• Aucun résultat trouvé

Vertical dynamic forces from footsteps

N/A
N/A
Protected

Academic year: 2021

Partager "Vertical dynamic forces from footsteps"

Copied!
13
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Canadian Acoustics/Acoustique Canadienne, 14, 2, pp. 12-21, 1986-04

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Vertical dynamic forces from footsteps

Rainer, J. H.; Pernica, G.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=306f57be-f464-4040-814c-fb37e92b4dd0 https://publications-cnrc.canada.ca/fra/voir/objet/?id=306f57be-f464-4040-814c-fb37e92b4dd0

(2)

Ser

T H ~

National Research

Conseil national

H2I-d

I+

Council Canada

de

recherches Canada

no. 1371

I c . 2

Institute for

lnstitut de

B I ~ G

I

Research in

recherche en

-

Construction

construction

Vertical Dynamic Forces from Footsteps

by J.H. Rainer and G. Pernica

Reprinted from

Canadian Acoustics

Vol. 14, No. 2, April 1986

p. 12-21

(IRC Paper No. 1371)

Price $2.00

NRCC 25879

\

*

NRC

-

C I S T I

BLDG. RES.

L I B R A - R Y

86-

41-

3

(3)

T h i s p a p e r i s b e i n g d i s t r i b u t e d i n r e p r i n t form by t h e I n s t i t u t e f o r R e s e a r c h i n C o n s t r u c t i o n . A l i s t of b u i l d i n g p r a c t i c e and r e s e a r c h p u b l i c a t i o n s a v a i l a b l e from t h e I n s t i t u t e may be o b t a i n e d by w r i t i n g t o t h e P u b l i c a t i o n s S e c t i o n , I n s t i t u t e f o r R e s e a r c h i n C o n s t r u c t i o n , N a t i o n a l Research C o u n c i l of C a n a d a , O t t a w a , O n t a r i o , K l A

OR6.

Ce document e s t d i s t r i b u g s o u s forme de t i r 6 - a - p a r t p a r 1 ' I n s t i t u t de r e c h e r c h e e n c o n s t r u c t i o n . O n p e u t o b t e n i r une l i s t e d e s p u b l i c a t i o n s de 1 ' I n s t i t u t p o r t a n t s u r l e s t e c h n i q u e s ou

l e s

r e c h e r c h e s e n

matisre

d e b d t i m e n t e n 6crivant: 3 l a S e c t i o n d e s - - p u b l i c a t i o n s , - 1 _ A c o n s t r u c t i r e c h e r c h e s KIA

OR6,

(4)

VERTICAL DYNAMIC FORCES FROM FOOTSTEPS J.H. R a i n e r and G . P e r n i c a

Noise and V i b r a t i o n S e c t i o n D i v i s i o n of B u i l d i n g Research N a t i o n a l Research Council Canada

Ottawa, Canada, K1A OR6

ABSTRACT

V e r t i c a l dynamic f o r c e s from w a l k i n g and r u n n i n g were measured by l o a d c e l l s p l a c e d between temporary s u p p o r t s and t h e c e n t r e of a 17-m-long f l o o r s t r i p . The measurements showed t h a t t h e dynamic f o r c e s a r e composed of wave t r a i n s of harmonics of t h e walking o r r u n n i n g r a t e . The

s i g n i f i c a n t low f r e q u e n c y c o n t r i b u t i o n s a r e g e n e r a l l y c o n t a i n e d w i t h i n t h e f i r s t t h r e e t o f o u r harmonics.

To r e p r e s e n t t h e c o n t r i b u t i o n of e a c h harmonic t o t h e t o t a l dynamic f o r c e s , a 'dynamic l o a d f a c t o r , a ' was d e f i n e d a s t h e r a t i o of dynamic f o r c e a m p l i t u d e of t h e harmonic t o t h e w e i g h t of t h e person. F o o t s t e p f o r c e s were produced by t h r e e male s u b j e c t s ; f o r walking, t h e maximum dynamic l o a d f a c t o r s measured and c o r r e s p o n d i n g f r e q u e n c i e s are:

al = 0.56 a t 2.4 Hz f o r t h e f i r s t harmonic, a2 = 0.28 a t

5.4

Hz f o r the

second, a 3 = 0.12 a t around 7.8

Hz

f o r

the

third, and ab = 0.08 f o r the f o u r t h harmonic. For r u n n i n g , maximum values of a1 were 1.45 a t

3.0

to

3.5 Hz

f o r t h e f i r s t harmonic,

a2

= O,4 f o r t h e second, a3 = 0.2

for the

t h i r d , and a,, = 0.1 o r less f o r t h e f o u r t h harmonic.

Les f o r c e s dynamiques v e r t i c a l e s du p a s d e marche e t du p a s d e c o u r s e o n t 4 t 6 mesurges a u moyen d e c e l l u l e s e x t e n a o m 6 t r i q u e s p l a c 6 e s e n t r e d e s s u p p o r t s t e m p o r a i r e s e t l e c e n t r e d'une p i s t e d e 17 m. Les mesures o n t r 6 v b l 6 que l e s f o r c e s dynamiques s e composent d e t r a i n s d'harmoniques d e l a f r d q u e n c e du pas. Les c o n t r i b u t i o n s i m p o r t a n t e s 3 b a s s e f r d q u e n c e s o n t ggnbralement a s s o c i g e s aux t r o i s ou q u a t r e p r e m i z r e s harmoniques.

Pour r e p r d s e n t e r l a c o n t r i b u t i o n d e chacune d e s harmoniques aux

f o r c e s dynamiques t o t a l e s , on a d 6 f i n i un " f a c t e u r d e c h a r g e dynamique, a " comme d t a n t l e r a p p o r t d e l ' a m p l i t u d e d e l a f o r c e dynamique d e

l'harmonique e t du p o i d s d e l a personne. Les f o r c e s d e p a s o n t 6 t 6

produites par t r o i s hommes. Au pas d e marche, les f a c t e u r s d e c h a r g e

dynamlque maximaux mesur&s e t les f r g q u e n c e s c o r r e s p o n d a n t e s 6 t a i e n t : a ] =

0,56

3 2,4 H z pour l a premlsse harmonique, a 2 = 0 , 2 8 3

5,4

Hz pour l a

deuxiZme, ag = 0,12

3

7,8 Hz e n v i r o n pour l a t r o i s i s m e , e t a,, = 0 , 0 8 pour

l a quarrisme. Au p a s d e c o u r s e , Les f a c t e u r s maximaux 6 t a i e n t : a1 = 1,45

entre 3,O Hz e t

3,5

Hz pour l a p r e m i ~ l r e harmonique, a2 = 0 , 4 pour l a deuxidme, a 3 = 0 , 2 pour l a t r o i s i d m e , e t a 4 = 0 , l ou moins pour l a quatrieme.

INTRODUCTION

Walking and r u n n i n g a r e two of t h e most cormon forms of dynamic e x c i t a t i o n produced by occupants i n b u i l d i n g s , y e t r e l a t i v e l y l i t t l e q u a n t i t a t i v e d a t a i s

(5)

a v a i l a b l e a b o u t them, To p r o v i d e some d a t a on t h i s t o p i c , a s t u d y of t h e f o r c e s produced by w a l k e r s and r u n n e r s was u n d e r t a k e n a t t h e D i v i s i o n of B u i l d i n g Research of t h e N a t i o n a l Research Council of Canada.

A number of p r e v i o u s s t u d i e s of f o r c e s induced by human a c t i v i t y c a n be found i n Refs. 1 t o 4. These s t u d i e s s i m u l a t e d t h e f o r c e s due t o a c o n t i n u o u s s e r i e s of s t e p s by combining d u p l i c a t e s of t h e f o r c e produced by a s i n g l e s t e p s e p a r a t e d by t i m e d e l a y s c o r r e s p o n d i n g t o t h e walking r a t e ( 3 , 4 ) . The p r e s e n t i n v e s t i g a t i o n measures t h e dynamic f o r c e s produced by a c o n t i n u o u s series of s t e p s ; p o s s i b l e i n a c c u r a c i e s a r i s i n g from t h e c r e a t i o n of sequences c o n s i s t i n g of s i n g l e s t e p p u l s e s a r e t h u s avoided. A knowledge of t h e f o r c e s produced by f o o t s t e p s i s of p r a c t i c a l s i g n i f i c a n c e : a ) i n u n d e r s t a n d i n g t h e n a t u r e of u n d e s i r a b l e f l o o r v i b r a t i o n s produced by o c c u p a n t s ; and b ) i n a f f o r d i n g t h e p o s s i b i l i t y of p r e d i c t i n g d u r i n g t h e d e s i g n s t a g e t h e p r o b a b l e b e h a v i o u r of a f l o o r s u b j e c t e d t o walking o r running. T h i s i s of e v e r - i n c r e a s i n g importance s i n c e l i g h t e r s t r u c t u r a l s y s t e m s and l o n g e r s p a n s t e n d t o make f l o o r s more prone t o occupancy-induced v i b r a t i o n s .

TEST PROCEDURE AND ANALYSIS

The f o r c e s f r o m w a l k i n g and r u n n i n g were measured a t mid-span of a s i m p l y

s u p p o r t e d f l o o r s t r i p c o n s i s t i n g of two open-web j o i s t s 914 mm deep, spaced a t 1.76 m and s p a n n i n g 17.04 m. The j o i s t s a r e c o v e r e d by p r e - c a s t c o n c r e t e p a n e l s of 100 mm t h i c k n e s s , e a c h measuring 2.13 m a c r o s s and 1.19 m a l o n g t h e f l o o r span. A p l a n view and e l e v a t i o n a r e shown i n F i g u r e 1.

A t c e n t r e s p a n under e a c h j o i s t a p i e z o e l e c t r i c f o r c e t r a n s d u c e r was i n s e r t e d between a temporary s u p p o r t and t h e bottom c h o r d , and pre-loaded t o a p p r o x i m a t e l y

I

PLAN PRECAST CONCRETE , ,STEEL TRUSSES I E L E V A T I O N

1

'FORCE T R I \ N ~ C ~ ON TEMPORARY SUPPORT D I M E N S I O N S I N m m F i g u r e 1. T e s t f l o o r s t r i p .

(6)

4000

N.

The s i g n a l s from t h e two t r a n s d u c e r s were added, a m p l i f i e d and r e c o r d e d . A n a l y s i s commenced w i t h h i g h - p a s s f i l t e r i n g t h e s i g n a l s a t 0.2 Hz t o e l i m i n a t e t h e low frequency d r i f t a s t h e s u b j e c t moved a c r o s s t h e f l o o r s t r i p . The s i g n a l s were t h e n d i g i t i z e d and a n a l y z e d on a F o u r i e r a n a l y z e r and by F a s t F o u r i e r Transform (FFT) r o u t i n e s on a minicomputer. D i g i t a l f i l t e r i n g was c a r r i e d o u t by 'windowing' i n t h e f r e q u e n c y domain. The peak a m p l i t u d e s n e a r t h e middle of t h e s i g n a l t r a i n were u s e d a s a measure of s i g n a l magnitudes ( s e e F i g s . 2 and 3 ) .

- 6 0 0 1 3 5 7 9 360 TIME. S 180 0 0 5 F R E Q U E N C Y . H z b ) SECOND H A R M O N I C , 4 . 8 Hz

H

36,-,t

c l THIRD H A R M O N I C . 7 . 2 Hz

1

T I M E , s

F i g u r e 2. Walking f o r c e s a t F i g u r e 3, Harmonic components of f o r c e 2.4 s t e p s / s e c o n d , s u b j e c t A. from walking a t

2.4 s t e p s / s e c o n d , s u b j e c t A.

The t e s t s were conducted by p l a y i n g p r e - r e c o r d e d p u l s e s a t t h e d e s i r e d walking o r running r a t e through l o u d s p e a k e r s , and r e q u e s t i n g t h e s u b j e c t t o walk o r r u n a l o n g t h e f l o o r s t r i p a t t h e s p e c i f i e d r a t e u s i n g a s t r i d e of h i s own choosing. For walk t e s t s i n which s t r i d e was v a r i e d , t h e s u b j e c t walked f i r s t a t h i s n a t u r a l s t r i d e , and t h e n a t a s h o r t e r and a l o n g e r one.

To compensate f o r t h e dynamic a m p l i f i c a t i o n e f f e c t s n e a r t h e lowest r e s o n a n c e f r e q u e n c y of t h e s u p p o r t e d f l o o r s t r i p , c o r r e c t i o n f a c t o r s were determined from 2 t o

10 Hz by comparing t h e l o a d c e l l o u t p u t w i t h t h e known s h a k e r f o r c e t h a t was a p p l i e d a t c e n t r e span.

(7)

S i n c e t h e lowest r e s o n a n c e frequency of t h e i n s t r u m e n t e d f l o o r s t r i p was 12 Hz, t h e u s e f u l r e s u l t s were t h u s l i m i t e d t o f r e q u e n c i e s below a b o u t 10 Hz. Above t h a t I f r e q u e n c y , t h e dynamic a m p l i f i c a t i o n becomes l a r g e and r a t h e r s e n s i t i v e t o damping. A f r e q u e n c y r a n g e from 0.2 t o 10 Hz was c o n s i d e r e d a d e q u a t e f o r p r e s e n t p u r p o s e s s i n c e t h e m a j o r i t y of problems a s s o c i a t e d w i t h f o o t s t e p s have o c c u r r e d i n f l o o r s w i t h fundamental f r e q u e n c i e s below a b o u t 8 Hz (5).

CHARACTERISTICS OF FOOTSTEP FORCES

The d i s t i n c t i o n between w a l k i n g and r u n n i n g i s t h a t d u r i n g w a l k i n g t h e p e r s o n always h a s one f o o t i n c o n t a c t w i t h t h e f l o o r o r ground, whereas d u r i n g r u n n i n g , c o n t a c t i s l o s t . The w a l k i n g o r r u n n i n g f r e q u e n c y i n Hz i s d e f i n e d a s t h e r a t e a t which t h e f e e t make c o n t a c t w i t h t h e f l o o r . Walking and r u n n i n g were performed by t h r e e male subjects, whose p h y s i c a l c h a r a c t e r i s t i c s a r e g i v e n i n Table 1.

TABLE 1

P h y s i c a l C h a r a c t e r i s t i c s of Male T e s t S u b j e c t s

Weight Height Age

S u b j e c t

(N

(m) ( Y )

-

A 7 3 4 1.82 48

walking

A t y p i c a l t i m e r e c o r d of w a l k i n g f o r c e s , l o w - p a s s f i l t e r e d a t 10 Hz, i s shown i n F i g u r e 2a. The r e c o r d c o n t a i n s o n l y t h e dynamic p o r t i o n of t h e induced f o r c e s , a s t h e s t a t i c components have been e l i m i n a t e d by t h e 0.2 Hz h i g h p a s s f i l t e r . These f o r c e s a r e bounded by a p a r a b o l i c a l l y shaped e n v e l o p e which i s t h e s t a t i c i n f l u e n c e l i n e f o r t h e mid-span s u p p o r t of t h e f l o o r s t r i p ( 6 ) . The F o u r i e r a m p l i t u d e s p e c t r u m of t h i s f o r c e r e c o r d i s shown i n F i g u r e 2b. The spectrum shows t h a t t h e f o r c e s

produced by walking c o n s i s t of d i s t i n c t f r e q u e n c y components a t i n t e g e r m u l t i p l e s of t h e walking r a t e , w i t h s p e c t r a l a m p l i t u d e s t h a t d e c r e a s e w i t h i n c r e a s i n g frequency. The f i r s t t h r e e o r f o u r harmonics comprise t h e main dynamic components of walking f o r c e s i n t h e frequency r a n g e of i n t e r e s t . A s t h e t i m e r e c o r d i n F i g u r e 2a shows, t h e f o r c e s a r e p e r i o d i c , w i t h a r e p e t i t i o n r a t e e q u a l t o t h e w a l k i n g r a t e . Runnine The t i m e s i g n a t u r e s of f o r c e s from r u n n i n g a r e s i m i l a r t o t h o s e f o r w a l k i n g , e x c e p t t h a t t h e p u l s e s a s s o c i a t e d w i t h e a c h s t e p a r e z e r o d u r i n g t h e t i m e t h e r u n n e r i s a i r b o r n e . N e v e r t h e l e s s , t h e F o u r i e r s p e c t r u m of t h e f o r c e r e c o r d a g a i n c o n t a i n s d i s c r e t e f r e q u e n c y components a t i n t e g e r m u l t i p l e s of t h e running r a t e , a s shown i n F i g u r e 4.

(8)

3

6

9

F R E Q U E N C Y ,

H z

Figure

4.

Fourier amplitude spectrum

for running at

3.0 stepslsecond.

MATHEMATICAL REPRESENTATION OF FOOTSTEP FORCES

Walking

The analysis of force records indicates that the walking forces (F(t))

can be

represented by the following expression:

F(t)

=

P(1

+

an sin (n2xft

+

.

n=

1

Here,

P

=

static weight of subject;

a

=

Fourier amplitude or Fourier coefficient;

n

=

order of harmonic of the walking rate (n

=

1, 2, 3..

-1;

f =

rate of walking in

Hz;

t

=

time variable;

$ =

relative phase angle;

N =

total number of harmonics.

The dynamic component of the walking force in Eq. (1) is represented by the

summation term, which is a Fourier series with Fourier coefficients (an) at the

discrete frequencies (nf).

From the analysis of time records, the relative phase

angle

(9,)

was determined to be about 0°, 90°, and 0

'

for n

=

1, 2, and 3,

respectively, for walking rates between 2.0 and

2.4

Hz.

The time signatures of the

three lowest and most significant harmonics that comprise the walking forces in

Figure 2 are presented in Figures 3a, b and

c.

These were obtained from the time

record shown in Figure 2a by digital bandpass filtering in the frequency domain using

Fourier transform techniques

(7).

The centre amplitudes of the harmonics, normalized

by the weight

(P), then represent the Fourier coefficients (

a

,

)

.

Running

Periodic dynamic forces produced by running can also be represented by Eq.

( 1 ) .

However, the relative phase angles of the harmonics are not as clearly defined as

those for walking.

(9)

VARIATION OF DYNAMIC FORCES WITH STEP FREQUENCY Walking

The key p a r a m e t e r s i n Eq. (1) t h a t d e s c r i b e t h e dynamic f o r c e from walking a r e t h e F o u r i e r c o e f f i c i e n t s ( a n ) and t h e walking r a t e o r s t e p frequency ( f )

.

I n a

manner s i m i l a r t o t h a t used i n t h e d e s c r i p t i o n of r h y t h m i c f o r c e s ( 8 ) , t h e 0. h F o u r i e r c o e f f i c i e n t s ( a ) a r e c a l l e d H A R M O N l C 'dynamic l o a d f a c t o r s , '"defined a s t h e r a t i o 1 of t h e dynamic f o r c e a m p l i t u d e of e a c h 2 0 3 0 harmonic t o t h e weight of t h e s u b j e c t . I n 4 v t h i s p a p e r , t h e v a r i a t i o n of a w i t h s t e p

0.2 ,a-d 0-9

-

f r e q u e n c y was s t u d i e d f o r walking r a t e s f r o m

1.0 t o 3.0 Hz u s i n g t h r e e d i f f e r e n t male

0 s u b j e c t s (A, B and C, Table 1 ) . The r e s u l t s

0 1 2 3 4 5 6 7 8 9 1 0 a r e shown i n F i g u r e s 5a, b, and c.

a

F R E Q U E N C Y , H z

F i g u r e 5. Dynamic l o a d f a c t o r f o r walking.

A t v e r y low w a l k i n g r a t e s ( n e a r 1.0 Hz) t h e f i r s t f o u r harmonics have comparable dynamic l o a d f a c t o r s . A d d i t i o n a l h i g h e r harmonics a r e a l s o e v i d e n t , a s shown i n F i g u r e 6 by t h e F o u r i e r a m p l i t u d e s p e c t r u m of a walking r e c o r d a t 1.0 Hz. A t h i g h e r f o o t s t e p f r e q u e n c i e s t h e dynamic l o a d f a c t o r of t h e f i r s t harmonic ( a l ) i s t h e l a r g e s t and r e a c h e s a maximum n e a r 2.4 Hz f o r a l l t h r e e s u b j e c t s . For s u b j e c t s A and B t h e f o l l o w i n g c a n be observed from F i g u r e s 5a and

b.

The maximum dynamic l o a d f a c t o r s f o r t h e second harmonic ( a 2 ) a r e somewhat l e s s t h a n h a l f t h e maxima of a l . T h i s peak o c c u r s a t a b o u t 5.4 Hz, s l i g h t l y more t h a n t w i c e t h e f r e q u e n c y of t h e maximum f o r a l . The dynamic l o a d f a c t o r s of t h e t h i r d harmonic ( a g ) a r e a l s o somewhat l e s s t h a n h a l f of a*, w i t h t h e peak o c c u r r i n g n e a r 7.8 Hz. T h i s i s s l i g h t l y more t h a n t h r e e t i m e s t h e f r e q u e n c y of t h e maximum dynamic l o a d f a c t o r f o r t h e f i r s t harmonic. T h i s s h i f t i n f r e q u e n c i e s of t h e maximum dynamic l o a d f a c t o r s f o r t h e second and t h i r d harmonics from i n t e g e r m u l t i p l e s of t h e O5

1

1

f r e q u e n c y a t which t h e maximum ( a , ) o c c u r s Y c a n be a t t r i b u t e d t o t h e f a c t t h a f h i g h e r n 3 walking r a t e s produce l a r g e r f o r c e s d u r i n g +

-

t h e h e e l l a n d i n g and t o e push-off p h a s e s o f Z ~3 impact. The r e s u l t i s a r e l a t i v e l y l a r g e r 4 I p r o p o r t i o n of t h e h i g h e r harmonics t h a n a t lower walking r a t e s . n 0 10 F R E Q U E N C Y , H z The r e s u l t s f o r s u b j e c t C ( F i g . 5c)

d i f f e r somewhat from t h o s e of s u b j e c t s A and B ( F i g s . 5a and b ) i n t h a t t h e second and F i g u r e 6. F o u r i e r a m p l i t u d e s p e c t r u m t h i r d harmonics do n o t e x h i b i t t h e same

f o r walking a t 1.0 s t e p s / shape a s t h o s e f o r t h e o t h e r two s u b j e c t s . second, s u b j e c t B. S u b j e c t C shows a r e l a t i v e l a c k of second

(10)

i

and t h i r d harmonic components i n h d s walking f o r c e s a t walking 2.6 Hz, and t h e dynamic l o a d f a c t o r s r e a c h a maximum a t f r e q u e n c i e s of 6 Hz f o r t h e rates between 2 and 4

!

second harmonic and 9 Hz f o r t h e t h i r d , c o r r e s p o n d i n g t o a 3 Hz walking r a t e . On t h e I

o t h e r hand, t h e r e i s good agreement i n t h e v a r i a t i o n of a l among t h e t h r e e s u b j e c t s ,

I

b o t h i n t h e g e n e r a l s h a p e and t h e frequency a t which t h e maxima o c c u r . Maximum

-

v a l u e s of t h e dynamic l o a d f a c t o r s among t h e t h r e e t e s t s u b j e c t s were: a l = 0.56,

I

a2 0.28, a3 = 0.12, and a4 = 0.08. This e x c l u d e s t h e extreme v a l u e s n e a r 9 Hz f o r

I s u b j e c t C. a ) 2 . 0 H z 0 . 7 0 . 8 0.9 1 . 0 S T R I D E , rn The d a t a f o r t h e t h r e e s u b j e c t s a t e a c h S T R I D E , rn c 0.6 u oc- E 0 . 4 - i5 n a 9 0 . 2

-

2z I

=;

F i g u r e 8. V a r i a t i o n of dynamic l o a d f a c t o r w i t h s t e p l e n g t h and w a l k i n g r a t e . The dynamic l o a d f a c t o r s ( a ) f o r r u n n i n g a r e p l o t t e d a g a i n s t r u n n i n g r a t e f o r t h e t h r e e male s u b j e c t s i n F i g u r e s 9a, b and c. The r e s u l t s show t h e f i r s t harmonic t o be t h e most s i g n i f i c a n t , i n c r e a s i n g m o n o t o n i c a l l y from a p p r o x i m a t e l y 0.5 a t 1.5 Hz t o a maximum of 1.5 a t a f r e q u e n c y of 3.6 Hz. T h e r e a f t e r a g r a d u a l d e c r e a s e i n a1 i s

i n d i c a t e d . The second harmonic i n i t i a l l y d e c r e a s e s from a h i g h of a b o u t 0.4 a r o u n d 3.0 Hz, t o a low of 0.1 around 4.0 Hz, and t h e n g r a d u a l l y i n c r e a s e s t o between 0.35 and 0.47 around 7.0 Hz. The t h i r d harmonic remains r e l a t i v e l y c o n s t a n t a t l e s s t h a n

0 1 2 3 4 5 6 7 8 9 1 0 t h e above v a l u e s . T h i s a g a i n i g n o r e s t h e FREQUENCY. Hz 9 Hz d a t a p o i n t , which is s t r o n g l y i n f l u e n c e d by t h e c o n t r i b u t i o n from s u b j e c t C. F i g u r e 7. Averaged dynamic l o a d f a c t o r s f o r walking, V a r i a t i o n of a w i t h l e n g t h of s t e p The s u b j e c t s A, B and C. v a r i a t i o n of a w i t h s t e p l e n g t h w a s i n v e s t i g a t e d a t t h e 2 and 2.4 Hz walking r a t e s u s i n g s u b j e c t A. The r e s u l t s a r e shown i n F i g u r e 8. The 0.9 m s t e p l e n g t h was t h e n a t u r a l s t r i d e of t h e walker. For t h e t h r e e s t e p l e n g t h s i n v e s t i g a t e d h e r e , t h e dynamic l o a d f a c t o r s i n c r e a s e w i t h s t e p l e n g t h f o r b o t h t h e 2 and t h e 2.4 Hz w a l k i n g r a t e s .

--

H A R M O N I C

/"4,

1 A 2

-

P

h

i"

3 o 4 0

-

P

-

o ,pdOp0 a' o 0.l2-'

p'

m"~~+."r-rP=O-wvrv

- f r e q u e n c y were a v e r a g e d and a r e p l o t t e d i n F i g u r e 7; a f o u r t h d e g r e e polynomial c u r v e was f i t t e d t o t h e r e s u l t i n g p o i n t s . The maximum v a l u e s f o r t h i s polynomial f i t a r e : a1 = 0.52 a t 2.4 Hz, a = 0.24 a t 5.6 Hz, aa = 0.06 a t around 6

82,

and a,, = 0.05 a t around 8 Hz. ag and a,, c o u l d w e l l be

(11)

0

0 2 3 - 4 5 6 7 8 9 1 0

F R E Q U E N C Y , H z

F i g u r e 9. Dynamic l o a d f a c t o r f o r running.

0.2 between 4 and 8 Hz. For t h e f o u r t h

harmonic, t h e dynamic l o a d f a c t o r a i s less

t h a n 0.09 f o r a l l f r e q u e n c i e s i n v e s t i g a t e d . The p l o t of t h e a v e r a g e s of t h e dynamic l o a d f a c t o r s among t h e t h r e e t e s t s u b j e c t s i s shown i n F i g u r e 10. A f o u r t h d e g r e e polynomial f i t g i v e s a maximum v a l u e of

al

= 1.40 a t 3.6 Hz, a2 = 0.40 a t 3

Hz

and 0.35 a t 6.5 Hz; a3 and a are r e l a t i v e l y c o n s t a n t a t 0.12 and 0.08, r e s p e c t i v e l y . A summary of t h e dynamic l o a d f a c t o r s f o r w a l k i n g and r u n n i n g i s p r e s e n t e d i n T a b l e 2.

DISCUSSION AND SUMMARY

The t e c h n i q u e u s e d t o measure s t e p f o r c e s r e s t r i c t s t h e u s e f u l d a t a t o below 12 H z , t h e l o w e s t r e s o n a n c e f r e q u e n c y of t h e t e s t s t r u c t u r e . While t h e r e a r e h i g h

f r e q u e n c y components p r e s e n t i n f o o t s t e p s , i t i s t h e low f r e q u e n c y ones t h a t c a u s e most v i b r a t i o n problems due t o w a l k i n g o r r u n n i n g i n b u i l d i n g s . The F o u r i e r s e r i e s r e p r e s e n t a t i o n of t h e dynamic components of f o o t s t e p f o r c e s s i m p l i f i e s a n a l y t i c a l c a l c u l a t i o n s of dynamic r e s p o n s e s of f l o o r s and o t h e r b u i l d i n g components. T h i s p e r m i t s t h e t r e a t m e n t of a dynamic p r o c e s s t h a t h a s s o f a r e l u d e d s i m p l e a n a l y s i s . Not o n l y i s t h e

1. The maximum dynamic l o a d f a c t o r of t h e f i r s t harmonic f o r r u n n i n g i s

a p p r o x i m a t e l y t h r e e times a s l a r g e a s t h e c o r r e s p o n d i n g a l f o r walking. Theie maxima o c c u r around 2.4

Hz

f o r w a l k i n g and between 3.0 and 3.5

Hz

f o r r u n n i n g .

n u m e r i c a l e v a l u a t i o n of t h e r e s p o n s e c 1.6 u 2 1 . 4 1 . 2 - 2 l . o L 0 . 8 - 3 0 . 6 - 0 . 4 -

42

0 . 2 - > n 0 1

-

H A R M O N l C p o s s i b l e , b u t a r e a l i s t i c i n t u i t i v e d a s s e s s m e n t of t h e c a u s e s of v i b r a t i o n

/ problems from f o o t s t e p s becomes f e a s i b l e .

1

It i s a p p a r e n t from t h e c h a r a c t e r i z a t i o n of t h e s p e c t r u m of t h e f o r c e s t h a t a r e s o n a n t o c o n d i t i o n c a n o c c u r when t h e w a l k i n g o r 0 . 0- I I I g-o-ota-y r u n n i n g r a t e , o r a n i n t e g e r m u l t i p l e of i t , 0 1 2 3 4 5 6 7 8 9 1 0 c o i n c i d e s w i t h a n a t u r a l f r e q u e n c y of t h e f l o o r . T h i s c o i n c i d e n c e can c a u s e a l a r g e FREQUENCY. Hz dynamic r e s p o n s e i n f l o o r s h a v i n g low damping. F i g u r e 10. Averaged dynamic l o a d f a c t o r s f o r r u n n i n g , A comparison of dynamic l o a d f a c t o r s

s u b j e c t s A, B and C. f o r w a l k i n g and r u n n i n g shows t h e f o l l o w i n g .

(12)

TABLE 2

Maximum Dynamic h a d Factors (a) for Walking and Running

-

Maximum from polynomial

Maximum from

fit to averages from

subject

A, B or C*

subjects

A,

B, C*

Harmonic

Frequency

Frequency

Activity

(n)

(Hz

a

(Hz

)

a

Walking

1

2.4

0.56

2.4

0.52

2

5.2

0.28

5.6

0

-24

3

4.2

-

7.8

0.12

5.8

0.06

4

8

.O

0.08

7.6

0.05

Running

1

3.6

1.50

3.6

1.40

2

6.8

0.47

3.2

0.40

6.6

0.35

3

4.2

0.20

6

-

8

0.12

4

7

-

9

0.09

7 - 9

0.08

*Except for values corresponding to 9.0 Hz and above.

2.

The ratio of the dynamic load factors of the first to the second harmonic (a1/a2)

is considerably larger for running than for walking. In absolute terms, however,

a2 for running is slightly higher than for walking but is shifted to a higher

frequency.

The

low point in a2 occurs around 3.0 Hz for walking and around

4.0

Hz

for running.

3.

The dynamic load factors for the third and fourth harmonics for running are only

slightly larger than those for walking.

The above comparison of dynamic load factors shows that running represents

a

more severe dynamic loading than walking for all four harmonics. While this is not

surprising in a qualitative sense, the data provide the quantitative information to

substantiate this widely-held view.

Although the measurements have been taken over a wide frequency range, regular

walking occurs generally at or near 2.0 Hz, and recreational running from about 2.4

to 3.2 Hz. Thus the measured maximum force values of the lowest harmonic occur near

the most common walking or running rates.

ACKNOWLEDGEMENT

This paper is a contribution of the Division of Building Research (DBR),

National Research Council Canada. The measurements were conducted on a test floor

designed by D.E.

Allen of DBR. The assistance of

C.

Pilette, H.H. Ireland,

E.C. Luctkar, and R. Glazer in performing the tests and analyzing the results is

gratefully acknowledged.

(13)

REFERENCES

1. Tuan, C.Y. and Saul, W.E. "Loads Due t o S p e c t a t o r Movements." J. S t r u c t . Eng-, ASCE, Vol. 111, No.-2, p. 418-434, 1985.

2. Harper, F.C., Warlow, W.J., a n d - C l a r k , B.L. "The Forces Applied t o t h e Floor by t h e Foot i n Walking." Building Research S t a t i o n , National Building S t u d i e s Research Paper No. 32, HMSO, London,

U.K.,

196 1.

3. Ohlsson, S. "Floor V i b r a t i o n s and Human Discomfort." Department of S t r u c t u r a l Engineering, Chalmers U n i v e r s i t y of Technology, Ggteborg, Sweden, 1982.

4.

Nilsson, L. "Impact Loads Produced by Human Motion." Swedish Council f o r Building Research, Stockholm. P a r t 1: Document D13:1976, P a r t 2: Document D20: 1980.

5. Allen, D.E. and Rainer, J.H. "Vibration C r i t e r i a f o r Long-Span ~ l o o r s . " Can.

J. Civ. Eng., Vol. 3, No. 2, p. 165-173, 1976.

6. Timoshenko, S. and Young, D.H.

Theory.

McGraw-Hill Book Company,

Inc., New York, Chapter 111, 1945.

7. Rainer, J.H. "Applications of t h e F o u r i e r Transform t o t h e Processing of V i b r a t i o n Signals." Building Research Note, I n p r e p a r a t i o n .

8. Allen, D.E., Rainer, J.H., and Pernica, G. "Vibration C r i t e r i a f o r Assembly Occupancies." Can. J. Civ. Eng., Vol. 12, No. 3, p. 617-623, 1985, NRCC 24813.

Références

Documents relatifs

Figure 2: Top: ratio (expressed in %) between total columns retrieved from simulated spectra based on various vertical profiles and the total column obtained with the reference

A setter picture is provided by the evolution of a particle in a periodic potential under the influence of a time-periodic ac force of zero mean value, when spatial asymmetry of

An analytical model is worked out from which we analyze the general phase diagram in terms of the volume inaction of the droplets, of the depth of their interaction potential and of

If recent investigations on the molecular coverage and surface forces of Cryptosporidium, Giardia and Toxoplasma parasites have provided important information on the

(ii) Since the genus g Gopakumar-Vafa invariants can be (very rough- ly) thought of as the “virtual number of genus g Jacobians” con- tained in the moduli space S(X, β ), any

L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » ( http://rendiconti.math.unipd.it/ ) implique l’accord avec les

By studying the two-time overlap correlation function, we give a compre- hensive analysis of the phase diagram of the Random Hopping Dynamics of the Random Energy Model (REM)

S´ark¨ozy, “On the number of partitions of n without a given subsum II,” in Analytic Number Theory (B. Szalay, “On some problems