• Aucun résultat trouvé

Evolution of Titan's atmospheric aerosols under high-altitude ultraviolet irradiation

N/A
N/A
Protected

Academic year: 2021

Partager "Evolution of Titan's atmospheric aerosols under high-altitude ultraviolet irradiation"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01308021

https://hal.archives-ouvertes.fr/hal-01308021

Submitted on 27 Apr 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Evolution of Titan’s atmospheric aerosols under

high-altitude ultraviolet irradiation

Sarah Tigrine, Nathalie Carrasco, Ahmed Mahjoub, Benjamin Fleury, Guy

Cernogora, Laurent Nahon, Pascal Pernot, Murthy S. Gudipati

To cite this version:

Sarah Tigrine, Nathalie Carrasco, Ahmed Mahjoub, Benjamin Fleury, Guy Cernogora, et al..

Evolu-tion of Titan’s atmospheric aerosols under high-altitude ultraviolet irradiaEvolu-tion . European Planetary

Science Congress 2015, Sep 2015, Nantes, France. �hal-01308021�

(2)

Evolution of Titan’s atmospheric aerosols under

high-altitude ultraviolet irradiation

S. Tigrine

1, 2

, N. Carrasco

1

, A. Mahjoub

1

, B. Fleury

1

, G. Cernogora

1

, L. Nahon

2

, P. Pernot

3

, M. S. Gudipati

4

1LATMOS, Université Versailles St. Quentin, UPMC Univ. Paris 06, CNRS, 11 Bvd. d’Alembert, 78280 Guyancourt, France,2Synchrotron SOLEIL, l’Orme des Merisiers, St Aubin, BP 48, 91192 Gif sur

Yvette Cedex, France, 3Laboratoire de Chimie Physique, UMR 8000, CNRS, Université Paris-Sud, Orsay, France, 4Science Division, Jet Propulsion Laboratory, Science Division, California Institute of

Technology, 4800 Oak Grove Drive, Pasadena, California 91109, USA.

TITAN’S UPPER ATMOSPHERE

Titan is the biggest satellite of Saturn whose atmosphere is mainly composed of molecular nitrogen (N2) and methane (CH4) with an average ratio of 98/2 %. [1]

The Cassini/Huygens mission revealed that the interaction between those neutral molecules and the UV solar light leads to a complex photochemistry that produces heavy organic molecules. When those molecules condense, they will then become the solid aerosols which are responsible for the brownish haze surrounding Titan. [2][3]

Between 1000 and 600km, the VUV solar radiations are still significant and will continue to modify the physical, chemical and optical properties of those grains. A change in these parameters can impact the radiative budget of Titan’s atmosphere.

MAIN GOAL: IDENTIFY AND UNDERSTAND THE PHOTOCHEMICAL EVOLUTION OF THE AEROSOLS BY ANALYSING

THE IR SIGNATURES AND HOW THEY ARE MODIFIED AFTER BEING EXPOSED TO VUV RADIATIONS

METHOD

The analogues are produced as thin organic films deposited on Si substrates by submitting a 95-5% N2-CH4molecular mixture to a radio-frequency electron discharge [4]. 20

samples have been prepared at the same time, by 45-min deposition. Then, we estimate that their thickness is about 300 nm [5]. We irradiate the films of Titan’s atmospheric aerosols analogues with VUV synchrotron radiations provided by the DESIRS beamline at the SOLEIL synchrotron facility

Cr ed it s: NA SA /E SA

In Titan’s ionosphere, the aerosols are exposed to the full VUV-solar spectrum, but we focus here on the Lyman-a (121,6 nm) wavelength as it is an important contribution. The solar VUV-UV photon flux reaching the top of Titan’s atmosphere is about 1014

photons/s/cm² [6] while the DESIRS line provides a monochromatic flux of 1016

photons/s/cm².

The residence time of the aerosols in the thermosphere (between 1000 and 600 km) is about the duration of one Titanian day (106s) [7]. So we counterbalance our higher photon

flux by shorter irradiation times: 3h, 10h and 24h.

Figure 1: Atmospheric profile of Titan’s atmosphere

Figure 2 & 3: Titan seen by the Cassini’s imager

Figure 4: Aerosols’ formation in Titan’s upper atmosphere

Figure 5: Spectrum of blank substrates. We compared substrates between them but also different positions on the same one.

Figure 6: Comparison of different analog films, We notice some slight differences between some samples.

We can take only one reference for the blank substrates signature

BUT the analog samples are not exactly homogenous between them.

- 0,002 0,00 0 0,00 2 0,00 4 0,00 6 0,00 8 0,01 0 0,01 2 0,01 4 0,01 6 0,01 8 0,02 0 0,02 2 0,02 4 0,02 6 0,02 8 0,03 0 0,03 2 Ab so rb a nc e 200 0 220 0 240 0 260 0 280 0 300 0 320 0 340 0 360 0 N ombre d'ond e (c m-1 ) 0 5 10 15 20 25 0,4 0,5 0,6 0,7 0,8 0,9 Iban de / I(3 34 0 cm -1) Temps (h) 3210 cm-1 2180 cm-1 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,10 0,11 0,12 0,13 0,14 0,15 0,16 Absorbance 500 100 0 150 0 200 0 250 0 300 0 350 0 400 0 N ombre d'ond e (c m-1 )

3h

- 0,005 0,00 0 0,00 5 0,01 0 0,01 5 0,02 0 0,02 5 0,03 0 0,03 5 0,04 0 0,04 5 0,05 0 0,05 5 0,06 0 0,06 5 0,07 0 0,07 5 0,08 0 0,08 5 Absorbance 500 100 0 150 0 200 0 250 0 300 0 350 0 400 0 N ombre d'ond e (c m-1 )

10h

- 0,000 0,00 5 0,01 0 0,01 5 0,02 0 0,02 5 0,03 0 0,03 5 0,04 0 0,04 5 0,05 0 0,05 5 0,06 0 0,06 5 0,07 0 0,07 5 0,08 0 0,08 5 Absorbance 500 100 0 150 0 200 0 250 0 300 0 350 0 400 0 N ombre d'ond e (c m-1 )

24h

Figure 7: Evolution vs time of the IR signatures of the

samples with Ly-a irradiation

Kinetics at Ly-a

Decrease of two bands: • C-H at 2950 cm-1

• C-N at 2180 cm-1

But the decrease reaches saturation after few hours

To be Continued…

Test other wavelengths: 95 nm (ionization effects?) or 190 nm (soft UV)Slimmer analog films

Gather data on the absorption cross section of the aerosol analogs

Are the samples too thick?

References:

1. Niemann, H., et al., The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe. Nature, 2005. 438(7069): p. 779-784. 2. Waite, J., et al., The process of tholin formation in Titan's upper atmosphere. Science, 2007. 316(5826): p. 870-875.

3. Liang, M.-C., Y.L. Yung, and D.E. Shemansky, Photolytically generated aerosols in the mesosphere and thermosphere of Titan. The Astrophysical Journal Letters, 2007. 661(2): p. L199. 4. Szopa, C., et al., PAMPRE: A dusty plasma experiment for Titan's tholins production and study. Planetary and space Science, 2006. 54(4): p. 394-404.

5. Mahjoub, A., et al. Influence of methane concentration on the optical indices of Titan’s aerosols analogues. Icarus, 2012. , 221(2), p. 670-677.

6. Gans, B., et al., Impact of a new wavelength-dependent representation of methane photolysis branching ratios on the modeling of Titan’s atmospheric photochemistry. Icarus, 2013. 223(1): p. 330-343.

7. Lavvas, P., et al., Surface chemistry and particle shape: processes for the evolution of aerosols in Titan's atmosphere. The Astrophysical Journal, 2011. 728(2): p. 80.

We checked that the films are similar in size and composition prior the irradiation experiment by comparing their IR signatures. We also made sure that they were homogeneous by recording their IR signatures on different 400*400 µm spots of the same sample.

All the Infra-Red measurements have been performed with a Thermo Scientific Nicolet iN10 MX spectrometer at the SMIS beamline at the synchrotron SOLEIL facility. We used the highly sensitive mercury cadmium telluride (MCT) detector for a transmission analysis.

IR ANALYSIS

VUV light Organic thin films

RESULTS

Reference sample 3h irradiation

30min irradiation 24h irradiation 10h irradiation

Figure

Figure 1: Atmospheric profile of  Titan’s atmosphere

Références

Documents relatifs

Left: kinetic energy shift measured as a function of the delay between the 50 fs laser excitation and the synchronized isolated synchrotron pulse in the /25 SOLEIL filling

Fate of X in sludge-amended soil is adsorption-degradation dependant Low transfer to plant and water. Long term soil accumulation of xenobiotics after sludge spreading for the

Enfin dans le chapitre 9, nous pr´esenterons les diff´erentes m´ethodes pour calculer les multiples de petit poids d’un polynˆome.. Ce probl`eme est en effet un probl`eme r´ecurrent

Kristensen, E., Bouillon, S., Dittmar, T., and Marchand, C.: Organic carbon dynamics in mangrove ecosystems, a review and speculative outlouk, Aquat.. Bouillon et al. Title

Since the face tracking system provides a full 6 DOF pose information and uncer- tainty characteristics, the system could be used in the hazard warning system with a proper

We present the development of Predictive Coalition Building Analysis (PCBA). The three-phase methodological framework assigns likelihoods to possible future coalitions

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

This chapter mainly focuses on the chemical composition of aged aerosol in the flow tube, and consists of mostly on the article published by “Environmental Science