• Aucun résultat trouvé

1 Champ électrique d’une station de base (6 points)

N/A
N/A
Protected

Academic year: 2022

Partager "1 Champ électrique d’une station de base (6 points)"

Copied!
10
0
0

Texte intégral

(1)

Électromagnétisme

Examen (4e), durée 1h30

documents autorisés (distribués) : formulaire 13 mai 2009

Notes Exercices Note finale / 20

Nom Prénom

Nombre d’heures de travail

Régulier (heures par semaine) Ponctuel (avant l’examen)

Ne pas dégrafer les feuilles svp !

Extrait du règlement des études de Polytech’Nice Sophia (section 9) : Pendant la durée des épreuves il est interdit :

– de détenir tout moyen de communication (téléphone portable, micro-ordi- nateur, . . . ), sauf conditions particulières à l’épreuve ;

– de communiquer entre candidats ou avec l’extérieur et d’échanger du ma- tériel (règle, stylo, calculatrice, . . . ) ;

– d’utiliser, ou même de conserver sans les utiliser, des documents ou maté- riels non autorisés pendant l’épreuve.

Toute infraction aux instructions énoncées ci-avant ou tentative de fraude dû- ment constatée entraîne l’application du décret No95-842 du 13 juillet 1995 relatif à la procédure disciplinaire dans les établissements publics d’enseigne- ment supérieur.

(2)

École Polytechnique de l’UNS Polytech’Nice-Sophia

Cycle initial Polytechnique, 2eannée 2008–2009

1 Champ électrique d’une station de base (6 points)

La téléphonie mobile utilise, entre autres, les fréquences autour de f = 980 MHz pour la communication entre le téléphone et la station de base. L’antenne d’un téléphone portable représente une surface équivalenteAe = 5×103m2 pour les ondes électroma- gnétiques (cette aire, à peu près égale à celle d’un carré de dimensions 7 cm×7 cm, ne correspond pas aux dimensionsphysiques de l’antenne mais à ses dimensionsélectriques).

Commentaire:

D’où vient cette valeur ? On considère ici un dipoleλ/2: directivité maximale D = 1.22. La surface équivalente Ae = λ2D/4π ≈9×103m2 et on divise par deux pour avoir la puissance disponible à une charge adaptée.

On considère que l’onde électromagnétique venant de la station de base est une OPPM se propageant dans l’air seloneˆz; le champ électrique, d’amplitude E0, est orienté seloneˆx. Cette représentation est bien sûr valide seulement localement, dans une région autour du portable (l’onde émise par la station de base ne peut pas être une OPPM qui remplit tout l’espace !). L’onde arrive de façon perpendiculaire à la surface de l’antenne du téléphone portable.

a. Donner les expressions complexes des champs électrique ~

˜

E et magnétique ~

˜ B. Réponse (0.5 point):

E=E0ej (ωtkz)x

B= ω1~k∧E~˜ = 1cE0ej (ωtkz)y

b. Donner l’expression de la valeur moyenne de la puissance transportée par cette onde par unité de surface.

Réponse (1.5 points ; on peut donner directement I):

S~= µ10E~∧B~ = µ10cE02cos2(ωt−kz)eˆz

<S~>= 12qε

0

µ0E02z= 1

0E02z I = 1

0E02 enW m2

c. La puissance moyenne reçue par le mobile est égale àPr= 2 nW. Calculer l’intensité I de l’onde électromagnétique venant de la station de base.

Réponse (2 points):

Pn=R

Ae <S~> ·ˆndS=R

AeIkˆ·nˆdS =R

AeIdS=IAe

donc I =Pn/Ae= 52××101039W

m2 = 0.4µW m2.

d. Calculer l’amplitude E0 du champ électrique à l’endroit où se trouve le portable (rappel : l’impédance du vide η0= 120πΩ).

Réponse (2 points):

E0 =√

0I =p

2·120π·0.4×106

Ω W m2= 17.4 mV m1

Électromagnétisme 2

(3)

2 Entre deux conducteurs parfaits (14 points)

Un conducteur parfait (métal à conductivité infinie, σ =∞) remplit le demi-espace z <0. Une OPPM de fréquence f se propage dans le vide (z > 0) selonˆk =−ˆez (vers l’axe deznégatif !). L’onde est de polarisation linéaire : le champ électrique, d’amplitude Ei0, reste toujours parallèle àeˆx. La réflexion de cette onde incidente sur le conducteur parfait àz= 0 crée une onde réfléchie dans z >0.

a. Donner la représentation complexe des ondes électromagnétiques incidente (~

˜ Ei,

Bi) et réfléchie (~

˜ Er, ~

˜ Br).

Réponse (2 points):

Ei=Ei0ej (ωt+kz)ˆex

Bi= ω1~k∧ ~

˜

E =−1cEi0ej (ωt+kz)ˆey

Er = ˜Er0ej (ωtkz)x

Br = ω1~k∧ ~

˜

E= +1cr0ej (ωtkz)y

b. Appliquer la condition de continuité des composantes tangentielles du champ élec- trique sur une interface et donner l’expression de l’amplitude de l’onde réfléchie.

Réponse (2 points):

Le champ électrique est nul dans le PEC (z<0) donc :

Eitan(z= 0) + ~

˜

Ertan(z= 0) = 0 Er0 =−Ei0

c. Calculer le coefficient de réflexion en amplitude r=Er0/Ei0. Réponse (1 points):

r=−1

d. Donner l’expression du champ électrique total (représentation complexe et réelle).

Réponse (2 points):

~˜ E=

(0 , z <0

2 jEi0sin(kz)ejωtx , z >0 E~=

(0 , z <0

−2Ei0sin(kz) sin(ωt)eˆx , z >0

e. On ajoute à la géométrie du problème un deuxième conducteur parfait qui remplit le demi-espace z > L. Montrer que la condition de continuité des composantes tangentielles du champ électrique total (question précédente) sur l’interface àz=L implique que seules les ondes dontλ=λn= 2L/n (nentier) peuvent exister entre les deux conducteurs.

Réponse (2 points):

Etan(z=L) = 0 doncEi0sin(kL) = 0 :

(4)

École Polytechnique de l’UNS Polytech’Nice-Sophia

Cycle initial Polytechnique, 2eannée 2008–2009

f. Quelle condition est alors imposée sur la fréquence f des ondes ? Réponse (2 points):

λ = 2L/n → f = n2Lc : les fréquences permises prennent des valeurs discrètes, multiples d’une fondamentale.

g. A.N. : Ei0 = 2.5 V m1,L= 20 cm.

Utiliser la Figure 1 pour tracer le vecteur E~ du champ électrique total àt =T /4 pourλ=λ1 etλ=λ2. Calculer les fréquences permises entre les deux conducteurs.

Réponse (3 points):

λ=λ1 : une demie période sinusoïdale, négative.

λ=λ2 : une période sinusoïdale, négative-positive.

L’amplitude max est à 5 V m1.

Fréquences permises :fn=n23·20×10×810m s21

m =n0.75×109Hz =n750 MHz.

Électromagnétisme 4

(5)

olytechniquedel’UNS’Nice-Sophia CycleinitialPolytechniq

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

-5 -4 -3 -2 -1 0 1 2 3 4 agnétisme5 5

(6)

École Polytechnique de l’UNS Polytech’Nice-Sophia

Cycle initial Polytechnique, 2eannée 2008–2009

Formulaire

A Analyse vectorielle

A.1 Gradient

A.1.1 Coordonnées cylindriques

−−→

gradV = ∂V

∂ρˆeρ+1 ρ

∂V

∂φeˆφ+∂V

∂z ˆez (1)

A.1.2 Coordonnées sphériques

−−→

gradV = ∂V

∂reˆr+1 r

∂V

∂θ ˆeθ+ 1 rsinθ

∂V

∂φeˆφ (2)

A.2 Divergence

A.2.1 Coordonnées cylindriques

divA~ = 1 ρ

∂(ρAρ)

∂ρ +1 ρ

∂Aφ

∂φ +∂Az

∂z (3)

A.2.2 Coordonnées sphériques

divA~ = 1 r2

∂(r2Ar)

∂r + 1

rsinθ

∂(sinθAθ)

∂θ + 1

rsinθ

∂Aφ

∂φ (4)

A.3 Rotationnel

A.3.1 Coordonnées cylindriques

−→ rotA~ = 1

ρ ˆ

eρ ρˆeφz

∂ρ

∂φ

∂z

Aρ ρAφ Az

(5)

A.3.2 Coordonnées sphériques

−→

rotA~ = 1 r2sinθ

r rˆeθ rsinθeˆφ

∂r

∂θ

∂φ

Ar rAθ rsinθAφ

(6)

Électromagnétisme 6

(7)

Page blanche

(8)

École Polytechnique de l’UNS Polytech’Nice-Sophia

Cycle initial Polytechnique, 2eannée 2008–2009

Page blanche

Électromagnétisme 8

(9)

Brouillon

(10)

École Polytechnique de l’UNS Polytech’Nice-Sophia

Cycle initial Polytechnique, 2eannée 2008–2009

Brouillon

Électromagnétisme 10

Références

Documents relatifs

Cette représentation est bien sûr valide seulement localement, dans une région autour du portable (l’onde émise par la station de base ne peut pas être une OPPM qui remplit

Les exigences requises pour gérer la demande d’énergie sont les suivantes : - recueillir le niveau de charge des batteries,.. - piloter le soutirage ou l’injection de l’énergie,

Finally, we observed that depending on the number of transmitters, the BS selection technique might provide a better global performance (network spectral efficiency) than BS

Let us consider a structure composed of multiple periodic cylindrical surfaces of infinite long metallic wires, excited by an infinite long line source in its center

may call it so — that we had before us in July, had nearly all the makings of a deal that would have represented a QUANTUM LEAP from the results of the Uruguay Round” 7. Yet

H3 Attitudes vis-à-vis the open field production method are more favourable than those vis-à-vis greenhouse agriculture (open field production is perceived as better than

Les prochaines sections feront état de ces connaissances , plus particulièrement des caractéristiques personnelles, familiales , sociales, psychosexuelles (notamment

► est correspond au verbe être conjugué à la troisième personne du singulier du présent de l'indicatif.. Il peut être remplacé par était (verbe être à l'imparfait) Exemple :