• Aucun résultat trouvé

Novel approach for intra-articular drug delivery : magnetically retainable biodegradable microparticles

N/A
N/A
Protected

Academic year: 2022

Partager "Novel approach for intra-articular drug delivery : magnetically retainable biodegradable microparticles"

Copied!
79
0
0

Texte intégral

(1)

Thesis

Reference

Novel approach for intra-articular drug delivery : magnetically retainable biodegradable microparticles

BUTOESCU, Nicoleta

Abstract

In this work, we have produced and characterised biodegradable microparticles for the local tratment of arthritis. Two active infredients were co-encapsulated: dexamethasone acetate, with anti-inflammatory effect, and superparamagnetic nanoparticles (SPION) to keep the whole system in place with an external magnetic field. The formulation has been optimised by an experimental design. Microparticles were physicochemically characterized and their interaction with synovial fibroblasts was studied, revealing that neither the microparticles nor their individual components were toxic for synoviocytes. Finally, the biological action of the microparticles was studied in a antigen-induced arthritis model in mice, with and without a subcutaneously implanted magnet near the mouse knee. Following intra-articular injection of dexamenthasone and SPION-containing microparticles in arthritic joints, a diminutaion int the synovial inflammation was observed 4 days afer the injection. This versatile type of microparticles could be used for the joint delivery of other drugs, such as p38 MAPK or IL-1 inhibitors.

BUTOESCU, Nicoleta. Novel approach for intra-articular drug delivery : magnetically retainable biodegradable microparticles. Thèse de doctorat : Univ. Genève, 2009, no. Sc.

4061

URN : urn:nbn:ch:unige-37692

DOI : 10.13097/archive-ouverte/unige:3769

Available at:

http://archive-ouverte.unige.ch/unige:3769

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES Section des sciences pharmaceutiques Professeur Eric Doelker Laboratoire de pharmacie galénique Docteur Olivier Jordan et biopharmacie

Novel Approach for Intra-Articular Drug Delivery:

Magnetically Retainable Biodegradable Microparticles

THÈSE

présentée à la Faculté des sciences de l’Université de Genève

pour obtenir le grade de Docteur ès sciences, mention sciences pharmaceutiques

par

Nicoleta Paula BUTOESCU de

Oltenita (Roumanie)

Thèse N°: 4061

GENEVE

Atelier de reprographie ReproMail 2009

(3)
(4)

A Vincenzo A mes parents

(5)
(6)

Remerciements

Voici venu le moment de remercier toutes les personnes qui ont contribué à ce travail de thèse.

Tout d'abord, mes plus vifs remerciements sont adressés au Professeur Eric Doelker et au Docteur Olivier Jordan, mes directeurs de thèse, pour m'avoir donnée l'opportunité de travailler dans un laboratoire de renommée internationale, pour la confiance qu'ils m'ont toujours témoignée, mais aussi pour leur disponibilité, leur aide et leurs précieux conseils scientifiques.

Je tiens à exprimer toute ma reconnaissance au Professeur Robert Gurny pour le soutien, la sympathie et la confiance dont il a fait preuve à mon égard.

Je remercie les professors Hatem Fessi, Cem Gabay et Gert Storm, ainsi que le Docteur Christian Seemayer d'avoir accepté de figurer parmi les membres de mon jury de thèse afin d'évaluer mes travaux de recherche.

Ma gratitude s'adresse également à tous les collaborateurs externes qui ont apporté une contribution précieuse à ce projet, notamment au Docteur Xavier Montet pour son aide avec l'imagerie in vivo, au Docteur Michelangelo Foti pour son soutien avec certaines expériences de cultures cellulaires, au Docteur Christian Seemayer pour son aide avec les analyses histologiques, au Docteur Gaby Palmer pour m'avoir appris les techniques nécessaires pour l'injection chez la souris, mais aussi pour les discussions intéressantes sur les résultats obtenus. Je remercie le Professeur Pierre-André Guerne pour les remarques pertinentes qui ont permis d'améliorer ce travail de thèse et le Professeur Cém Gabay pour avoir accepté de superviser le déroulement des expériences chez l'animal et pour les conseils et discussions.

Un grand merci à nos collaborateurs de l'Ecole Polytechnique de Lausanne (EPFL), le Docteur Alke Petri-Fink, le Professeur Heinrich Hofmann, le Professeur Pierre Stadelmann et Monsieur Pierre Burdet pour leur contribution importante dans plusieurs étapes du projet et pour leurs précieux conseils scientifiques.

Je tiens à remercier le Docteur Serge Rudaz pour les discussions et les suggestions intéressantes concernant les plans d'expériences.

(7)

Je n'oublie pas de remercier Nathalie Boulens pour l'excellent travail en microscopie électronique à balayage, à Jean-Luc Lorenzoni pour la diffraction des rayons X. Un remerciement de tout cœur à Catherine Siegfried pour son aide en microscopie électronique à balayage, pour son assistance pendant les expériences avec des substances radioactives dans le cadre de l'expérimentation animale, mais surtout pour les discussions amicales que nous avons partagées.

Un grand merci à Myrtha Copin, à Carol Maury, à Florence von Ow, mais aussi à Diana Bonvin, pour leur amitié, leur bonne humeur et leur précieuse aide concernant les questions administratives, ainsi qu'à Marco Perdigao pour m'avoir toujour aidé avec les problèmes techniques des différents appareils.

Je souhaite remercier très chaleureusement mes collègues du bureau 492, Angelica, Aude et Magali, pour les bons moments passés ensemble et pour l'amitié qu'elles m'ont toujours témoignée. Je voudrais adresser un remerciement spécial à Adriana, avec qui j'ai partagé non seulement le laboratoire 492, mais aussi des pensées, des soucis ou des moments de bonheur.

Je tiens à remercier tous les membres du laboratoire pour leur appui, leur amitié et pour les moments sympathiques que nous avons partagés lors de sorties, des fêtes ou tout simplement pendant le repas de midi.

Pour avoir été à mes côtés depuis 27 ans, pour avoir toujours su m'écouter et me conseiller, je voudrais remercier de tout cœur ma sœur, Valentina.

Un immense merci à mes chers parents, que je porte toujours dans mon cœur malgré la distance qui nous sépare. Votre amour et votre soutien m'ont permis d'arriver où j'en suis aujourd'hui.

Mes pensées vont enfin à Vincenzo, pour avoir été à mes côtés avec amour et bonne humeur.

En faisant un parallèle avec le monde des bateaux, une de tes grandes passions, je pourrais dire que tu as été ma boussole, m'indiquant toujours la bonne direction à suivre.

(8)

Table of Contents

Table of contents

Foreword ..………..………9

Chapter I: Intra-articular drug delivery systems for the treatment of rheumatic diseases: a review of the factors influencing their performance………..…...15

Chapter II: Co-encapsulation of dexamethasone 21-acetate and SPIONs into biodegradable polymeric microparticles designed for intra-articular delivery ………...……….29

Chapter III: Dexamethasone-containing biodegradable superparamagnetic microparticles for intra-articular administration: physicochemical and magnetic properties, and in vitro and in vivo drug release……….……….….41

Chapter IV: Dexamethasone-containing PLGA superparamagnetic microparticles as carriers for the local treatment of arthritis……….……51

Chapter V: Magnetically retainable microparticles for drug delivery to the joint: efficacy studies in an antigen-induced arthritis model in mice……….……….61

Conclusions and perspectives………..………..71

Résumé et conclusions ………...75

Abbreviations ………...………..77

(9)
(10)

Foreword 9

Foreword

Rheumatoid arthritis and osteoarthritis are rheumatic diseases whose treatment is mainly oriented towards the reduction of pain and inflammation, with drugs administered either by the oral, parenteral or intra-articular route. Whereas much effort has been devoted to systemic administration, it is apparent from the literature that several approaches for the intra-articular route deserve further research. In clinical practice, the intra-articular injection is reserved for patients with monoarticular forms of the rheumatic diseases that have not responded to treatments given by the other ways of administration. The intra-articular route offers the advantage of achieving high drug concentrations at the site of action, thus limiting the systemic toxicity and allowing the use of smaller amounts of substance. Nevertheless, the effectiveness of this route of administration is hindered by some practical aspects, such as the need for multiple injections in order to compensate for the rapid clearance of the drug from the joint. All these aspects support the need to develop specific formulations that can release the drug in the joint cavity for long time periods. This can be achieved on the one hand by classical formulations such as suspensions or hydrogels, and on the other hand by innovative drug delivery systems, such as liposomes, nano- and microparticles. Unfortunately, none of these pharmaceutical forms solve all the problems that hamper the intra-articular administration, in terms of pro-inflammatory activity, retention in the joint or undeniable efficacy.

Figure 1. Microparticle composition.

(11)

Foreword 10

In the attempt to address these shortcomings, notably the poor joint retention and crystal formation in the articular space, we investigated magnetically retainable drug delivery systems. Despite the intense need for the development of intra-articular drug delivery systems, to date a limited number of reports have been published in this domain. Thus, our aim was to prepare and characterise magnetic biodegradable microparticles containing dexamethasone acetate for intra-articular administration (Figure 1). The superparamagnetic properties, which result from the encapsulation of 10-20 nm superparamagnetic iron oxide nanoparticles (SPIONs), allow for microparticle retention with an external magnetic field, thus possibly reducing their clearance from the joint (Figure 2). On the other hand, the gradual release of the corticosteroid from the microparticles is unlikely to result in the formation of crystals in the joint, which might have a pro-inflammatory activity. The final objective of the thesis is to prove the concept of microparticle magnetic retention in the joint, as well as their local inflammatory activity, in a model of antigen-induced arthritis in mice. In this step, due to practical constrains, the magnet will be subcutaneously implanted, but for future clinical applications, the use of a magnetic bracelet will be most probably considered.

Figure 2. Hypothesis of the work: to retain the superparamagnetic microparticles in the joint with an external magnetic field.

We decided to encapsulate in our polymeric microparticles iron nanoparticles having a superparamagnetic behaviour, notably the SPIONs, in order to have enough magnetic retention force with a minimal quantity of magnetic material. Superparamagnetic

(12)

Foreword 11

magnetisation is, compared to paramagnetic one, much higher and allows the retention of the particles in a magnetic field gradient. Moreover, once the action of the magnetic field ceases, no remanent magnetisation is present, avoiding potentially deleterious microparticle aggregation.

Concerning the possible toxicity of SPIONs [1], it is to be noted that they are the same as those used as contrast agent in human medicine. Hence, we expect neither systemic toxicity nor local inflammatory reactions related to the SPION presence in the joint.

The SPIONs have applications in various fields, as illustrated (Figure 3) and discussed below [2].

SPIONs

Magnetofection

Hyperthermia

Magnetic resonance imaging Drug delivery

Tissue repair

Detoxification of biological fluids

Cellular labeling/cell separation

Figure 3. The different uses of SPIONs.

(13)

Foreword 12

cell labelling or cell separation (Figure 4), where SPIONs derivatised with targeting ligands are able to recognise the specific cellular receptors and can thus bind to the cell surface, allowing a magnetic separation of marked cells [3];

Uncoated SPION

Derivatised SPION

Cell presenting surface receptors for the ligand

Derivatised SPIONs bind to the receptors on the cell surface

Figure 4. Scheme of cellular labelling or cell separation. Modified from Gupta et al. [2]

tissue welding, achieved with polymer-coated nanoparticles that are placed between two tissue surfaces to enhance joining of the tissue, most often at temperatures around 50°C, known to induce tissue union;

drug delivery, which could be achieved by grafting on the SPION surface different drugs. These systems could be directed to a specific organ, where the active substance could be released and act [4-8];

magnetic resonance imaging, already used in human medicine to differentiate healthy and pathological tissue in function of their uptake in SPIONs [9-12];

magnetically induced hyperthermia, technique used in the treatment of tumours and based on the heating of the SPIONs placed in an alternating magnetic field, due to the Néel relaxation [13-15];

magnetofection, method in which magnetic nanoparticles associated to vector DNA are transfected into the cells by the influence of an external magnetic field.

Considering that the drug delivery systems for intra-articular administration is a new field in the pharmaceutical research, the first chapter of this manuscript presents a review of the literature, which summarises the different types of carriers used for the purpose, as well as the factors influencing their therapeutic activity. Taking into consideration that the drug delivery systems for intra-articular administration must meet special requirements in terms of

(14)

Foreword 13

size, composition or magnetisation, the first step of our research project was to optimise the microparticle formulation (Chapter II). Chapter III presents a thorough characterisation of the optimised carriers, focusing on aspects like the surface characteristics, magnetisation, iron oxidation state, and in vitro and in vivo release. As the particles are intended for injection into the joint, in Chapter IV the study of the interaction between the carriers and synovial fibroblast is presented. Finally, study of the biological activity of the dexamethasone and SPION-containing microparticles in an antigen-induced arthritis model in mice is described in Chapter V.

Reference List

1 U. O. Hafeli,G. J. Pauer, In vitro and in vivo toxicity of magnetic microspheres, J.

Magn. Magn. Mater. 194 (1999) 76-82.

2 A. K. Gupta,M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials 26 (2005) 3995-4021.

3 C. Burtea, S. Laurent, A. Roch, L. V. Elst, R. N. Muller, C-MALISA (cellular magnetic-linked immunosorbent assay), a new application of cellular ELISA for MRI, J. Inorg. Biochem. 99 (2005) 1135-1144.

4 M. Arruebo, R. Fernandez-Pacheco, R. M. Ibarra, J. Santamaria, Magnetic nanoparticles for drug delivery, Nanotoday 2 (2007) 22-32.

5 E. Viroonchatapan, H. Sato, M. Ueno, I. Adachi, K. Tazawa, I. Horikoshi, Release of 5- fluorouracil from thermosensitive magnetoliposomes induced by an electromagnetic field, J. Contr. Rel. 46 (1997) 263-271.

6 E. Viroonchatapan, H. Sato, M. Ueno, I. Adachi, K. Tazawa, I. Hirokoshi, Magnetic targeting of thermosenstive magnetoliposomes to mouse livers in an in situ on-line perfusion system, Life Sci. 58 (2005) 2251-2261.

7 E. E. Carpenter, Iron nanoparticles as potential magnetic carriers, J. Magn. Magn.

Mater. 225 (2001) 17-20.

(15)

Foreword 14

8 S. Rudge, C. Peterson, C. Vessely, J. Koda, S. Stevens, L. Catterall, Adsorption and desorption of chemotherapeutic drugs from a magnetically targeted carrier (MTC), J.

Contr. Rel. 74 (2001) 335-340.

9 D. Portet, B. Denizot, E. Rump, J.-J. Lejeune, P. Jallet, Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents, J. Coll.

Interf. Sci. 238 (2001) 37-42.

10 C. Sun, J. S. H. Lee, M. Zhang, Magnetic nanoparticles in MR imaging and drug delivery, Adv. Drug Deliv. Rev. 60 (2008) 1252-1265.

11 B. H. Park, Y. Chang, Y. J. Lee, J. A. Park, I. S. Kim, S. J. Bae, G. H. Lee, T. J. Kim, J.

Y. Kim, H. J. Kim, J. C. Jung, Targeting of membrane type1-matrix metalloproteinase (MT1-MMP) using superparamagnetic nanoparticles in human liver cancer cells, Coll.

Surf. A: Physicochem. Eng. Asp. 313-314 (2008) 647-650.

12 G. M. Lanza, P. M. Winter, S. D. Caruthers, A. M. Morawski, A. H. Schmieder, K. C.

Crowder, S. A. Wickline, Magnetic resonance molecular imaging with nanoparticles, J.

Nucl. Cardiol. 11 (2004) 733-743.

13 A. Jordan, R. Scholz, P. Wust, H. Schirra, S. Thomas, H. Schmidt, R. Felix, Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro, J. Magn.

Magn. Mater. 194 (1999) 185-196.

14 A. Jordan, R. Scholz, P. Wust, H. Fähling, F. Roland, Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles, J. Magn. Magn. Mater. 201 (1999) 413-419.

15 A. Jordan, R. Scholz, K. Maier-Hauff, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, W. Lanksch, R. Felix, Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia, J. Magnetism and Magnetic Materials 225 (2001) 118-126.

(16)

Chapter I 15

(17)

Chapter I 16

(18)

Chapter I 17

(19)

Chapter I 18

(20)

Chapter I 19

(21)

Chapter I 20

(22)

Chapter I 21

(23)

Chapter I 22

(24)

Chapter I 23

(25)

Chapter I 24

(26)

Chapter I 25

(27)

Chapter I 26

(28)

Chapter I 27

(29)

Chapter I 28

(30)

Chapter II 29

(31)

Chapter II 30

(32)

Chapter II 31

(33)

Chapter II 32

(34)

Chapter II 33

(35)

Chapter II 34

(36)

Chapter II 35

(37)

Chapter II 36

(38)

Chapter II 37

(39)

Chapter II 38

(40)

Chapter II 39

(41)

Chapter II 40

(42)

Chapter III 41

(43)

Chapter III 42

(44)

Chapter III 43

(45)

Chapter III 44

(46)

Chapter III 45

(47)

Chapter III 46

(48)

Chapter III 47

(49)

Chapter III 48

(50)

Chapter III 49

(51)

Chapter III 50

(52)

Chapter IV 51

(53)

Chapter IV 52

(54)

Chapter IV 53

(55)

Chapter IV 54

(56)

Chapter IV 55

(57)

Chapter IV 56

(58)

Chapter IV 57

(59)

Chapter IV 58

(60)

Chapter IV 59

(61)
(62)

Chapter V 61

(63)

Chapter V 62

(64)

Chapter V 63

(65)

Chapter V 64

(66)

Chapter V 65

(67)

Chapter V 66

(68)

Chapter V 67

(69)

Chapter V 68

(70)

Chapter V 69

(71)

Chapter V 70

(72)

Conclusions and Perspectives 71

Conclusions and perspectives

In this work, we have produced and characterised biodegradable microparticles for the local treatment of arthritis. These microparticles contain two active ingredients: the first one, dexamethasone acetate (DXM), is dissolved in the polymer matrix and provides the anti- inflammatory effect, and the second one, the superparamagnetic nanoparticles (SPIONs), is incorporated as a suspension in the polymer matrix and has the role of keeping the whole system in place under the action of an external magnetic field. The formulation of these microparticles has been optimised by an experimental design approach, which allowed us to find the best technological conditions that lead to biodegradable microparticles of 5 to 10 μm in diameter that encapsulate both DXM and SPIONs with drug loadings suitable for future clinical administration. This study outlined the significance of parameters, such as drug/PLGA ratio, stirring speed during solvent extraction, and extractive volume, on the particle characteristics.

The microparticles formulated according to the optimised process were subsequently characterised from a physicochemical point of view, focusing on aspects such as the inner structure of the microparticles, including electron-energy loss spectroscopy, zeta potential and magnetisation. In this respect, we could demonstrate that the encapsulation process did not affect the magnetic properties of the SPIONs or the iron oxidation state, ensuring a superparamagnetic behaviour of the final microparticles. Moreover, the zeta potential measurements showed that both DXM and SPIONs were completely embedded into the microparticles, thus validating the results obtained by transmission electron microscopy, from which we could see that the SPIONs were homogeneously dispersed into the microparticle matrix. The DXM loading in the microparticle complied with the therapeutically effective dose that has to be administered into the articulation, which is around 1.2 mg/kg in rats or mice, according to El Hakim et al. [1]. The in vitro and in vivo release patterns showed

(73)

Conclusions and Perspectives 72

similarity in terms of DXM release in the case of batches prepared with RG 502S polymer.

An important aspect is that the in vivo release was performed in an inflammatory environment (air pouch model), such as in the case of arthritis, giving us an insight into the microparticle behaviour in the joint.

The next step of our work focused on the interaction between microparticles and synovial fibroblasts, a key issue considering that the microparticles are intended for intra- articular administration. This study revealed that neither the microparticles nor their individual components were toxic for synoviocyte cell cultures. Moreover, it has been clearly demonstrated that the microparticles are taken up by the synovial fibroblasts by an actin- dependent process, namely, phagocytosis. In summary, DXM-containing superparamagnetic microparticles seem to be promising drug delivery systems for the local treatment of arthropathies as they present the double advantage of internalisation by the synoviocytes and a prolonged drug action due to magnetically increased microparticle residence time in the joint.

Finally, the biological action of the microparticles was studied in an antigen-induced arthritis model in mice in the presence and in absence of a subcutaneously implanted magnet near the knee of the mice. Following i-a. injection of DXM- and SPION-containing microparticles in arthritic joints, a diminution in the synovial inflammation was observed 4 days after the injection. Furthermore, magnetic microparticles were still detectable in healthy joints up to 3 months after i-a. injection, proving that this type of versatile system has the potential of delivering locally/in a targeted manner not only corticosteroids, such as DXM, but also other substances, such as TNF- or p38 mitogen-activated protein kinase inhibitors.

Nevertheless, a pronounced influence of the subcutaneously implanted magnets was not observed. The reasons for this lack of effect could be the limited magnetic retention in the joint or the high animal response variability in the studied model. In this respect, experiments using an osteoarthritis model over extended time periods will be more appropriate to evidence the benefit of SPION incorporation. In any case, our results represent a proof of concept on which future work could be based.

(74)

Conclusions and Perspectives 73

This research project opens numerous perspectives for future work in at least two main directions. First of all, due to the drug delivery system high versatility, it would be possible to encapsulate other substances into the same microparticle type, while their release rate could be tailored by changing the material of the microparticle matrix. In this respect, new formulation strategies could be found for very active compounds, which actually could not be used otherwise due to high systemic toxicity. As extensively discussed in the first chapter, numerous p38 MAPK or IL-1 inhibitors represent only a few examples of such compounds.

This is substantiated by the fact that we have recently been able to embed VX 745, a potent p38 MAPK inhibitor, with high loading efficacies in the same type of microparticles (data not shown). Based on this encouraging preliminary result, future work should be directed towards the study of the biological activity of this particle type in animal models of arthritis, after intra-articular administration. The second research direction opened by this thesis consists of chemically or physically modifying the microparticles to permit them to reach specific target sites in the inflamed joint [2]. For instance, we suggest the use of the v3 integrin, which is a dimeric transmembrane molecule that is up-regulated in neoangiogenic vessels; the folate receptor FR, which is up-regulated on activated synovial macrophages; and E-selectin, which is an adhesion molecule that is up-regulated on the vascular endothelium of inflamed tissue.

[1] I. E. El Hakim, I. S. Abdel-Hamid, A. Bader, Tempromandibular joint (TMJ) response to intra-articular dexamethasone injection following mechanical arthropathy: a histological study in rats, Int. J. Oral Maxillofac. Surg. 34 (2005) 305-310.

[2] T. Garrood,C. Pitzalis, Targeting the inflamed synovium: the quest for selectivity, Arthritis Rheum. 54 (2006) 1055-1060.

(75)
(76)

Résumé et conclusions 75

Résumé et conclusions

L'administration intra-articulaire des corticostéroïdes est une pratique courante chez les patients souffrants d'arthrite ou d'arthrose, mais elle n'est pas complètement exempte d'effets secondaires ou de limitations, comme par exemple l'apparition de cristaux de corticostéroïde dans l'articulation ou la disparition rapide de la substance active de la cavité articulaire. Notre hypothèse de travail s'inscrit dans la recherche de moyens pour pallier ces inconvénients en recourant à des microparticules biodégradables (diamètre moyen d'environ 5 à 10 μm) dans lesquelles un corticostéroïde a été préalablement encapsulé, mais aussi pour accroître, bien entendu, l'efficacité du traitement. Ces vecteurs thérapeutiques ayant la propriété de libérer graduellement la substance active, ils sont susceptibles d’empêcher l'apparition de cristaux. En ce qui concerne le problème lié à la clairance rapide de la substance active au niveau de l'articulation, il est envisageable de le surmonter en incorporant dans les mêmes microparticules des nanoparticules d'oxyde de fer superparamagnétiques (SPIONs). Les microparticules, rendues ainsi magnétiques, pourront être maintenues dans l'articulation à l’aide d’un aimant externe, tout en libérant graduellement la substance active.

L'objectif thérapeutique de notre projet est donc de traiter les symptômes comme la douleur et l'inflammation liées à l'arthrite par injection intra-articulaire d'une suspension de microparticules biodégradables contenant à la fois de l'acétate de dexaméthasone et des SPIONs.

Dans une première étape, nous avons optimisé la formulation des microparticles par le biais d'un plan d'expériences qui visait l'obtention de taux d'encapsulation élevés aussi bien pour l'acétate de dexaméthasone et que pour les SPIONs, ainsi qu'un diamètre d'environ 5 à 10 μm, favorable à une rétention magnétique optimale. En ce qui concerne ce dernier point, nous avons mis au point une méthode simple pour quantifier la rétention in vitro, ce qui nous a permis de démontrer une rétention accrue des particules de taille micrométrique par rapport à leurs homologues sub-micrométriques. Dans une deuxième étape, les microparticules optimisées ont été caractérisées du point de vue physico-chimique, en étudiant l'aspect de leur surface, la structure interne, la distribution des SPIONs dans la matrice, l'état d'oxydation du fer après encapsulation, les propriétés magnétiques et la libération in vitro de la dexaméthasone. De plus, afin d'évaluer la libération de la dexaméthasone dans un environnement inflammatoire similaire à celui présent dans une articulation atteinte d'arthrite, nous avons utilisé une méthode innovante basée sur un modèle de poche d'air dorsale chez la souris. Compte tenu de l'administration intra-articulaire envisagée pour ces vecteurs, l'étape suivante a été de caractériser leur interaction avec des cultures cellulaires de fibroblastes

(77)

Résumé et conclusions 76

synoviaux, mais aussi leur comportement après injection intra-articulaire chez la souris saine, afin de révéler une possible activité pro-inflammatoire des microparticules ou de leurs composants individuels. Nous avons pu démontrer l'absence de toxicité in vitro et in vivo, mais aussi l'internalisation des particules dans les fibroblastes synoviaux par un mécanisme de phagocytose. De plus, par une expérience d'imagerie in vivo chez la souris, nous avons mis en évidence que le temps de rétention des microparticules est plus long - jusqu'à trois mois - en présence d'un aimant externe. L’étape finale et la plus importante de notre projet a été d'étudier l'activité biologique des microparticules dans un modèle d'arthrite induite par antigène chez la souris. Cette expérience a permis de démontrer que les particules présentent une bonne activité anti-inflammatoire. Néanmoins, une influence marquée de l'aimant sous- cutané n'a pas été observée. Les raisons pourraient être une faible rétention magnétique dans l'articulation ou l'importante variabilité de la réponse des animaux dans le modèle étudié.

Dans cette optique, l'utilisation d'un modèle d'arthrose sur des périodes d’observation plus longues sera plus appropriée pour mettre en évidence les bénéfices résultant de l'incorporation des SPIONs.

Ce projet de recherche ouvre de nombreuses perspectives dans deux directions importantes. Premièrement, grâce à leur adaptabilité, ces vecteurs polymères pourraient permettre l'encapsulation d'autres substances actives et leur libération pourrait être modulée en fonction du profil pharmacologique recherché en changeant la nature ou la masse molaire du polymère. De cette façon, de nouvelles stratégies de formulation adaptées à l'administration intra-articulaire pourraient être mises en œuvre pour des composés particulièrement actifs, comme par exemple les inhibiteurs de la p38 MAP-kinase ou de l’interleukine IL-1 qui ne peuvent pas être utilisés dans la clinique en raison de leur forte toxicité systémique. Une preuve dans cette possibilité est le fait que récemment nous avons pu incorporer dans des microparticules de PLGA, à des taux très satisfaisants, un inhibiteur de la p38 MAP-kinase, le VX 745. En se basant sur ces résultats très encourageants, un futur projet pourrait comparer l'activité biologique de ce type de particules dans des modèles animaux en administration intra-articulaire et en administration systémique. La seconde perspective ouverte par cette thèse serait la possible modification chimique ou physique des microparticules pour atteindre des cibles spécifiques dans l'articulation enflammée, comme par exemple l'intégrine v3, une molécule transmembranaire dimère surexprimée dans les vaisseaux neoangiogéniques, le récepteur de l'acide folique FR, surexprimé lui dans les macrophages synoviaux, ou encore la sélectine E, une molécule d'adhésion surexprimée dans l'endothélium vasculaire des tissus enflammés.

(78)

Abbreviations 77

Abbreviations

AIA antigen induced arthritis BSA bovine serum albumin

mBSA methylated bovine serum albumin CIA collagen-induced arthritis CT computer tomography

CTLA4-Ig cytotoxic T-lymphocyte-associated antigen 4

DAPI 2-(4-amidinophenyl)-6-indolecarbamidine dihydrochloride DiO 3,3'-dioctadecyloxacarbocyanine perchlorate

DMARD disease-modifying anti-rheumatic drug DMEM Dulbecco's modified Eagle medium DMOAD disease-modifying osteoarthritis drug DMSO dimethyl sulfoxide

DPPC dipalmitoyl phosphatidyl choline DSC differential scanning calorimetry DXM dexamethasone 21-acetate

EDX electron-dispersive X-ray spectroscopy EELS electron energy loss spectroscopy ELISA enzyme-linked immunosorbent assay FACS fluorescence activated cell sorting FCS fœtal calf serum

HBSS Hank's balanced salt solution

HPLC high performance liquid chromatography HSA human serum albumin

i-a. intra-articular

IGF insulin-like growth factor

IgG-HRP immunoglobulin G-Horseradish peroxidase

IL-1 interleukin-1

IR infrared

MAPK mitogen-activated protein kinase

(79)

Abbreviations 78

MMP matrix metalloproteinase

MTT 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyl tetrazolim bromide

NIR near infrared

NSAID non-steroidal anti-inflammatory drug OA osteoarthritis

PBCA poly(butyl cyanoacrylate) PBS phosphate buffer saline PCL poly(-caprolactone) PDLLA poly(D,L-lactic acid) PLA poly(lactic acid) PLGA poly(lactide-co-glycolide) PLLA poly(L-lactic acid) PVAL poly(vinyl alcohol) RA rheumatoid arthritis SEM scanning electron microscopy

SPIONs superparamagnetic iron oxide nanoparticles SQUID superquantum interference device

TEM transmission electron microscopy Tg glass transition temperature TGF transforming growth factor TNF tumour necrosis factor XRD X-ray diffraction

Références

Documents relatifs

We have previously demonstrated that iron oxide nanoparticles with amino-polyvinyl alcohol (a-PVA) adsorbed on their surfaces have the unwanted effect of increasing human

The present work was motivated to improve on the prior limited view on the molecular structure of tholins by using higher resolution mass and mobility analyzers - namely

Post-translational protein modification was one of the biological functions downregulated (GO term enrichment analysis, p,0.05) during low pH treatment, as evidenced by the

We show that the properties of superparamagnetic iron oxide nanoparticles suspended in liquids can be effectively studied using Magnetic Circular Dichroism in

Next, we tested to what extent stress-induced changes in biodiversity effects depended on direct stress effects on species growth, the strength of per capita interaction in

In vitro tests with cells in the presence of a PEMF were not carried out because the time of the magnetic field to trigger an higher drug release from FeHA (3 days) was

Nouwen argues that one cannot see any direct effects of the notion of complementarity in Sudan but, like in northern Uganda (albeit for different reasons), the ICC’s involvement in

La Société Nipro PharmaPackaging France s'engage à communiquer annuellement aux instances représentatives du personnel le pourcentage de salariés exerçant des responsabilités