• Aucun résultat trouvé

<span class="mathjax-formula">$(S_3,S_6)$</span>-Amalgams VII

N/A
N/A
Protected

Academic year: 2022

Partager "<span class="mathjax-formula">$(S_3,S_6)$</span>-Amalgams VII"

Copied!
44
0
0

Texte intégral

(1)

(S

3

, S

6

)-Amalgams VII.

WOLFGANGLEMPKEN(*)- CHRISTOPHERPARKER(**) - PETERROWLEY(***)

Introduction.

This paper, which is the last of the series of papers [LPR1], completes the proof of the MAINTHEOREMstated in Section 1 of [LPR1]. More speci- fically, here we shall be investigating Cases 4 and 5 (as given in Section 12;

just as before we continue the section numbering of [LPR1]). In both of these cases we have that for each critical pair(a;a0)inG,[Za;Za0]ˆ1and a2O(S3). (For notation see Section 1.) Sections 17 and 18 deal withCase 4 and Section 19 is devoted to Case 5. The short Section 20 reviews the main results of [LPR1] and this paper, and shows that together they es- tablishour MAINTHEOREM.

Section 14 concentrates upon the non-central chief factors ofGbwithin Wb(b2O(S6)), the main conclusions being contained in Theorem 17.3. Note the crucial obstructing role the quadratic fours group(Wa0\Ga‡2a‡3)Qb=Qb (Gba‡2-conjugate tohs1;tias given in Proposition 2.5(ii)) in the theorem as highlighted in Lemma 17.4(ii). Also, the fact that ZbWa0 2 when bˆ7 (so (17.3.2) doesn't hold) leads us to a lengthy tussle with the situationbˆ7 before we complete the proof of Theorem 17.3. As ever our old friend the central transvection is never far from the centre of the action; see particu- larly Section 18 where we build upon the results of the previous section and establishthat, for Case 4,b2 f3;5g. Case 4 proves to be a slippery customer.

For example, we are unable till quite late in the day to establish, in full generality, the following symmetry statement that for(a;a0)2 C we have Va06Qb(proved in Lemma 18.7, in fact).

(*) Indirizzo dell'A.: Institute for Experimental Mathematics, University of Essen, Ellernstrasse 29, Essen, Germany.

(**) Indirizzo dell'A.: School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.

(***) Indirizzo dell'A.: School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9JL, United Kingdom.

(2)

That Case 5 is not so elusive as Case 4 is very much due to our having Yb>Zb (b2O(S6)). This gives us extra leverage in the form of the sub- groupsFaˆ hYbGai andHbˆ hFaGbi(where a2D(b)). These subgroups first appeared in Section 12 and were also of use in analyzing Case 2.

Finally, we point out that this paper may be read independently of the other parts with the exception of notation and module data given in Sec- tions 1 and 2, and a small amount of material relating to the case divisions in Section 12.

17. Case 4 - the non-central chief factors inWb.

Sections 17 and 18 are concerned withCase 4. So, in these sections, we shall be assuming

HYPOTHESIS17.0. Vb=Zb4andcoreGaVbˆVa 1\Vbˆ[Vb;Gab;Gab

E(23).

LEMMA17.1. h(Ga;Ua)ˆ3

PROOF. Sinceb>1 andGabˆQaQbby Lemmas 11.1(iii) and 12.2(ii), h(Ga;Ua=[Ua;Qa])ˆ1. Because coreGaVbˆ[Vb;Gab;Gab] wealso obtain h(Ga;[Ua;Qa]=Va 1\Vb)ˆ1, so givingh(Ga;Ua)ˆ3.

LEMMA17.2. Ifb>3, thenh(Gb;Wb)3.

PROOF. By combining Lemmas 12.2(ii) and 12.4(i) with [Theorem 1;

LPR2] weobtain thelemma.

The main result of this section which gives us a foothold in analysing Case 4 whenb>5is the following theorem.

THEOREM 17.3. Assume Hypothesis 17.0 holds, and b>5, and let d2O(S6). Then h(Gd;Wd)ˆ3 with the non-central chief factors in Wd being isomorphic natural modules.

We will present the proof of Theorem 17.3 in a sequence of results.

Since we shall suppose the theorem is false and seek a contradiction, we shall assume in Lemma 17.4 and Theorems 17.5 and 17.6 that Hypoth- esis 17.0 andb>5holds but not the conclusions of the theorem. An im- portant intermediate step, achieved in Theorem 17.6, is that of finding a

(3)

critical pair(d;d0)for which[Zd‡1;Wd0]6ˆ1. Lemma 17.4 contains various observations needed for the proof of Theorem 17.6.

LEMMA 17.4. Let (a;a0)2 C and suppose that [Zb;Wa0]ˆ1. Put XˆWa0\Ga‡2a‡3. Then

(i) [Wa0 :X]ˆ2 and hence there exists a0‡32V(G) such that d(a0;a0‡3)ˆ3and(a0‡3;a‡3)2 C

(ii) XGband, in the notation of Proposition 2.5(ii),XQb=Qbis Gba‡2=Qb-conjugate tohs1;ti;

(iii) Za‡2[X;Vb]E(23);

(iv) Za‡2Wa0; and

(v) [Vb;Gba‡2]ˆ[X;Vb](Vb\Va‡3).

PROOF. Since[Zb;Wa0]ˆ1, [Za‡2;Wa0]ˆ1. Therefore hGa‡2a‡3;Wa0i normalizesZa‡2 and so is a proper parabolic subgroup ofGa‡3. Hence, by Lemma 3.10, [Wa0:X]2 andXQa‡2Gb. Notethat, asWa0is abelian, X acts quadratically on Vb, so j[X;Vb]j 23 by Proposition 2.5. If either XˆWa0 or j[X;Vb]j 22 hold, then Theorem 17.3 follows. Thus [Wa0 :X]ˆ2 andj[X;Vb]j ˆ23. Weclaim that [X;Vb]6ˆ[Vb;Gba‡2;2]. For if not then [Vb;Gba‡2;2]ˆ[X;Vb]Wa0and Proposition 2.5(ii) yields that Wa0CGa‡3([Va‡3;Ga‡2a‡3;2])ˆGa‡2a‡3, contradicting [Wa0:X]ˆ2. So, since[X;Vb](Vb\Va‡3)[Vb;Gba‡2] weobtain (v). IfjXQb=Qbj 2, then [Wa0 :CWa0(Za)]23and again we have Theorem 17.3. Bearing in mind that Xacts quadratically onVb, consulting Proposition 2.5(ii) gives thatXQb=Qb

isGba‡2=Qb-conjugatetohs1;tiandZa‡2[X;Vb]. This proves (i), and (ii) and (iii), and (iv) follows from (iii).

THEOREM17.5. Assume that for all(d;d0)2 C,[Zd‡1;Wd0]ˆ1. Then for each(a;a0)2 Cwe haveVa0 6Qb.

PROOF. Le t (a;a0)2 Cbesuch thatVa0Qb. ThenVa0 Ga,Va0 6Qa and Va0 interchanges l and m where D(a)ˆ fl;m;bg. Further, we have Zbˆ[Vb;Va0].

(17.5.1) (i)UaQa0 2Ga0 1. (ii) Ifb>7, thenUaGa0.

If there exists (a 2;a0 2)2 C, then Lemma 17.4(iv) applied to (a 2;a0 2) gives ZaWa0 2Qa0, as b>5. Therefore UaQa0 2

(4)

Ga0 1. Next we verify part (ii). Lemma 17.4(i) yields the existence of (a0‡3;a‡3)2 Cwithd(a0;a0‡3)ˆ3. Now using Lemma 17.4(iv) on this critical pair gives Za0‡1Wa‡3. Because b>7 by assumption [Wa‡3;Ua]ˆ1, and so [Za0‡1;Ua]ˆ1. Hence Ua centralizes Za0 2Za0ˆ

ˆZa0 1and thusUaQa0 1Ga0.

(17.5.2) If UaGa0, then [Ua;Va0]E(23) and Za0[Ua;Va0

ˆCVa0(Ua)Ua.

SinceUaacts quadratically uponVa0,j[Ua;Va0]j 23by Proposition 2.5.

On the other hand, Va0Ga, Va0 6Qa and Lemma 17.1 imply that 23 j[Ua;Va0]j. HenceCVa0(Ua)ˆ[Ua;Va0]E(23)withZa0[Ua;Va0]Ua.

SetXlˆWl\Ga0 andXmˆWm\Ga0. (17.5.3) Ifb>7, th en[Wl:Xl]2.

First we show that WlGa0 3. If Wl6Qa0 4, then we may find (a 4;a0 4)2 C. Applying Lemma 17.4(iv) to (a 4;a0 4) and using b>7givesZa 2Wa0 4Qa0. But thenZlZa 2Qa0forcesZaQa0. SoWlQa0 4Ga0 3holds.

We now consider two following cases:- [Ua;Va0 2]ˆ1 and [Ua;Va0 2]6ˆ1. Suppose [Ua;Va0 2]ˆ1. Then orders, (17.5.1)(ii) and (17.5.2) give Va0 2\Va0ˆCVa0(Ua)Ua. Hence, as b>5, Wl\Qa0 3

commutes with Va0 2\Va0 ˆ[Va0 2;Ga0 2a0 1;2] whence we obtain Wl\Qa0 3Ga0. So Wl\Qa0 3Xl. Since a0 32O(S3), we have shown that [Wl :Xl]2 when[Ua;Va0 2]ˆ1. So now we examine the case[Ua;Va0 2]6ˆ1. SinceVa0centralizesVa0 2and interchangeslandm, we have[Vl;Va0 2]6ˆ1. IfVa0 2Ql, th enZlˆ[Vl;Va0 2]Va0 2Qa0, against (a;a0)2 C. So Va0 26Ql and therefore (x;l)2 C for some x2D(a0 2). By Lemma 17.4(iv)Za0 3Wl. BecauseWl in abelian this gives WlQa0 3 and then using Za0 Ua (by (17.5.1)(ii) and (17.5.2)) together with the parabolic argument we conclude that [Wl:Xl]2.

This verifies (17.5.3).

Our next objective is to establisha weaker version of (17.5.3) when bˆ7.

(17.5.4) Supposebˆ7andZb6ˆZa‡5. Then[Wl :Xl]2.

By Proposition 2.5(ii) Zbˆ

Vb;Va0

Vb\Va‡3\Va‡5\Va0():

(5)

We divide the proof of (17.5.4) into the two following cases:-ZbZa‡4and Zb6Za‡4. Beginning with the former, the assumptionZb6ˆZa‡5and() imply that

Za‡4ˆZbZa‡5Va‡3\Va‡5\Va0:

Also, ZbZa‡4 yields Za‡2ˆZbZa‡3ˆZa‡4 and hence hGa‡2a‡3;Ga‡3a‡4i 6ˆGa‡3. This, when combined with Lemma 17.4(i), yields the existence of (a0‡3;a‡3)2 Cfor whichVa0‡2Qa‡3=Qa‡3 is not a central transvection of Ga‡3a‡4=Qa‡3 on Va‡3=Za‡3. Therefore [Va0‡2;Va‡3]6Za‡4. Since [Va0‡2;Va‡3]Va‡3\Va‡5\Va0 (again by Proposition 2.5(ii)), we deduce that

E 23

Za‡4

Va0‡2;Va‡3

Va‡3\Va‡5\Va0:

ConsequentlyVa‡3\Va‡5ˆVa‡5\Va0. Since [Ua;Va‡3]ˆ1,[Ua;Za‡6]ˆ1 and soUaGa0by (17.5.1)(i). Hence, using (17.5.2),

Va‡5\Va0 ˆCVa0(Ua)Ua:

Now [Wl;Ua]ˆ1 and Proposition 2.5(ii) (applied twice) force WlGa0, so proving (17.5.4) in this case. Now we assume thatZb6Za‡4. So, by()

Va‡3\Va‡5 ˆZa‡4ZbˆZa‡4Za‡2:

If Za‡5Za‡2, then we obtain Za‡2ˆZa‡4 whence Va‡3\Va‡5 ˆ

ˆZa‡4Za‡2ˆZa‡2, which is impossible. ThusZa‡56Za‡2and hence Va‡3\Va‡5ˆZa‡4Za‡2ˆZa‡5Za‡2():

We claim that [Ua;Va‡5]ˆ1. For suppose [Ua;Va‡5]6ˆ1. Then, by Proposition 2.5(ii) and (17.5.1)(i),

Za‡5ˆ

Ua;Va‡5

Vb\Va‡3\Va‡5:

Now Za‡2ˆZbZa‡3Vb\Va‡3\Va‡5 together with our earlier deduc- tion Za‡56Za‡2 forces Vb\Va‡3\Va‡5E(23). But then Vb\Va‡3 ˆ

ˆVa‡3\Va‡5 whence Proposition 2.5(ii) gives Wa0 CGa‡3(Vb\Va‡3) Ga‡2a‡3, contradicting Lemma 17.4(i). Hence[Ua;Va‡5]ˆ1, as claimed.

SoUaGa0 and therefore

Za‡6CVa0(Ua)Ua

by (17.5.2). Since[Wl;Ua]ˆ1, we get[Wl;Za‡6]ˆ1which, by(), im- plies that Wl centralizes Va‡3\Va‡5. Consequently WlGa‡5. Since [Wl;Za0]ˆ1, employing the parabolic argument gives [Wl :Xl]2 and completes the proof of (17.5.4).

(6)

We now show that we do in fact have some critical pairs to which we may apply (17.5.4).

(17.5.5) If bˆ7, then there exists (d;d0)2 C suchthat Vd0 Qd‡1 and Zd‡16ˆZd‡5.

If Zb6ˆZa‡5, then we may take (d;d0)ˆ(a;a0). So we may assume ZbˆZa‡5. Thus Za‡2ˆZa‡4 and therefore hGa‡2a‡3;Ga‡3a‡4i 6ˆGa‡3. Then, by Lemma 17.4(i), we may find (a0‡3;a‡3)2 C suchthat Va0‡2Qa‡3=Qa‡3is not a central transvection ofGa‡3a‡4=Qa‡3onVa‡3=Za‡3. IfVa‡36Qa0‡2, the there existsx2D(a‡3) suchthat(x;a0‡2)2 C. Ap- plying Lemma 17.4(v) to(x;a0‡2)we see that

Va‡3;Ga‡3a‡4

ˆ

Va‡3;Wa0‡2\Ga‡4a‡5

Va‡3\Va‡5 :

But thenVa0‡2centralizes[Va‡3;Ga‡3a‡4], a contradiction. SoVa‡3Qa0‡2

and[Va0‡2;Va‡3]ˆZa0‡2. FurtherZa0‡26ˆZa‡5, sinceVa0‡2Qa‡3=Qa‡3is not a central transvection onVa‡3=Za‡3. Taking(d;d0)ˆ(a0‡3;a‡3)we see that (17.5.5) holds

Xl;Va0 Xm;Va0

Ua\Ga0: (17:5:6)

Observe thatb>5impliesUaZ(Ga[4]). So, since[Xl;Va0]Ga[4], Xl;Va0

CVa0 Ua\Ga0 : SupposeUaGa0 holds. Then, using (17.5.2),

Xl;Va0

CVa0 Ua

Ua\Ga0:

Now we consider the possibility Ua6Ga0. From (17.5.1)(i) and Lem- ma 17.1, we get [Ua;Za0]6ˆ1 and j(Ua\Ga0)Qa0=Qa0j 22. Hence, as Ua\Ga0 acts quadratically onVa0=Za0, Proposition 2.5(ii) gives

Ua\Ga0;Va0

Za0CVa0 Ua\Ga0

Xl;Va0 : From[Ua;Za0]6ˆ1,Za0 6G[4]a and so we deduce that

Xl;Va0

ˆ

Ua\Ga0;Va0

Ua\Ga0:

A similar argument proves that[Xm;Va0]Ua\Ga0 and so (17.5.6) holds.

Wl:Wl\Wm 2 (17:5:7)

SinceVa0 interchangeslandm,Va0acts uponXlXmandXl\Xm. (Note thatXlandXmnormalize eachother sinceb5.) So, by (17.5.6),

XlXm;Va0

ˆ

Xl;Va0 Xm;Va0

Ua\Ga0 Xl\Xm:

(7)

Letx2Va0be suchthatlxˆm. IfXl\Xm<

cXl, then[XlXm;x]6Xl\Xm

contrary to [XlXm;Va0]Xl\Xm. Therefore Xl\XmˆXl, and so XlˆXm. Ifb>7, then (17.5.7) follows from (17.5.3). Forbˆ7, the above argument in conjunction with(17.5.4), (17.5.5) and Lemma 11.1(vii) also yields[Wl:Wl\Wm]2.

Appealing to Lemma 11.1(vii), (17.5.7) implies that[Wa0:Wa0\Wa0 2] 2[Wa0 2:Wa0 2\Wa0 4], whence [Wa0 :Wa0\Wa0 4]22. Since [Za;Wa0 4]ˆ1, this forcesh(Ga0;Wa0)2, against Lemma 17.2. From this contradictory state of affairs we conclude thatVa0 6Qb.

We are now ready to begin the proof of

THEOREM17.6. There exists(d;d0)2 Csuch that[Zd‡1;Wd0]6ˆ1.

PROOF. Arguing for a contradiction wesupposethat [Zd‡1;Wd0]ˆ1 for all (d;d0)2 C.

(17.6.1) For(a;a0)2 C,[Vb;Va0]Za‡2\Za0 1.

Lemma 17.4(v) gives [Vb;Gba‡2]ˆ[X;Vb](Vb\Va‡3) (where XˆWa0\Ga‡2a‡3). SinceWa0 is abelian and[X;Vb]Wa0, together with [Va0;Vb\Va‡3]ˆ1, we get that Va0 centralizes [Vb;Gba‡2]. Thus [Vb;Va0]Za‡2. By Theorem 17.5 Va0 6Qb and so there exists (a0‡1;b)2 C. Then a similar argument gives[Vb;Va0]Za0 1.

(17.6.2) For(a;a0)2 Cwe have[Wa0;Va‡3]ˆZa‡4.

It follows directly from (17.6.1) that [Wa0;Va‡3]Za‡4. Hence jWa0Qa‡3=Qa‡3j 2 and so, by Lemma 17.4(i), Wa0\Qa‡3ˆX (ˆWa0\Ga‡2a‡3). If[X;Va‡3]ˆ1, thenXcentralizes[Vb;Gba‡2]by Lem- ma 17.4(v) which impliesjXQb=Qbj 2, contradicting Lemma 17.4(ii). So Za‡3ˆ[X;Va‡3][Wa0;Va‡3]. Since Wa0 6Qa‡3, [Wa0;Va‡3]6ˆZa‡3 and we have (17.6.2).

Za‡4Va0: (17:6:3)

For l with l6ˆa0 2 and d(l;a0)ˆ2 we have, as Va‡3 centralizes Va0\Vl ˆ[Vl;Gl 1l;2], that [Va‡3;Vl]Va0\Vl. So, since Wa0 ˆ

ˆVa0 Q

d(l;a0)ˆ2Vl, we get, using (17.6.2), that Za‡4ˆ

Wa0;Va‡3

ˆ Y

d(l;a0)ˆ2 l6ˆa0 2

Vl;Va‡3 Va0:

(8)

(17.6.4) Let (a;a0)2 C and set XˆWa0\Ga‡2a‡3. Then we have Za‡3ˆ[Vb;Va0]ˆZa0 2ˆVa0\[X;Vb].

By Lemma 17.4(iii) and (17.6.3), Za‡3Va0\[X;Vb]. Also we clearly have[Va0;Vb]Va0\[X;Vb]. Now suppose thatjVa0\[X;Vb]j>2, and put Wa0 ˆWa0=Va0. Then, by Lemma 17.4(i), (iii), j[Vb;X]j 2[Wa0 : X].

Hence h(Ga0;Wa0)2 and thus h(Ga0;Wa0)ˆ3 by Lemma 17.2, with Vb acting as a transvection upon each of the non-central chief factors within Wa0. By (17.6.1)Vbalso acts as a transvection onVa0=Za0and thus the non- central chief factors in Wa0 are isomorphic natural modules, a contra- diction. Therefore we deduce that jVa0\[X;Vb]j ˆ2 and so Za‡3ˆ

ˆVa0\[X;Vb]ˆ[Vb;Va0]. SinceVa0 6Qb by Theorem 17.5, a symmetric argument gives[Va0;Vb]ˆZa0 2. This completes the proof of (17.6.4).

(17.6.5) For(a;a0)2 Cwe haveZa‡4ˆZa0 1.

By (17.6.4) applied to (a;a0) we obtain Za‡3ˆZa0 2. From Lem- ma 17.4(i) there exists(a‡3;a0‡3)2 Cand using (17.6.4) on this critical pair givesZa0 ˆZa‡5. Therefore

Za‡4ˆZa‡3Za‡5ˆZa0 2Za0ˆZa0 1; as required.

b>9:

(17:6:6)

Suppose (17.6.6) is false. Thenbˆ7or 9. Let(a;a0)2 C. Just as in (17.6.5) we have Za‡5 ˆZa0 and this rules out bˆ7. Since Va0 6Qb by Theo- rem 17.5, we have(l;b)2 Cfor somel2D(a0)and likewise we deduce that ZbˆZa0 4. So, asbˆ9,ZbˆZa‡5ˆZa0. Therefore

Za0 ˆZbVa0\ X;Vb

ˆZa‡3

by Lemma 17.4(iii) and (17.6.4), whereasZb6ˆZa‡3. Thus (17.6.6) holds.

Now we fix(a;a0)2 Cand letx2D(a0)n fa0 1gbe suchthat (i) Zx6ˆZa‡6; and

(ii) hVb;Ga0xi ˆGa0.

By Proposition 2.8(viii) we may choose r2D(a0)n fa0 1g suchthat hVb;Ga0ri ˆGa0. SinceZr6/Ga0and[Vb;Za‡6]ˆ1clearlyZr6ˆZa‡6, so we may takexˆr.

PutRxˆGx[4]andXˆWa0\Ga‡2a‡3. RxQa‡5:

(17:6:7)

(9)

IfRx6Qa‡5, then there exists r suchthat d(x;r)ˆ4,d(r;a‡5)ˆb and Zr6Qa‡5. So (r;a‡5)2 C. Applying (17.6.5) to (r;a‡5) yields Zx ˆZa‡6contrary to the choice ofx. ThusRxQa‡5.

(17.6.8) (i) Rxˆ(Rx\Ga‡2a‡3)Wa0; and (ii) (Rx\Ga‡2a‡3)QbˆXQb.

By (17.6.6) Ga0[5] is abelian. SinceZa‡2Wa0 andZa‡4ˆZa0 1Wa0 by Lemma 17.4(iv) and (17.6.5), Rx commutes withbothZa‡2 and Za‡4. Hence, using (17.6.7),

RxQa‡4Ga‡3 and

Ga‡2a‡3;Rx

6ˆGa‡3:

Therefore [Rx:Rx\Ga‡2a‡3]2. Since Wa0 Rx and [Wa0:X]ˆ2 by Lemma 17.4(ii), we have (i). Further, note that Rx\Ga‡2a‡3 Gb. From [Vb;Rx\Ga‡2a‡3]Ga0[5]we have thatRx\Ga‡2a‡3acts quadratically on Vb. BecauseXRx\Ga‡2a‡3, Lemma 17.4(ii) implies(Rx\Ga‡2a‡3)Qbˆ

ˆXQb, which completes the proof of (17.6.8).

Since, by Lemma 17.4(iii),Zb[X;Vb], (17.6.8)(ii) implies that Vb;Rx\Ga‡2a‡3

ˆ Vb;X

Wa0: Consequently

Vb;Rx

ˆ

Vb; Rx\Ga‡2a‡3 Wa0

ˆ

Vb;Rx\Ga‡2a‡3

Vb;Wa0

Wa0 Rx; by (17.6.8)(i). Hence

Rx/

Vb;Ga0x

ˆGa0;

a contradiction which completes the proof of Theorem 17.6.

We bring the following two groups into the fray:- Fd

Ud;Qd Hl

FdGl

whered2O(S3)andl2D(d). These groups will play a somewhat similar role to theFaandHbdefined in Section 12; note that our presentFd,Hland their counterparts in Section 12 are entirely different groups.

LEMMA17.7. Let(a;a0)2 C.

(i) h(Ga;Fa)ˆ2.

(10)

(ii) FaVb6/Gb. (iii) Hb[Wb;Qb]Vb.

PROOF. Sinceh(Ga;Ua=[UaQa])ˆ1, (i) follows from Lemma 17.1.

Suppose (ii) is false. From[Qb;FaVb]ˆ[Qb;Fa][Qb;Vb]ˆ[Qb;Fa]Zbˆ

ˆ[Qb;Fa], we then get [Qb;Fa]/ Gb. Since j[Qb;Fa]j 24 and Zb[Qb;Fa], we deduce thatO2(Gb)centralizes[Qb;Fa]. If(Va 1\Vb)\

\[Qb;Fa]>Zb, then the uniseriality ofGab onVb=ZbgivesZa [Qb;Fa], against Lemma 1.1(ii). Therefore (Va 1\Vb)\[Qb;Fa]ˆZb. Also, [Fa;Qa]Va 1\Vband thus

Qa\Qb;FaVb

ˆ

Qa\Qb;Fa

Qa\Qb;Vb

Qb;Fa

\ Va 1\Vb

ˆZb:

Now we may obtain a contradiction as in Lemma 12.5(ii). This proves (ii).

Turning to (iii) we first show that Va 1\[Wb;Qb]Vbc>Vb\Va 1. By [Proof of Theorem 1; LPR2] (Qa\Qb)Qa 1=Qa 1 is not contained in the quadratic E(23)-subgroup of Ga 1a=Qa 1 (on Va 1=Za 1), and so [Va 1;Qa\Qb]6Va 1\Vb. Since [Va 1;Qa\Qb]Va 1\[Wb;Qb], we see thatVa 1\[Wb;Qb]Vb>

cVb\Va 1. Hence Va 1

Wb;Qb Vb=

Wb;Qb Vbˆ2

and therefore[Va 1;Qa][Wb;Qb]Vb. Since this holds for alla 12D(a), Faˆ[Ua;Qa][Wb;Qb]Vband thusHb[Wb;Qb]Vb.

With Theorem 17.6 and Lemma 17.7 to hand we now start the

PROOF OFTHEOREM17.3. We suppose the theorem is false and seek a contradiction. By Theorem 17.6 we may choose (a;a0)2 C suchthat [Zb;Wa0]6ˆ1. In particular,Zb6Wa0 and henceVa0 6Qb. So there exists r2D(a0)suchthat(r;b)2 C.

Wb6Qa0 2 andWa0 6Qa‡3: (17:3:1)

Suppose WbQa0 2 holds. By Lemma 17.4(i) applied to(r;b)we de- duce that [Za0;Wb]6ˆ1. In particular, Za0 6Wb. So, since Wb\Ga0 acts quadratically upon Va0, j[Wb\Ga0;Va0]j 22. But [Wb:Wb\Ga0]2 whence h(Gb;Wb)ˆ3 with all non-central chief factors withinWb being isomorphic natural modules. Thus we must have Wb6Qa0 2. A similar argument shows thatWa0 6Qa‡3.

From now until (17.3.9) we assume, in addition, thatb>7.

(11)

By (17.3.1) there exists(b 3;a0 2)2 Cwithd(b;b 3)ˆ3. We dis- play the part ofGthat will be of interest to us (lhas yet to be introduced).

Zb6Wa0 2: (17:3:2)

Because b>7,ZbWa0 2 would imply [Zb;Wa0]ˆ1 contrary to the choice of(a;a0).

(17.3.3) (i) Wa0 26Gbb 1.

(ii) [Wa0 2:Wa0 2\Qb]22.

(i) Suppose Wa0 2Gbb 1 holds. Since [Wa0 2;Zb 1]Zb and, by (17.3.2), Zb6Wa0 2, [Wa0 2;Zb 1]ˆ1 and so Wa0 2Qb 1Gb 2. Thus j[Wa0 2;Vb 2]j 23 which implies h(Ga0 2;Wa0 2)ˆ3 withall non- central chief factors within Wa0 2 being isomorphic natural modules, a contradiction. ThereforeWa0 26Gbb 1.

(ii) Assume that [Wa0 2:Wa0\Qb]2 holds. Since Zb6Wa0 2, [Wa0 2\Qb;Vb]ˆ1. So [Wa0\Qb;Zb 1]ˆ1 and thus Wa0 2\Qb Qb 1Gb 2. Since the theorem is supposed false we must have j[Wa0 2\Qb;Vb 2]j ˆ23. Also from[Wa0 2\Qb;Vb]ˆ1we have

Vb\Vb 2CVb 2 Wa0 2\Qb :

Consequently, as Wa0 2\Qb acts quadratically on Vb 2 and not as a transvection onVb 2=Zb 2,

Vb\Vb 2ˆCVb 2 Wa0 2\Qb

ˆ

Wa0 2\Qb;Vb 2

Wa0 2: Therefore [Vb\Vb 2;Wa0 2]ˆ1 whence Wa0 2Gbb 1 by Proposition 2.5(ii), contrary to part (i). So we have proved (ii).

(17.3.4) (i) Vb\Va‡3ˆZb[Wa0 2;Vb]ˆCVb(Wa0 2); and (ii) j[Wa0 2;Vb]j ˆ22.

By (17.3.3)(ii)Wa0 2acts as at least a quadratic fours group onVb=Zb.

(12)

ThereforeVb\Va‡3ˆCVb(Wa0 2)andVb\Va‡3ˆZb[Wa0 2;Vb]. Because [Wa0 2;Vb]Wa0 2 (17.3.2) implies that j[Wa0 2;Vb]j ˆ22, and we have (17.3.4).

Zb 2;Wa0 2 6ˆ1:

(17:3:5)

If we have[Zb 2;Wa0 2]ˆ1, then Lemma 17.4(iv) applied to the critical pair(b 3;a0 2) givesZb 1Wa0 2. HenceZbZb 1Wa0 2, contra- dicting (17.3.2). Therefore[Zb 2;Wa0 2]6ˆ1.

By (17.3.5) we have (b 3;a0 2)2 C with [Zb 2;Wa0 2]6ˆ1. So we may repeat the procedure that produced (b 3;a0 2) from (a;a0), this time starting with (b 3;a0 2) to obtain (l;a0 4)2 C with d(l;b 2)ˆ3 and [Zb 2;Wa0 2]6ˆ1. As a consequence all the results obtained for(b 3;a0 2)also hold for (l;a0 4). In particular,

(17.3.6) (i) Zb 26Wa0 4(analogue of (17.3.2)); and (ii) j[Wa0 4;Vb 2]j ˆ22 (analogue of (17.3.4)(ii)).

(17.3.7) [Wa0 4;Vb 2]Va0 4.

This follows from the fact thatWa0 4ˆVa0 4 Q

d(m;a0 4)ˆ2Vmand, for each m,[Vm;Vb 2]Va0 4\Vm.

Wa0 4;Vb 2

ˆ

Wa0 2;Vb

Vb\Vb 2: (17:3:8)

From [Vb;Wa0 4]ˆ1, [Vb\Vb 2;Wa0 4]ˆ1 and so Wa0 4Gb 2b 1

and [Wa0 4;Vb 2]Vb\Vb 2Vb. Now b>7 gives [Wa0 2;Wa0 4]ˆ1

and hence

Wa0 4;Vb 2

CVb Wa0 2

ˆVb\Va‡3;

using (17.3.4)(i). If [Wa0 4;Vb 2]6[Wa0 2;Vb], then, as [Vb\Va‡3: [Wa0 2;Vb]]ˆ2by (17.3.4)(ii),

Vb\Va‡3ˆ

Wa0 4;Vb 2

Wa0 2;Vb : Then, using (17.3.7), we deduce that

ZbZa‡2Vb\Va‡3ˆ

Wa0 4;Vb 2

Wa0 2;Vb Va0 4

Wa0 2;Vb

Wa0 2;

against (17.3.2). Therefore [Wa0 4;Vb 2] [Wa0 2;Vb] and hence [Wa0 4;Vb 2]ˆ[Wa0 2;Vb]by (17.3.4)(ii) and (17.3.6)(ii). This establishes (17.3.8).

(13)

We now unveil the desired contradiction. Combining (17.3.4)(i) and (17.3.8) gives

Vb\Va‡3ˆZb

Wa0 2;Vb

Zb Vb 2\Vb

Vb 2\Vb:

Thus Vb\Va‡3ˆVb 2\Vb by orders. But then Wa0 2 centralizes Vb 2\Vb whence Wa0 2Gbb 1 by Proposition 2.5(ii), contradicting (17.3.3)(i). From this we conclude that

bˆ7:

(17:3:9)

Before making essential use of (17.3.9) we observe the following gen- eration result forWb. Fort2D(b), putL(b;t)ˆ fg2D(b)jZg6[Vb;Gbt]g.

(17.3.10) Lett2D(b)andx2GbtnQb. If[Wb=Vb:CWb=Vb(x)]23, then Wbˆ

Ugjg2L(b;t) Ut:

From Lemma 17.7Hb[Wb;Qb]Vb. Also we note that [Ua;Qb;Qb] [Ua;Qa]Hb and [Ua;Qa;Qb;Qb]Vb. Thus Wb=[Wb;Qb]Vb, [Wb;Qb]Vb=Hb, Hb=[Hb;Qb] and [Hb;Qb]Vb=Vb are all GF(2)(Gb=Qb)- modules. NowHb=[Hb;Qb]Vbis generated by an involution centralized by Gab and[Hb;Qb]Vb=Vbis either trivial or generated by an involution cen- tralized byGab. Sinceh(Gb;Wb=Vb)2, our assumption implies

Hb=Vb:CHb=Vb(x) 22

and so Proposition 2.15 applies to both these sections. ThusHb=[Hb;Qb]Vb and[Hb;Qb]Vb=Vbare bothquotients of 4

1 1. Proceeding as in Lem- ma 5.17 gives

Hbˆ Ug;Qg

jg2L(b;t) Ut;Qt The same arguments apply toWb=Hb, and so (17.3.10) holds.

We shall make repeated use, often without reference, of the following facts.

(17.3.11) Let(d;d0)2 C.

(i) [Vd‡1;Vd0]Vd‡1\Vd‡3\Vd‡5\Vd0. (ii) [Vd‡3;Wd0]Vd‡3\Vd‡5\Vd0.

(iii) Vd‡1\Vd‡36ˆVd‡3\Vd‡5. Further, if Vd0 6Qd‡1, then Vd‡3\

\Vd‡56ˆVd‡5\Vd0.

Part (i) is a consequence of[Vd‡1;Vd‡5]ˆ[Vd0;Vd‡3]ˆ1, and (ii) fol- lows from (i). IfVd‡1\Vd‡3ˆVd‡3\Vd‡5, then, using Proposition 2.5(ii),

(14)

Wd0 Gd‡1. Hence j[Wd0;Vd‡1]j 23, a contradiction. Therefore Vd‡1\

\Vd‡36ˆVd‡3\Vd‡5 and (iii) holds.

Our next goal is (17.3.25), which asserts that jWa0Qa‡3=Qa‡3j ˆ2 for any(a;a0)2 Cfor which[Zb;Wa0]6ˆ1.

The results (17.3.12), (17.3.13) and (17.3.14) prepare the ground for the proof of (17 3.25). For the duration of these results(d;d0)is assumed to be a critical pair for which [Zd‡1;Wd0]6ˆ1 and jWd0Qd‡3=Qd‡3j 6ˆ2. (Recall from (17.3.1) thatWd0 6Qd‡3and sojWd0Qd‡3=Qd‡3j>2.) Also recall that Vd0 6Qd‡1.

(17.3.12) (i) [Wd0;Vd‡3]ˆVd‡3\Vd‡5\Vd0 E(22).

(ii)Zd‡36Vd0.

(iii)[Wd0\Qd‡3;Vd‡3]ˆ1.

By assumptionjWd0Qd‡3=Qd‡3j>2and thereforej[Wd0;Vd‡3=Zd‡3]j 22. Thus parts (i) and (ii) follow from (17.3.11)(ii), (iii). Because

Wd0\Qd‡3;Vd‡3

Zd‡3\Vd0; (ii) implies (iii).

(17.3.13) Vd0Qd‡1=Qd‡1 is a non-central transvection of Gd‡1d‡2=Qd‡1 (acting onVd‡1=Zd‡1) andj[Vd‡1;Vd0]j ˆ2.

First we demonstrate that j[Vd‡1;Vd0]j ˆ2. Put V ˆVd‡1\Vd‡3\

\Vd‡5\Vd0. If j[Vd‡1;Vd0]j>2, then, by (17.3.11) (i), (iii), [Vd‡1;Vd0]ˆV. Th us, by (17.13.12)(ii), Zd‡3V ˆVd‡1\Vd‡3 and con- sequently Wd0 centralizes [Vd‡3=Zd‡3;Gd‡2d‡3;2]. Th is forces Wd0 Gd‡2d‡3, and so [Wd0 :Wd0\Gd‡1]2. Since [Wd0;Zd‡1]6ˆ1 and Wd0 acts quadratically on Vd‡1, we must h ave [Wd0\Gd‡1;Vd‡1

ˆ[Vd‡1;Vd0]Vd0. But this gives the impossible h(Gd0;Wd0=Vd0)1. So j[Vd‡1;Vd0]j ˆ2. Observe thatVd0Qd‡1=Qd‡1 being a central transvection of Gd‡1d‡2=Qd‡1 on Vd‡1=Zd‡1 gives [Vd‡1;Vd0]Zd‡2. By (17.3.12)(ii) [Vd‡1;Vd0]6ˆZd‡3 and hence Zd‡2ˆ[Vd‡1;Vd0]Zd‡3, wh ich yields [Zd‡1;Wd0]ˆ1, whereas[Zd‡1;Wd0]6ˆ1. This proves (17.3.13).

From [Vd‡1;Vd0]6ˆZd‡3, [Vd‡1;Vd0]Vd‡1\Vd‡3\Vd‡5 and Vd‡1\

\Vd‡36ˆVd‡3\Vd‡5, we have that(Vd‡1\Vd‡3)(Vd‡3\Vd‡5)E(24). Let Ed‡3 be suchthat Gd‡3d‡4Ed‡3>Qd‡3 and Ed‡3 centralizes (Vd‡1\Vd‡3)(Vd‡3\Vd‡5)=Zd‡3; note thatEd‡3 induces a transvection on Vd‡3=Zd‡3.

(17.3.14) (i) Wd0\Ed‡3Gd‡1and[Wd0\Ed‡3;Vd‡1]Vd‡1\Vd‡3. (ii) [Wd0 :Wd0\Ed‡3]22.

Références

Documents relatifs

Or, (x — i) 2 -f- 3 est premier avec 5, car le chiffre des unités simples du carré d'un nombre entier, augmenté de 3, est nécessairement différent de 5 et

(The presentation is different from ours, but it is easy to see that the same intrinsic derivative is produced.) Boardman goes on to show that the Thom-Boardman varieties can be

Remark 12/ If X is a non trivial zcode, then a(X)&lt; 1 and this inequality holds also for X maximal z-code and therefore for X z-complete, It follows that, for a non trivial z-code

Such hypotheses on the singularities are satisfied by either actual or infinitely-near singularities of V. To be precise, all the singularities of V are resolved with local

toires périodiques) ou bien des courbes homéomorphes à R , partant et aboutissant à un même point de selle.. Dans ces conditions, il existe

Ve already recall in the Introduction that a (non deterministic) tree automaton is a (relational) T- algebra (plus the initial and terminal states), where T is a Lawvere's theory,

Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention