Wherever possible the current notation and terminology of abstract inter- polation space theory will be used (cf. [4], [7], [14]). Let ~)r ?)dl be Banach spaces both continuously embedded in some t t a u s d o r f f topological vector space so that then (9(7o, ~)~1) forms a comloatible couple in the sense of [7] chap. 1. Function norms (K(t, (.)) and J(t, (.)), 0 < t < oo, are defined on the sum of ~)r + ?/F1 and intersection ~ 0 g l c9r 1 b y

K(t, f ) -~ K(t, f; ~So, ?~1) = inf (ilf011x, + t]lf~li~r,),

S = f ~ + f l

J(t, g) = J(t, g; ~So, ~ = m ~ x (IIgli,:r0,

ttlgll~.,)

where f e ~So + o_r~ and g e ~ o Cl ~m~ respectively. These function norms are both continuous and monotonic increasing in t ([4] p. 167). The interpolation space (~m0, mr is the subsp~oe of ~ o + ~r~ of all f for which

co

lif[to, q~K : ( t - ~ q 0 = O, 1, q ~- oo, (1)

0

is finite (obvious modifications when q ~ oo); under the norm I](.)][o.q;K(c)~o, 9~)o,~; K is a Banach space, non-trivial whenever 0, q are restricted as in (1). The interpolation space (~o, ~ ) o , ~ ; j consists of all f in 9(7 o + ~3(~ for which there is a strongly measurable function u: (0, oo) --> ~ o 17 ~(~1 satisfying

co co

f f

(i) K(1, u(t)) ~ < ~ , (ii) f -= u(t) 7 ' (2)

0 0

(iii) (t-~ u(t)))~ ~ ~ ' 0 • 0, 1, q = 1. (3)

0

I f we set

(3)

I 2 { T E I % P O L A T I O I ~ ] 3 E T ~ ' E E N ~ T E I G H T E D L P - S ? P A C E S 237

co

Ilfllo,q;j

: inf f (t-+J(t, u(t)))q t / '

0

the infimum being taken over all u satisfying (2) and (3), then (~o, ~(~l)o,~;J becomes a non-trivial Banach space. I t is known t h a t

( ~ 0 , ~1)o,++ = (~)~0, ~ ) o , ~ ; K , 0 < 0 < 1, 1 < q < oo , at least up to equivalence of norms.

These spaces (~(~0, ~)o.~;K, (~(?0, ~)(~l)o,q;j can b e constructed in exactly the same w a y to yield the same spaces (with equivalent norms) b y replacing the multi- plicative group /~. : (0, oo) with the multiplicative discrete group {r~: n E Z}, r being fixed, r > 1, the H a a r measure dt/t on (0, ~ ) being replaced b y Haar measure on {r~: n E Z}. We shall refer to this m e t h o d as the discrete method of construction (see [6] or [14] for full details). The Lp-spaces on /~. defined with respect to H a a r measure will be denoted by L~.

The previous methods of construction are all >>real>> methods in contrast to the

>>complex>> m e t h o d introduced b y Calder6u et al. (cf., for instance, [5]). I n this method, to each compatible couple (-~0, ~ 1 ) is associated a Banach space [~o, 9(~1]o, 0 < 0 < 1. Since we are concerned exclusively with characterizations of inter- polation spaces obtained b y the J-, K-methods further details are omitted. Let us recall only t h a t if (X, #) is a totally a-finite measure space and Lp ( = Lv(X,/Z)) the usual Lebesgue spaces, t h e n

(L p~ L )o.q;K ~ LP~, [L v~ P~ Lpl]o : L p

where 1/p 9 : (1 -- 0)/290 q- 0/291 and Lr~(~ LPq(X, #)) is the usual Lorentz space associated with (X,/z) (see [4] w 3.3.1, [5]).

3. Interpolation between weighted function spaces

For a totally a-finite measure space (X,/z), 9~/(X, #) denotes the space of /z-measurable complex-valued functions on X. A ]3anach space 9g of (equivalence classes of) functions in ~/~ is called a Banach function s29ace provided

(a) if" gECl/]i(X,/z) and tg] ~ If] /z-a.e. for some fEP(~ then g belongs to a n d llgll:~ -< Jl/ll~,

(b) if {f,} is a sequence of non-negative functions in ~(~ and fn ~f/z-a.e. then sup llfoll.~ = Ilfll~.

n

Obviously the Lebesgue LP-spaces:

[Iflrp = If(x)lpd/z , 1 __<29 ~ ~ , llf[ico = ess. sup. If(x)l (4)

X

(4)

238 f f O H ~ E . G I L B E R T

are Banach Function spaces as are the Lorentz LPq(X,/x) spaces, condition (b) being the classical F a t o u property. Notice that (a) ensures ~ is an L ~ ( X , g)- module via pointwise multiplication and

Ilfg[l~ < Iifll~ Ilgll~, f ~ ~ , g e L | .

When co is a function in c~f/(X,/~) with co > 0/x-a.e., ~(~ denotes the weighted function space of all (equivalence classes of) functions f in c~(X,/1,) for which fco E 9(~; we set

For weighted Z~(X, co) spaces we shall write

[l/llp, o = [[/collp, 1 < p ~ ~ ,

with

II(.)ll~

defined b y (4). The pair ( ~ , 9 C ) forms a compatible couple: indeed, up to equivalence of norms,

where

m ( x ) ~-- rain (1, co(x)), M ( x ) -= max (1, co(x))

(cf. [15]). In this and the succeeding section we shall characterize the interpolation spaces

( ~ , ~.)o,q~K, (L p, L[)o,q;K, For the complex method the interpolation space

0 < 0 < 1 , l < q _ < ~ .

[ Le,/~o,]o is known:

[jLp, Lo,]o = L~, v(x) : co(x) ~ , P

(see [5] pp. 123--4 for even more general results). As frequently happens, however, the real methods yield directly a richer family of spaces.

Throughout, a will denote a non-negative, piecewise continuous function in L~(0, ~ ) such t h a t ta(t) belongs to L~(0, ~); thus, with o, defined for each fixed t b y

at().) = t2a(t)O, t, 2 C (0, ~ ) , our assumptions on a ensure that

max (llo[]~, sup ]la,[[~) < ~ . (5)

$

Furthermore, the composition at o co belongs to L~(X, #) and f . (a, o co) to 9C whenever f C ~ . All of our characterizations follow (more or less easily) from the following result.

(5)

I N T E R P O L A T I 0 1 ~ B E T W E E N W E I G H T E D L P - S P A C E S 239 THEOREM (3.1). There exist constants depending only on (~, 0 and q such that

0

for all

f

in (~JC, 9C )o,q;K, 0 < 0 < 1,

dt ) ~/~

o w)ll~:)q - [ < const. Ilfllo,.,K

Proof. W h e n f = f0 + f l is a decomposition of f in ~ + ~)C,

It f " (~, ~ co)lla~ _< lifo" (o, o ~o)lla~ -t- ]IA" (~, o ~o)ll~ c _< (sup II~,ll~)IIfolla~ + t(ll~lloo)llficoll,r,

#

a n d so, in v i e w o f (5),

Ill" (~ o co)II~ c ~ m a x (sup I[~,[Io~, II(~lE)K(t,f) (6)

$

for all t E (0, oo). The right hand i n e q u a l i t y follows.

N o w let V be a non-negative c o n t i n u o u s f u n c t i o n with c o m p a c t s u p p o r t in (0, oo). T h e n the f u n c t i o n u = u(t):

u(t) = f ( x ) . a,(co(x)) 9 ~(to~(x)), t r (0, ~ ) , x e X is a m e a s u r a b l e 9(~ ~l 9(~o~-valued function such t h a t

Ilu(t)ll~ ~ II~ll~llf ~ (~, o co)][~

while

Thus u:

tHu(t)~~ = ]l f" (a, o w) . (~, o w)ll~ _< (sup [T~,ll~)llf" (a, o s r .

t

(0, oo) ---> ~_~ N ~)~ and

J(t, u(t)) ~__ m a x ([l~T[r sup Ilk, it)Ill" ((~, ~ o))II~ 9

$

B u t with a suitable normalization,

co

f

I = u(t) 7 "

0

The left h a n d i n e q u a l i t y o f the t h e o r e m n o w follows.

I f the discrete construction is u s e d in the p r o o f of t h e o r e m (3.1) the following

~)diserete~) characterization of (~(~, 9(~)o.q;K is obtained.

TH~.O~EM (3.2). For each fixed r > 1 there exist constants depending only on O, q and (~ such that

(6)

240 J O H N E , G I L B E I ~ T

const.

Ilfllo,,;J ~ ( ~

(r-k~

(a,~o co)lice)q) 1/q

< const. IIfL,u;K

- - c o

for all

f

in (~)~, 9(~o~)o,q;K, where 0 < 0 < 1 and 1 < q < r

The first application of theorems (3.1) and (3.2) gives what in practice is the most useful characterization of (cS, 9(~)o,q; ~. For fixed r > 1 denote by 9 the function

l

1

T(t) = - / , 1 < t < r O, elsewhere.

(7)

When X , - - { x E X : o ) ( x ) < 1/t} and Z, is the characteristic function of X,, then Ttoo4= ~t/r-- Zt and

A(z~k) = z,~ o o = Z,~-~ - - Z, k.

T~EOBEM (3.3). For each r > 1 there exist constants depending only on 0 and q, 0 < 0 < 1, 1 < q < oo, such that

for all

f

in

eonst.

Ilfllo,~;j ~ ( ~

( r = ' ~ t l f d ( z , k ) l l J ) ~/q ~

const. Ilftlo,,,K

( ~ , ~)e,o)o,~;K.

Proof. The particular choice (7) of ~ satisfies (5) and theorem (3.2) then applies.

Now define "r, "d by

1, O < t < l , { 1

T ( t ) = ~ ' ( t ) = ~-, t ~ l ,

O, elsewhere, O, elsewhere.

Obviously ~ and ~' satisfy (5)while

?

" r 1 7 6 1 6 2 1 7 6 ~ t e ~ z t , "c, o o 9 ~ 1 - - Z t ,

and

tI]fo~z,[Ioc ~ K ( t , f ) , llf"

(1 -- z,)ll~ ~ K(t,f)

(el. (6)). Theorem (3.1) thus gives:

(8)

T~EOBEM (3.4). When Z, is the characteristic f u n c t i on of the set X t = {x C X:

o)(x) ~ l/t} then

(7)

I N T E I % F O L A T I O N B E T W E E N AVEIGI-ITED L P - S r A O E S 241

03 03

t } '

0 0

define equivalent n o r m s on ( ~ , ~ 0 < 0 < 1, 1 < q < co.

The Lipschitz character of ( ~ , ~o,)o,q;K can be described b y setting

~(t) = e-', r = T (e-' - 1), 1 (9)

so t h a t 7, z' s a t i s f y (8) a n d

t e _ t ~ o

T t o ~ : t e o e - t ~ ~:t o o ~ : - - 1 .

THEOREM (3.5). F o r 0 < 0 < 1 a n d 1 < q < oo,

03 cO

(f(,o,,z

0 0

define equivalent n o r m s on (5)C, ~(~)o,~;K.

1)II,~)q

~ ) "

Proof. A p p l y t h e o r e m (3.1) w i t h 7, z' d e f i n e d b y (9).

I t is of i n t e r e s t to f o r m u l a t e t h e characterizations c o n t a i n e d in t h e o r e m s (3.4) a n d (3.5) for t h e special case r = L P ( X ) , 1 < 29 < oo. W h e n a = (l/t) rain (1, t) in t h e o r e m (3.1) a n d 1 < T < 0%

03 co

f

(t-~ 9 ((~, o co)llpF 7 =

f f

t-~~ l P rain (1, tw(x))Pd# t - -

0 0 X

f lf(x)t'o(x)~ t-'~

03

t)'{ t)

- - d # .

X 0

I n ease p = co t h e analogpus result holds:

sup t-~ 9 (~, o co)!Io 3 = I[fio*l103 . sup (t - ~ rain (I, t ) ) .

t $

Consequently, for all p , l ~ 20 ~ o%

03

(f

( t - ~ (g, o ~o)l[pF = [[fo~~ 9 IIt-~ m i n (1,

t)llLp,

0

which establishes (cf. [7] p. 25, 31; [15]):

(8)

2 4 2 J O H N ]7]. G I L B E R T

THEOREM (3.6). l~or 0 < 0 < 1 and 1 ~ p ~ co

(L'(X), LUX))o,~,~ = {f: ( f lf(x)l'o(x)~ v"

x

and

For non-diagonal values of q,

const,

llfllo.p,.r ~ Ilf~~ ~

const.

Ilfllo,,;~.

i.e., q ve ~o, theorems (3.3) and (3.4) yield:

THEOrEm[ (3.7). The expressions

(i, If(x)]Pd/-*J ) ) , r > l ,

< ~o(x)_< t k

(// "):;

(ii) t'-~ f

,

to,(x) _< 1

(i(Iz

1 :tls>\q

:)"

(iii) t -~

If(x)l"d,. ] )

to~(x)>l

(LP(X), L~(X))o,~: K for all 0 < 0 < 1, define equivalent norms on

and 1 <_p ~ oo.

l < q < oo,

Remark. Partial results along the lines of theorem (3.7) were obtained b y Peetre in [17] (of. p. 63).

4. Beurling spaces

We come now to our main characterization of the interpolation spaces (/F(X), JLP~(X))o.~:K, identifying these spaces with important Banaeh spaces introduced by Beurling ([3]).

With 7 ---- ( l i p -- 1/q) and 0 < 0 < 1 denote b y tg(0, 7) the class of functions

~0 in L 1, ~ 0 > 0 , such that

(a) ]I~NL~ = 1, (b) t~ ~ is monotonic increasing.

Such functions ~ certainly exist; for instance, suitable normalizations of 9(O = t-~ m i n (1, tlh), 7 r 0, q~(t) = t -~ min (1, t), y - = 0 satisfy (a), (b). For fixed (o we t h e n define B~o,q(X, co) by

(9)

I N T E R P O L A T I O N B E T W E E N W E I G H T E D Z P - S P A C E S 2 4 3

B g . J X , ~) = t J {L:(X): w = ~~ o ~),}. r -< 0 , r

B ~ , ~ ( X , ~ ) = f l { Z ~ ( X ) : w = ~ ~ r >--0"

Cea(o,v)

I n [3] additional convolution properties are imposed on ~ to ensure t h a t certain of the B~o,q(X, co) spaces are Banach algebras. Discussion of this particular facet will be omitted from this paper.

THEOI~EM (4.1). Let ~ = l i p - - 1/q where 1 ~_ 19 < oo and 1 ~_ q ~ o~, T h e n for each O, 0 < 0 < 1, there exist constants such that for all f i n ( I ~ ( X ) , L~(X))o.~; K

eonst. [Ifllo.q~j ~ i n f llfo~~ o o~)~ll~ ~ const. Ilfllo;q;K

~eo(o,r) when ~ ~ 0, and

when ~ ~ O.

(10)

const. ]lfllo,~j ~ sup IIf~~ o co)'llp ~ const. I[fL, q.,K (11)

~eo(o,r) I n 19articular,

(L~(X), ~(X))o.~;~ = Bg, q(X, co).

Proof. (i) We establish first the left hand inequality in (10). Since 7 ~ 0, automatically q ~ p < oo.

Choose a n y non-negative continuous function ~ with compact support in [1, oo), 7J ~ 0, and define a on (0, oo) b y a ( t ) = (1/t)~p(t). I n view of theorem (3.1) the left h a n d inequality in (10) follows provided

( t - ~ (~r, o o~)[Ip)q _< const, i n f ]If" c~176 ~ ~)~IIP 9 (12)

0 9

But, since t~ r is monotonic increasing, t-~ o co)(x) = t-~ < co(x)~

because ~o(t~o(x)) is non-zero only when to~(x) > 1 and t h e n ~(to~(x)) 3> O. T h u s t - ~ 9 (~, o co)liP _< T(1/t)-rl[fw~ o ~)'r(t~)ll~

and so

f(f )(1),

f

(t-~ (a, o co)lle)q - / < dt lflpeo~ o co)rry)(to~)Pdl z \q/P cp ~q dt y (13)

0 0 X

Using crucially the fact that q < 19, we deduce from 1-151der's inequality applied to (13) that the left hand side of (12) is dominated by

(10)

2 4 4 a o ~ ~ . G I L B E R T

c o

(f(f

I,fi~o~~ o ~oYvv,(t@vdl~

) ~)l/p

(II,;IIL~,) -~ = Ilfa,~ ' o a,)~llpllv, ll~ (14)

0 x

inverting t h e order of i n t e g r a t i o n in (14). This establishes (12).

(ii) I n proving t h e righ~ h a n d i n e q u a l i t y in (10) we m a y assume q < p ( < ~ ) , i.e., y < 0, since t h e case q = p, i.e., y = 0, has been t a k e n care o f a l r e a d y in t h e o r e m (3.6). F o r f i x e d f in (L p,/~,o)o,~;~c define ,p on (0, ~ ) b y

l#(t)r = t-o 2-OqK(2, f ) , - e .

1/t

K ( 2 , f ) <_ m a x (1, 2 t ) K ( 1 / t , f ) , Since

1/t

I-Ience,

+ oo= Ito.(:

F o r this f u n c t i o n ~,

x 11o4~)

(p+ Oq--q) -1~.

f If ]~ f ~

= 2-O~K(2,f)~ -~ If[p(1 -- z~)d# ~ - ~ 2-+qK(2,f) ~ -~- = (Hf[Eo,~;K) ~

x o

(of. (8)). N o w set ~v = ~v/II~oIIL~. T h e n 9 belongs to Q(0, y) a n d ][fco~ o ~oYIb _< (IIflIo,+K)VP(IIWIIL,) -~ <-- eonst. [ifllo,+K completing t h e p r o o f of (10).

(iii) W e t u r n n e x t to t h e left h a n d i n e q u a l i t y in (11). F i r s t we assume 2o < q < co.

I t is t h e n enough to show t h a t

c o

(/

(t-~ 9 (1 -- Z,)[t~) ~ < const, sup (l[fio~ o ~o)'llp) ~ . (15)

o + e t~(o, ~,)

N o w the left h a n d side of (15) is

c o

s2p(f g(,)t-~ tfL~(l-z,)~,)~-')

0 X

(11)

I N T E R P O L A T I O N B E T W E E N W E I G H T E D ~ P - S I ~ A C E S 245 t h e s u p r e m u m being t a k e n over all g ~ 0

(remember P7 -+- 1~(q/p) -- 1.

where

such t h a t

co

f g(t)~/p ~ d t _ 1

t

0

B u t , w i t h a change in t h e order of integration,

co

f g(t)t-~ ( f lf[~O - x,)dff ) y =

dt

0 X

f lflP~o~ o co)'Pdff

X

Clearly t~ ~ is m o n o t o n i c increasing. Also, b y (16),

co co co co

_

t)l:p'dq'~<(f g(t)i/,,,~"'(f a-o~,

0 1 0 1

regarding f ~ g(2/t)2-~ as a convolution on _R.. Thus w i t h ~ = t0/]lt01IL 1 ,

/

co g(t)t -~

(/

Ifl~(1 - - X,)a~ff 7 _< (][wlILg)~

(:

Ifi"oo~ ~ o a,)~Pdff

)

X

< const. [ sup (llf~~ o ~ , ) % ) q e ~(o, r)

for all g satisfying (16). This establishes (15).

I n case q = co we m u s t replace (15) b y

s u p ( t - ~ 9 (1 - - X,)l[.) --~ c o n s t , s u p tlfio~ o ~o)~llp 9 ( 1 7 } T h e p r o o f o f (17) is e n t i r e l y analogous t o t h a t o f (8) if we r e m e m b e r t h a t 297 = 1 w h e n q = oo.

(iv) F i n a l l y we establish t h e r i g h t h a n d side o f (11). Choose a n y n o n - n e g a t i v e continuous f u n c t i o n o, ~ ~ 0, w i t h s u p p o r t in (0, 1]. Then, because t~ ~ is m o n o t o n i c increasing,

co

~oP~ o co) p' < const. (~, o (o)Pt-P~ -~,

0

t h e c o n s t a n t being i n d e p e n d e n t o f ~. I n this ease, w i t h a change in t h e order o f integration,

y~(t)r = t -~

( ] 6 )

co a0

1/t 1

(12)

246 ffOHN E . GILBERT

co

f

Ifieo~p~ o ~)'~dtt < const,

f (f

t - p ~ tfF((~, o co)Pdtt ~

)

7

X 0 X

(/

co

< eonst. (II~II~)P' (t-~ 9 (a, o r

0

b y tISlder's inequality using crucially the fact t h a t q ~ p. This establishes the right hand side of (11) completing the proof of theorem (4.1).

On Lv(X), 1 ~ la < oo, the semi-group {M(t): 0 • t < oo} of multiplication operators:

M(t): f(x) ---> e-'~ f e LP(X),

is a semi-group of contraction operators of class (q~0) whose infinitesimal generator Ao~ is the multiplication operator A~o: f--> -- wf (cf. [4] p. 3 for definitions). The domain of definition D(A~o ) of A~ becomes a Banaeh space under the graph norm

![fllD(A)o , = IlfJlp + [l~fllp, f c L P ( X ) .

Thus, if co(x) ~ ~ > 0 on X as frequently is the ease in applications, L~(X) is norm equivalent to D(Ao). The general t h e o r y of the c o m m u t a t i v i t y of inter- polation funetors as developed b y Grisvard ([8] pp. 169, 171) enables us to identify the respective complex and real interpolation spaces

[B~:q~ ~o), BPol.q,(X, ~o)]~, (B~:q(X, r B~2~(X, o~))~.q;~:

with

1 ~Po, P l < oo, 0 ~ 0 0 , 0 1 , 0 , ~ 1, 1 ~qo, ql, q ~ oo. (18) THEOR]~ (4.2). Under the restrictions (18),

B v" ~ X o.,So, , o~), Bo..~,(X, ~ ) L P' = B ~ q ( X , o~)

and

where in both cases

1~ = B g J X , o~)

,tB v'~,~,cX , ~o), B~,~(X, o~))~,~; K ,

0 = (1 - ~)0 o + # ~ .

Remark (4.3). I f 09 is not bounded a w a y from 0 on X the (non-homogeneous) Lipschitz spaces used by Grisvard have to be replaced with Lipschitz spaces of

(13)

I : N T E R P O L A T I O ~ ~ B E T W E E N W E I G H T E D LP-SPACES 247 homogeneous character (cf. [16] p. 286). Though important in applications we shall omit a n y such considerations here; the theory of such spaces is developed syste- matically in [6], for instance, to which the reader is referred.

5. Examples

We shall consider briefly the case when X =/~n, /~ is Lebesgue measure on R" and o~(x)~-- ( x ~ - ~ . . . - ~ - x ~ ) " / 2 ~ lxt~; the case of X = Z n, o~(m)= Iml ~ is entirely analogous. Generalizing a definition of Beurling ([3] w167 1, 2), Herz introduced a family of spaces PLY(R") as follows (cf. [11] pp. 298--300): denote b y ~5 the set of functions ~ i n LI(0, ~ ) , ~ ~ 0 satisfying

(i)

f (t)dt

= ][~I] = 1, (ii) ~ is monotonic decreasing, and, with ~ = 1 / p - l/q, set

PLq(R ~) = U (L~(R~): ~ = (~ o eo)~}, y ~ 0 ,

---- O = o >_ 0 .

These spaces are Banach spaces under the respective norms

i n f IIf( o r -< 0 ,

The Beurling spaces of great interest in harmonic analysis are the spaces A P = P L 1, B P = P L ~176 ([3] p. 10). F u r t h e r spaces Kvq(Rn), K~,q(R n) were defined b y Herz to facilitate the discussion of the eLq spaces ([11] pp. 301, 302):

K~,~(~ ~) = (f: f ~ e ~/~(~n)},

K;~(R ~) : { f : f w ~+~'/~ e~L~(R~)}, -- ~ < ~ < co. (19) The following relations between the above spaces and the interpolation spaces

n p n

(L~(R'), I~,(R ))o.q;K, (I'F(R~), L~#o(R ))o,q;~ remove much of the m y s t e r y sur- rounding the Beurling-Herz spaces besides allowing use of the powerful abstract interpolation space theory in their study. I t is interesting to note that Iterz con- nected L ~ and ~L ~ b y complete interpolation (loc.cit., p. 299).

T ~ E O R ~ (5.1). When co(x)= lxl n and 1 ~ p < ~ , l ~ q ~_ ~ , VLq(R n) = (Le(Rn), L v rRn~ o,~ JJl/~-I[v,~;K q ~ P ,

p n

PLq(R") = (LV(Rn), L1/~o( R ))l/p-1/q,q;K, q > P , in particular, the Beurling spaces satisfy

(14)

2 4 8 JOHN E. GILBERT

AP(.R n) = (LP(.Rn), LP(J~'~))I_I/p,1;K, p ~ 1 , p n

Be(R ") = (LV(_R"), L~>(R )h/v,~;r, P # oo.

Furthermore, when K~q(R ~) is defined by (19),

K~~ ~) -- (LP(R"), L~(R"))o,~; K, 0 < 0 < 1.

Proof. Straightforward application of theorem (4.1).

Special cases of the characterizations in theorem (3.7) (ii), (iii) are worth noting:

r 1 1/p

f ,JIx, f ,JIx,

o iC~<_t o i~l~>_t

define equivalent norms on AP(Rn), 1 < p < 0% while

su, (} f lf(x)Fdx) lw

IxLn_<t

(20)

(21)

defines an equivalent norm on Be(Rn), 1 < p < 0o. Beurling in fact took (21) as the defining property of B*'(R~). Properties (20) and (21) have been proved or used b y several authors (cf. [9], [10], [12], [13], [18] for instance); the more general spaces considered by Sunouchi are nothing more t h a n (LR(Z), 2 L ~ ( Z ) )I/~- ~I=,e;K, 1 < fl < 2, and his characterizations are contained in theorem (3.7). The Banach algebra properties of ILv(Zn~, LPIZ ~ k k ! o)\ /Jo, q;K (for appropriate values of 0, q) are studied in [1] and [2] making important use there of the interpolation space properties.

References

1. BENNETT, C. a n d GILBERT, J. E., Homogeneous algebras on the circle I I . Multipliers, D i t k i n Conditions. To appear in Ann. Inst. _Fourier.

2. - - ~ - - --,~-- Harmonic analysis of some function spaces on T n. I n preparation.

3. BEURLING, A., Construction a n d analysis of some convolution algebras. A n n . Inst. Fourier 14 (1964), 1--32.

4. BUTZER, P. L. a n d BERENS, H., Semi-groups of operators and approximation. Springer- Verlag, New York, 1967.

5. CALDER6N, A . , I n t e r m e d i a t e spaces and interpolation, the complex method. Studia Math.

24 (1964), 113--190.

6. GILBERT, J. E. a n d BENNETT, C., Interpolation space theory and harmonic analysis.

Lecture notes i n preparation.

7. GOULAOtrm, C., Prolongements de foncteurs d'interpolation et applications. Ann. Inst.

Fourier 18 (1968), 1--98.

(15)

I N T E R P O L A T I O N B E T W E E N W E I G H T E D L P - S P A C E S 249

8. GRISVAI~D, P., Commutativit4 de deux foncteurs d ' i n t e r p o l a t i o n et applications, d. Math.

Pures A p p l . (9) 45 (1966), 143--206.

9. HELSO~, H., F o u n d a t i o n s of the theory of Dirichlet Series. A c t s Math. 118 (1967), 61--77.

10. HENNIGER, J., F u n c t i o n s of b o u n d e d m e a n square, a n d generalized Fourier-Stieltjes Trans- forms. Canad. J. Math. 22 (1970), 1016--1034.

11. I ~ z , C. S., Lipschitz spaces a n d Bernstein's theorem on absolutely convergent Fourier Transforms. J. Math. Mech. 18 (1968), 283--324.

12. I~NUKAWA, M., Contractions of Fourier coefficients a n d Fourier Integrals. J. Analyse Math. 8 (1960), 377--406.

13. LEINDLER, L., Uber S t r u k t u r b e d i n g u n g e n fiir Fourierreihen. Math. Z. 88 (1965), 418--431.

14. FEETgE, J., A theory of interpolation of normed spaces. Notas lq/Iat. 39 (1963, 1968).

15. --)~-- On a n interpolation theorem of Foias a n d Lions, A c t s Sci. Math. (Szeged) 25 (1964), 255--261.

16. --))-- Espaces d ' i n t e r p o l a t i o n et thgor~me de Soboleff. A n n . Inst. 2'curler 16 (1966), 279--317.

17. --~)-- On interpolation of Lp-spaces with weight function. A c t s Sci. Math. (Szeged) 28 (1967), 61--69.

18. S~r~ouc~I, G., On the convolution algebra of Beurling. Tdhoku Math. J . 19 (1967), 303-- 310.

Received February 29, 1972. J o h n E. Gilbert

U n i v e r s i t y of Texas D e p a r t m e n t of Mathematics Austin, Texas 78712 U.S.A.

Références

Documents relatifs

Instead, we prove in Appendix B a general theorem (Theorem 33) that guarantees the existence of finitely many physical measures whenever the transfer operator has a spectral gap on

Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

KATO, Abstract evolution equations of parabolic type in Banach and Hilbert spaces, Nagoya Math. TANABE, On the abstract evolution equations,

They start with a family of Banach spaces associated with the boundary of the unit disk d in C (the set of complex numbers) and, for each complex number in the

[r]

We shall prove the theorem in this section. Let f,g be two functions as in the theorem. We shall show the existence of the.. required operator T only in the case where g is in Hoc

We study the uniqueness sets, the weak interpolation sets, and convergence of the Lagrange interpolation series in radial weighted Fock spaces.. Fock spaces, Lagrange

We study multiple sampling, interpolation and uni- queness for the classical Fock space in the case of unbounded mul- tiplicities.. Sampling and interpolating sequences in Fock