• Aucun résultat trouvé

Properties of PEDOT:PEG/ZnO/p-Si heterojunction diode

N/A
N/A
Protected

Academic year: 2022

Partager "Properties of PEDOT:PEG/ZnO/p-Si heterojunction diode"

Copied!
6
0
0

Texte intégral

(1)

ContentslistsavailableatSciVerseScienceDirect

Materials Science and Engineering B

j o ur n a l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / m s e b

Properties of PEDOT:PEG/ZnO/p-Si heterojunction diode

Murat Soylu

a,∗

, Mihaela Girtan

b

, Fahrettin Yakuphanoglu

c

aDepartmentofPhysics,FacultyofArtsandSciences,BingolUniversity,Bingol,Turkey

bPhotonicsLaboratory,AngersUniversity,2,Bd.Lavoisier,49045Angers,France

cDepartmentofPhysics,FacultyofArtsandSciences,FiratUniversity,Elazig,Turkey

a r t i c l e i n f o

Articlehistory:

Received7September2011

Receivedinrevisedform13February2012 Accepted5March2012

Available online 18 March 2012

Keywords:

Heterojunction Semiconductors Electricalproperties

Atomicforcemicroscopy(AFM)

a b s t r a c t

Thezincoxide(ZnO)andpoly(3,4-ethylenedioxythiophene)bis-poly(ethyleneglycol)(PEDOT:PEG)films weredepositedonp-Sisubstratebysputterandspincoatingmethods,respectively.Anorganic/inorganic heterojunctiondiodehavingPEDOT:PEG/ZnOonp-Sisubstratewasfabricated.Thebarrierheight(BH) andtheidealityfactorvaluesforthedevicewerefoundtobe0.82±0.01eVand1.9±0.01,respec- tively.IthasbeenseenthatthevalueofBHissignificantlylargerthanthoseofconventionalAu/p-Si metal–semiconductorcontacts.ThePEDOT:PEG/ZnO/p-Siheterostructureexhibitsanon-idealI–Vbehav- iorwiththeidealityfactorgreaterthanunitythatcouldbeascribedtotheinterfaciallayer,interfacestates andseriesresistance.ThemodifiedNorde’sfunctioncombinedwithconventionalforwardI–Vmethod wasusedtoextracttheparametersincludingthebarrierheightandseriesresistance.Atthesametime, thephysicalpropertiesofZnOandPEDOT:PEGfilmsdepositedbysputterandspincoatingtechnique, respectively,wereinvestigatedatroomtemperature.Theobtainedresultsindicatethattheelectrical parametersofthediodeareaffectedbystructuralpropertiesofZnOfilmandPEDOT:PEGorganicfilm.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Inorganic/organicheterojunctiondeviceshaveattractedconsid- erableinterestinrecentyearsduetotheirpotentialapplicationin electronics,suchastransistors,memoryelementsandrectifying devices[1–3].Therectifyingdevicecanbeformedasaresultof potentialbarrierinasemiconductor/semiconductorp–njunction orametal/semiconductorSchottkycontact.ASchottkycontactis formedbetweenametalandasemiconductor,creatingaSchot- tkybarrier.SomeauthorshavestudiedthefabricationofSchottky contactsusinghighworkfunctionmetalsandn-typeZnO[4–9].

Generally,undopedZnOthinfilmshaven-typeconductionandhigh resistivityduetolowcarrierconcentration.However,itsconduc- tivitycanbetailoredbyappropriatedopingfromahighlyresistive toahighlyconductivematerial.Thepresenceofhighdonorcon- centrationinthesurfaceregion,whichiscausedbynativedefects such as oxygen vacancies/zinc interstitials quite often reveals problemsin theformationofhighqualitymetal/semiconductor Schottkycontacts.Analternativeapproachsuchasthedeposition ofp-typepolymerforfabricatingp–njunctionsofZnOhasbeen attempted[10–12].Manyusefulmethodshavebeenusedtopre- parehighqualityZnOthinfilms, suchasmagnetronsputtering, metal–organicchemicalvapordeposition(MOCVD),pulsed-laser

Correspondingauthor.Tel.:+904262132550;fax:+904262132580.

E-mailaddress:soylum74@yahoo.com(M.Soylu).

deposition(PLD),molecularbeamepitaxy(MBE)andsol–gelpro- cess[13–18].

Inrecentyears,heterojunctionsbetweenn-andp-typesemi- conductorshave beendeveloped for variousgases and showed costeffectivetooltowardsgassensorsatlowconcentrationwith room temperature operation [19]. Many research groups have developedp–nheterojunctionswitha p-typepolymerpoly(3,4- ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), whichisoneofthepromisingmaterialsforrealizingorganicbased p–nheterojunction.PEDOT:PSSisusedasanelectroactivepolymer duetoitshighconductivity,transparencyandgoodphoto-stability [20,21].Bangeetal.[22]haveusedPEDOT:PSSasaholeinjection layerinablue-emittingpolymerlight-emittingdiode.Theyhave reporteda significantbarrier fortheinjectionof holesinto the polymer.

In thisstudy,PEDOT:PEG/ZnO/p-Siheterojunctiondiode was fabricated by spin coating the PEDOT:PEG on ZnO film. The current–voltage(I–V)measurementsforthediodewereexecuted todeterminetheirelectricalparameters.

2. Experimentaldetails

The substrate used in this study is p-Si (100)-doped with boron. The substrate was chemically cleaned using the RCA cleaning procedure i.e., a 10min boiling in NH4+H2O2+6H2O followedbya10minboilinginHCl+H2O230%.Thesampleswere dippedindilute HFabout30storemove anynativethin oxide 0921-5107/$seefrontmatter© 2012 Elsevier B.V. All rights reserved.

doi:10.1016/j.mseb.2012.03.025

(2)

786 M.Soyluetal./MaterialsScienceandEngineeringB177 (2012) 785–790

Fig.1.Aschematiccross-sectionofthePEDOT:PEG/ZnO/p-Sistructure.

layeronthesurface;finallythewaferwasrinsedwithdeionized water.ZnOonthep-typeSisamplewasformedbysputtersystem ofhigh purity (99.999%)Znmetal under vacuum2×105Torr.

ThePEDOT:PEG solution wasmixed witha magnetic stirrer at 60C for 2hand then placed in air for 2hageing resulting in aclear andhomogeneoussol. Thefilm ofPEDOT:PEG wasspin coatedonthefrontsurfaceofthesubstratewithZnObyspinning (vacuumspin-coating)at1000rpm,for30s.ThePEDOT:PEGfilm thicknesswascontrolledbycoatingspeed-time.Thethicknesses of ZnO and PEDOT:PEG filmsweredetermined as 24±0.02nm and37.3±0.02nmwithanaccuracyof0.02nmusingaDektak6M Stylusprofiler,respectively. Golduppercontactof 90nmthick- nesswasformedonPEDOT:PEG/ZnO/p-Sibysputter technique.

Thediode contact areawas foundtobe 3.14×10−2cm2. Thus, PEDOT:PEG/ZnO/p-Si heterojunction diodes were fabricated. A schematiccross-sectionof thePEDOT:PEG/ZnO/p-Sistructure is shownin Fig.1. Thecurrent–voltage measurementsweredone usingKEITHLEY236sourcemeasurementunit.

3. Resultsanddiscussion

3.1. PhysicalpropertiesofthePEDOT:PEG/ZnO/p-Si heterojunctiondiode

IUPAC (The InternationalUnion of Pure and Applied Chem- istry) name of PEDOT:PEG is poly(3,4-ethylenedioxythiophene) bis-poly(ethyleneglycol). The PEDOT:PEG/ZnO/p-Si structure shows organic-on-inorganic semiconductor heterojunction (OI- HJ)behavior.Forreference,themolecularstructureofPEDOT:PEG is given in Fig. 2. The structural properties of the films were investigated by tapping-mode atomic force microscopy (AFM) usinganLPResearchThermomicroscopeAutoprobe.Fig.3shows twoandthreedimensional(2Dand3D)AFMimagesoftheZnO and PEDOT:PEG films. AFM images indicate that the ZnO and PEDOT:PEGfilmsareformedfromthenanoparticles.Nanoparticle formation originatesfrom thestructural properties ofZnO and organicmaterial.ZnObelongs tothehexagonalwurtzitecrystal type. Sputtered ZnO films are polycrystalline, the individual crystalsgrovingpreferentiallywiththeircrystallographiccaxis perpendiculartothesubstrate[23].Therootmeansquare(rms) surfaceroughnessofthePEDOT:PEGfilmwasfoundas17.452nm.

The surface morphology of the PEDOT:PEG film is reasonably smooth,withuniformgraindistribution.

Fig.3.AFMimagesofZnO(a)andPEDOT:PEG(b)thinfilmswiththethicknessesof 24±0.02nmand37.3±0.02nm,respectively.

Fig.4showsanenergybanddiagramofthePEDOT:PEG/ZnO/p- Sidevice.TheworkfunctionsofAuandPEDOT:PEGclosetoeach other.ThesmalldifferenceintheworkfunctionbetweenAuand PEDOT:PEGmakestheohmiccontact.ConcerningtheZnO/p-Sicon- tact,theelectronaffinitiesofsiliconandzincoxideare4.05eVand 4.35eV,respectively.Inthiscase,Schottkybarriercouldbeformed atZnO/p-Sicontact.However,abarriereffectcouldbenegligible sincetherearemanyimperfectionsactingaselectronpathswhich enabletheohmicbehaviorattheinterfacebetweenZnOandp-Siin non-annealeddevice[10,24,25].Duetodifferenceinenergylevels ofPEDOT:PEGandZnO,abarrierisformedattheinterfacewhich leadstodiode-likecharacteristics.Theelectronsinforwardbias willhavetoovercomethisbarrierinordertoflowtotheopposite electrode.

InFigs.5–7,plotsshowthespectrophotometricallymeasured transmission,absorptionandreflectionvs.wavelengthforfilmlay- ersdepositedatroomtemperature.Itisseenfromtheplotsthat boththefilmsarehighlytransparentoverthevisibleandinfrared regionsbecauseofthefundamentalabsorptionedge[26–28].As seeninfigures,thereisasharpabsorptionat±385nmindicating itsbandgap.Furthermore,thereflectancespectrashowastrong decreaseafter1009nm.Thisdecreaseisrelatedtoopticaltransi- tionsoccurringinopticalbandgap.Analysisofopticalabsorption spectraisoneofthemostproductivetoolsfordeterminingopti- calbandgapofthefilms.Fromthesespectraldata,theabsorption coefficient˛wascalculatedusingtherelationship[29]:

˛h=A(h−Eg)m (1)

Fig.2.ThemolecularstructureofPEDOT:PEG.

(3)

Fig.4.Energybanddiagramforthedevice(a)beforeand(b)afterFermilevelalignment.

2000 1600 1200 800 400 0

Wavelenght (nm) 0

20 40 60 80

T (%)

0 0.2 0.4 0.6 0.8 1 1.2

Absorption (a.u.)

PEDOT:PEG

T

A

Fig.5. TransmittanceandabsorptionspectraofPEDOT:PEGthinfilm.

2000 1600 1200 800 400

Wavelenght (nm) 0

2 4 6 8 10

Reflectance (%)

0 1 2 3 4

Reflectance (%)

PEDOT:PEG ZnO

Fig.6.SpectrophotometricallymeasuredreflectanceforZnOandPEDOT:PEGthin filmswiththethicknessesof24±0.02nmand73.1±0.02nm,respectively.

where A is an energy-independent constant, E=h is thepho- ton energy and Eg is theoptical bandgapwith alloweddirect transitions. Itisevaluatedthat theopticalbandgapoftheZnO filmhasa directopticaltransition.Theexponentmdependson the nature of the transition, m=1/2, 2, 3/2, or 3 for allowed direct,allowednon-direct,forbiddendirectorforbiddennon-direct transitions,respectively.Theopticalabsorptionorabsorptioncoef- ficient(␣≥104cm1)isrelatedtodirectbandtransitions[30,31].

TheEgvaluescouldbeobtainedbytheextrapolatingmethodusing the(˛h)2vs.hplot.Fig.8showsplotsof(˛h)2 vs.hforthe PEDOT:PEGandZnOfilms.TheEgvaluesforthefilmsweredeter- minedas3.81eVand3.22eV.TheopticalbandgapofZnOstudied islowerthanthatofundopedZnOmaterialsobtainedbyvarious methods[32,33].ThissuggeststhattheopticalbandgapofZnO semiconductorchangeswithrespecttosynthesismethodused.

1600 1200

800 400

0

Wavelength (nm) 0

1 2 3 4

Absorption (a.u.)

0 40 80

Transmittance (%)

ZnO

Fig.7.TransmittanceandabsorptionspectraofZnOthinfilm.

(4)

788 M.Soyluetal./MaterialsScienceandEngineeringB177 (2012) 785–790

4 3 2 1

hν (eV) 0

0.0005 0.001 0.0015 0.002 0.0025

(αhν)2(eV)2

0 0.01 0.02 0.03 0.04

(αhν)2(eV)2 Eg (ZnO)=3.22 eV

Eg (PEDOT:PEG)=3.81 eV

Fig.8. Plotsof(˛h)2vs.hfortheZnOandPEDOT:PEGthinfilms.

3.2. Thecurrent–voltagecharacteristicsofthe PEDOT:PEG/ZnO/p-Siheterojunctiondiode

Thecurrent–voltagecharacteristicswereanalyzedtodetermine theeffective values of the diode parameters. Fig.9 shows the current–voltagecharacteristicsofthePEDOT:PEG/ZnO/p-Sihetero- junction.AsseeninFig.9,theheterojunctionshowsarectifying behaviorwithrelatively lowreverse currentof 8.65×107A at reversebiasofVR=−1.0V.Thecurrentincreasedwhenthebias voltagewasdecreasedbelow −0.5V.Thissituationisrelatedto leakagecurrent.Leakagecurrentscanarisedue primarilytothe existenceofdiscrete,dislocation-relatedleakagepaths[34].How- ever,theleakagecurrentcanalsobeassociatedwiththeinterface oxidelayer.Thecurrent–voltage characteristic ofthediode, for V−IRs>3kT/q,isanalyzedbythefollowingrelation[35]:

I=I0exp

q(VIR

s) nkT

(2) whereI0isthereversesaturationcurrentgivenby:

I0=AAT2 exp

−q˚IV b

kT

, (3)

whereqistheelectroncharge,Visthedefiniteforwardbiasing voltage,Aistheareaofthecontact,A*istheeffectiveRichardson constant,kistheBoltzmannconstant,Tistheabsolutetemper- ature,˚IV

b isthebarrierheightandnistheidealityfactor.The I/[1−exp(−qV/kT)]vs.V(Fig.10)curveshowstwolinearregions, fromthefirstsegmenttheslopeandtheinterceptofthisplotonthe

1 0.5 0

-0.5 -1

Voltage (V) 0

4E-006 8E-006 1.2E-005 1.6E-005 2E-005

Current (A)

PEDOT:PEG/ZnO/p-Si

Fig.9.I–VcharacteristicsofthePEDOT:PEG/ZnO/p-Siheterojunctiondiode.

0.6 0.4

0.2 0

Voltage (V) 1E-009

1E-008 1E-007 1E-006

I/(1-exp(-qV/kT)) (A) ll

l

Fig.10.PlotofI/[1exp(−qV/kT)]vs.VofthePEDOT:PEG/ZnO/p-Siheterojunction diode.

currentaxis(y-axis)yieldtheidealityfactornandthesaturation currentI0ofthedeviceat1.9±0.01and2.05×10−9A,respectively.

AsthecurveinFig.10wascorrectedfortheeffectofseriesresis- tance,thecurvaturecanbeattributedtoacontinuumofinterface states.BysubstitutingthevalueofI0intoEq.(3),wehaveobtained thebarrierheight˚IV

b whichisabout0.82±0.01eV.Theresul- tantvalueof idealityfactoris verylowtothereportednvalue for ZnO/PEDOT:PSSheterojunction diode thatit is necessaryto improvethequalityofthep–nheterojunction[36].Itisevaluated thatPEDOT:PEG/ZnO/p-Siheterojunctiondiodecanbeusedasa goodmaterialcombinationforpossibleapplicationscomparedto otherworks.

Thehighervalueoftheidealityfactor indicatesthatthefor- wardcurrentisgovernedbyrecombinationcurrentviatraps.The currentdue torecombination isimportanthereas canbeseen bythevalueoftheideality factor.Thisindicatesthatthediode exhibitsanon-idealbehaviorduetotheoxidelayer,thepresence ofsurfacestatesandthenanocrystallinenatureoftheZnOfilm.

Thesesurface statesprovideadditional energystateswhich are responsiblefortheexistenceofmultiplecurrentpathways[37–40].

Thehigheridealityfactorsuggeststhatthetransportpropertiesof PEDOT:PEG/ZnO/p-Siheterojunctiondiodecouldnotbedefinedby thermionicemission(TE)onlyandcouldbeduetopresenceofsec- ondarymechanismattheinterface.Furthermore,thesurfacestates wouldgenerateanupwardbandbendingandthenformapoten- tialbarrieronthesurface,whichwasalmostindependentonthe workfunctionofthemetalduetotheso-calledpinningofFermi energy.Whenthedensityofsurfacestateswashighenough,the barrierheightcontrolledbythesurfacestatesmustinfluencethe I–Vbehaviorleadingtothehighvalueofn[35,41].

Onasemi-logscaleandatlowforwardbiasvoltage,theforward biasI–Vcharacteristicsofthemetal–semiconductorcontactsdevi- atefromlinearityduetotheseriesresistanceandinterfaciallayer.

Thus,theseriesresistanceisaneffectiveparameterinI–Vcharac- teristicsanditcannotbeignored.Therefore,theseriesresistance Rsforthediodecanbedeterminedusingcurrent–voltagecharac- teristicsbymeansofRs=∂V/Irelation.Theseriesresistanceand diffusionpotentialvalueswerecalculatedas165kand0.696V, respectivelyfromtheforwardbiasI–VplotofFig.9.Furthermore, Nordeproposedanalternativemethodtodeterminethevalueof theseriesresistance.InNorde’smethod[42],thefollowingfunction isusedas:

F(V)= V0

−kT q

I(V)

AAT2

, (4)

(5)

1.08 0.96 0.84 0.72 0.6 0.48 0.36 0.24 0.12 0

Voltage (V) 0.8

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08

F(V) (V)

PEDOT:PEG/ZnO/p-Si

F(V0)=0.819 V V0=0.128 V I0=1.9x10-8 A Φb0(F-V)=0.857 eV Rs=136 kohm

F(V0)

V0

Fig.11. PlotofF(V)vs.VofthePEDOT:PEG/ZnO/p-Siheterojunctiondiode.

where is the integer (dimensionless) greater than n. I(V) is thecurrentobtainedfromtheI–Vcharacteristic.n istheideal- ity factordetermined fromtheslope of thelogarithmic plotof I/[1−exp(−qV/kT)]vs.V.TheplotofF(V)vs.voltageforthediode isshowninFig.11.TheF(V)givesaminimumpointandthus,the barrierheightiscalculatedbytherelation:

˚b=F(V0)+V0

−kT

q, (5)

whereF(V0)istheminimumpointofF(V)functionandV0 isthe correspondingvoltage.FromtheF(V)–Vplot,thebarrierheightwas foundtobe0.85eV.ThebarrierheightofthePEDOT:PEG/ZnO/p-Si heterojunction diodeis higher than that of Au/ZnO/p-SiSchot- tky diodes [43]. This suggests that the PEDOT:PEG thin film hasa significanteffect onbarrier heightof Au/PEDOT:PEG and PEDOT:PEG/ZnO/p-Sijunctiondiodeinseries.Theinterlayerfilm appearstocauseasignificantmodificationofinterfacestateseven thoughtheZnO/PEDOT:PEGinterfacebecomesabruptandunreac- tive.ThebarrierheightofthePEDOT:PEG/ZnO/p-Siheterojunction diodeis lowerthanthat ofsomeZnO Schottkydiodes[44–46], whereasitishigherthanthatofAu/ZnO/n-Si/AuSb[14].Also,the idealityfactorishigherthanthoseofZnOdiodes[15,44,47,48].The discrepancyinbarrierheightsoftheZnOdiodesmaybeduetothe carrierconcentrationofZnOfilmusedindiodes.

InNordemethod,theseriesresistanceisdeterminedas:

Rs= kT(−n)

qI0 , (6)

TheRsvalueforthediodewasdeterminedusingEq.(6)andwas foundtobe136.0k.ThereisagreementbetweenthevaluesofRs

obtainedfromtheNordefunctionsandRs=∂V/Irelation.TheRs

valueisconsiderablyhigherduetotheinterfaciallayerandresis- tanceoftheSisemiconductor.Thiscausesanon-linearbehavior forthediode.Thevalueofseriesresistanceindicatesthattheseries resistanceisacurrent-limitingfactorforthisstructure.Theeffectof theseriesresistanceisusuallymodeledwithseriescombinationof adiodeandaresistorwithresistanceRsthroughwhichthecurrent Iflows.Thevoltagedropacrossarectifyingcontactisexpressedin termsofthetotalvoltagedropacrossthediodeandtheresistance Rs[49].

In order to determine the charge transport mechanism of thePEDOT:PEG/ZnO/p-Siheterojunctiondiode,I–Vcharacteristics wereanalyzedusingI∝Vmrelation.Forthis,thecurvewasshownin formoflnI−lnV(Fig.12).AsseeninFig.12,theplotindicatesdiffer- entthreecurrentregions.Withtheappliedvoltageincreasing,the

1 0.1

Voltage (V) 1E-009

1E-008 1E-007 1E-006 1E-005 0.0001

Current (A)

ll. region

l. region

lll. region PEDOT:PEG/ZnO/p-Si

Fig.12.I–VcharacteristicinlogarithmicscaleofthePEDOT:PEG/ZnO/p-Sihetero- junctiondiode.

slopeoftheI–Vcurvechangesfrom1.09to4.2.TheregionIshows twoohmicregion.Theobtainedmvalueforthesecondregionofthe curvesuggestsaSCLCmechanismcharacterizedbyanexponential distributionoftrappinglevels[50].InregionIII,theinjectedfree chargecarriersaremuchgreaterthanthethermallygeneratedfree carriersandthusthechargetransportmechanismisgovernedby thetrap-charge-limitedspacecharge-limitedconductivity(TCLC) mechanism.

4. Conclusions

The morphology, optical and electrical characteristics of PEDOT:PEG/ZnO/p-Siheterostructurefabricatedbyvacuumspin- coatingtechniqueandsputtersystemwereidentifiedusingAFM, optic spectroscopy and semiconductor characterization system.

The prepared heterojunction diode exhibits a good rectifying behaviorwithanidealityfactorof1.9±0.01andrectificationratio of1.11×102at±1V.TheAFMresultsindicatethatthesurfacemor- phologiesofthefilmsarereasonablysmooth,withuniformgrain distribution.TheopticalbandgapoftheZnOfilmwasfoundto be3.22eV.Fromtheopticalabsorptionspectrum,ithasbeenseen thatPEDOT:PEGisasemiconductormaterialwithwideopticalband energygapof3.81eV.Theelectricalconductionintheheterojunc- tionwasfoundtotakeplacebythermionicemissionatlowvoltages (V≤0.2V)andbyspacechargelimitedconductionathighvoltages (V>0.2V).TheobtainedresultsshowthatthePEDOT:PEG/ZnO/p-Si heterojunctionisagoodcandidateforthethinfilmstypeelectronic deviceapplications.

Acknowledgements

ThisworkwassupportedbytheManagementUnitofScientific ResearchprojectsofBingolUniversity(BÜBAP)(ProjectNumber:

2010/08).OneofauthorswishestothankBÜBAPandUniversité d’Angers,France.

References

[1]E.Katsia,N.Huby,G.Tallarida,B.Kutrzeba-Kotowska,M.Perego,S.Ferrari, F.C.Krebs,E.Guziewicz,M.Godlewski,V.Osinniy,G.Luka,Appl.Phys.Lett.94 (2009)143501.

[2]L.S.Roman,M.Berggren,O.Inganas,Appl.Phys.Lett.75(1999)3557.

[3]K.M.Chen,Y.X.Zhang,G.G.Qin,S.X.Jin,K.Wu,C.Y.Li,Z.N.Gu,X.H.Zhou,Appl.

Phys.Lett.69(1996)3557.

[4] Q.L.Gu,C.K.Cheung,C.C.Ling,A.M.C.Ng,A.B.Djurisic,L.W.Lu,X.D.Chen,S.

Fung,C.D.Beling,H.C.Ong,J.Appl.Phys.103(2008)093706.

(6)

790 M.Soyluetal./MaterialsScienceandEngineeringB177 (2012) 785–790

[5]L.J.Brillson,H.L.Mosbacker,M.J.Hetzer,Y.Strzhemeehny,G.H.Jessen,D.C.Look, G.Cantwell,J.Zhang,J.J.Song,Appl.Phys.Lett.90(2007)102116.

[6]C.S.Singh,G.Agarwal,G.D.Rao,S.Chaudhary,R.Singh,Mater.Sci.Semicond.

Process.14(2011)1–4.

[7]C.Weichsel,O.Pagni,A.W.R.Leitch,Semicond.Sci.Technol.20(2005)840.

[8]M.W.Allen,S.M.Durbin,J.B.Metson,Appl.Phys.Lett.91(2007)053512.

[9]H.Zhou,G.J.Fang,N.Liu,X.Z.Zhao,Mater.Sci.Eng.B176(2011)740.

[10] D.H.Lee,D.H.Park,S.Kim,S.Y.Lee,ThinSolidFilms519(2011)5658.

[11]S.Mridha,D.Basak,Appl.Phys.Lett.92(2008)142111.

[12] M.Nakano,A.Tsukazaki,R.Y.Gunji,K.Ueno,A.Ohtomo,T.Fukumura,M.

Kawasaki,Appl.Phys.Lett.91(2007)142113.

[13] Y.Zhang,L.Wu,H.Li,J.Xu,L.Han,B.Wang,Z.Tuo,E.Xie,J.AlloysCompd.473 (2009)319.

[14] Y.Lin,D.M.Jiang,F.Lin,W.Z.Shi,X.M.Ma,J.AlloysCompd.436(2007)30.

[15]F.Rana,L.Miao,S.Tanemura,M.Tanemura,Y.Cao,S.Tanaka,N.Shibata,Mater.

Sci.Eng.B148(2008)35.

[16]L.H.Van,M.H.Hong,J.Ding,J.AlloysCompd.449(2008)207.

[17] S.Huang,Q.Xiao,H.Zhou,D.Wang,W.Jiang,J.AlloysCompd.486(2009)L24.

[18]S.W.Xue,X.T.Zu,W.L.Zhou,H.X.Deng,X.Xiang,L.Zhang,H.Deng,J.Alloys Compd.448(2008)21.

[19] X.Zhou,Q.CaO.,H.Huang,P.Yang,Y.Hu,Mater.Sci.Eng.B99(2003)44.

[20]S.Ahmad,M.Deepa,S.Singh,Langmuir23(2007)11430.

[21]A.W.Hains,T.J.Marks,Appl.Phys.Lett.92(2008)023504.

[22]S.Bange,A.Kuksov,D.Neher,A.Vollmer,N.Koch,A.Ludemann,S.Heun,J.Appl.

Phys.104(2008)104506.

[23]F.C.M.VanDePol,F.R.Blom,ThJ.E.Pompa,ThinSolidFilms204(1991)349.

[24]I.S.Jeong,J.H.Kim,S.Im,Appl.Phys.Lett.83(2003)2946.

[25]C.H.Park,I.S.Jeong,J.H.Kim,S.Im,Appl.Phys.Lett.82(2003)3973.

[26]D.Mardare,M.Tasca,M.Delibas,G.I.Rusu,Appl.Surf.Sci.156(2000)200.

[27]N.Martin,C.Rousselot,D.Rondot,F.Palmino,R.Mercier,ThinSolidFilms300 (1997)113.

[28] L.J.Meng,M.P.DosSantos,ThinSolidFilms226(1993)22.

[29]N.F.Mott,R.W.Gurney,ElectronicProcessesinIonicCrystals,London,Oxford Univ.Press,1940.

[30]A.K.Abass,A.Krier,R.A.Collins,Phys.Stat.Sol.(a)142(1994)435.

[31] K.R.Rajesh,C.S.Menon,Eur.Phys.J.B47(2005)171.

[32]C.F.Yu,C.W.Sung,S.H.Chen,S.J.Sun,Appl.Surf.Sci.256(2009)792–796.

[33]M.Caglar,S.Ilican,Y.Caglar,F.Yakuphanoglu,J.AlloysCompd.509(2011) 3177–3182.

[34]J.W.P.Hsu,M.J.Manfra,D.V.Lang,S.Richter,S.N.G.Chu,A.M.Sergent,R.N.

Kleiman,L.N.Pfeiffer,R.J.Molnar,Appl.Phys.Lett.78(2001)1685.

[35] E.H.Rhoderick,R.H.Williams,Metal–SemiconductorContacts,2nded.,Claren- donPress,Oxford,1988.

[36] B.K.Sharma,N.Khare,S.Ahmad,SolidStateCommun.149(2009)771.

[37]A.B.Mclean,I.M.Dharmadasa,R.H.Williams,Semicond.Sci.Technol.1(1986) 137.

[38]C.G.B.Garrett,W.H.Brattain,Phys.Rev.99(1955)376.

[39] W.Monch,SemiconductorSurfacesandInterfaces,Springer,Berlin,2001,p.67.

[40]J.Wright,R.Khanna,L.Voss,L.Stafford,B.Gila,D.Norton,S.Pearton,H.T.Wang, S.Jang,T.Anderson,J.J.Chen,B.S.Kang,F.Ren,H.Shen,J.R.Laroche,Appl.Surf.

Sci.253(2007)3766.

[41] W.Monch,Rep.Prog.Phys.53(1990)221.

[42]H.Norde,J.Appl.Phys.50(1979)5052.

[43] P.Klason,M.M.Rahman,Q-HHu,O.Nur,R.Turan,M.Willander,Microelectron.

J.40(2009)706.

[44]S.Liang,H.Sheng,Y.Liu,Z.Huo,Y.Lu,H.Shen,J.Cryst.Growth225(2001)110.

[45]S.J.Young,L.W.Ji,S.J.Chang,Y.P.Chen,S.-M.Peng,Semicond.Sci.Technol.23 (2008)085016.

[46]E.Gur,S.Tuzemen,B.Kılıc,C.Coskun,J.Phys.:Condens.Matter19(2007) 196206.

[47]A.VanderZiel,SolidStatePhysicalElectronics,2nded.,Prentice-Hall,Engle- woodCliffs,NJ,1968.

[48]R.T.Tung,Phys.Rev.B45(1992)13502;

R.T.Tung,Mater.Sci.Eng.R35(2001)1–138.

[49]M.Saglam,E.Ayyildiz,A.Gümüs,A.Turut,H.Efeoglu,S.Tuzemen,Appl.Phys.

A62(1996)269.

[50]M.A.Lampert,P.Mark,CurrentInjectioninSolids,AcademicPress,NewYork, London,1970.

Références

Documents relatifs

Our study is made on a ZnO-SiO2-Si (N) solar cell; it proves that the spectral response has higher collection efficiency for carriers generated by ultraviolet light and a

The influence of surface recombination is noticeable in typical crystalline silicon (c-Si) solar cells, especially if the minority-carrier diffusion lengths

For various electronic applications, such as the camelback diode and transistor devices, i t i s required to have extremely sharp and abrupt high density doping

In the present work, the silicon nanowires produced by gold-assisted chemical etching in combination with nanosphere lithography followed by ALD-based coating with ZnO layer are

[20] The measured 1/C 2 curves versus voltage at high frequency (100 kHz) for the heterojunctions with both a-GaP interface (a-GaP and μ c-GaP layers) and epi-GaP interface formed

The approach is relevant for the screening of new materials for solar cells, since it allows a quick measurement of the diode ideality factor, which has implications for the fill

Rhumatologie Neuro-chirurgie Anesthésie Réanimation Anesthésie Réanimation Anatomie Biochimie-chimie Dermatologie Chirurgie Générale Traumatologie orthopédique Hématologie

The use of rate equations of the semiconductor laser will enable us to simulate the operation of the laser diode with regard to fluctuations of the optical signal in time and in