• Aucun résultat trouvé

Prediction of intergranular micro-crack initiation induced by the impingement of persistent slip bands on grain boundaries

N/A
N/A
Protected

Academic year: 2021

Partager "Prediction of intergranular micro-crack initiation induced by the impingement of persistent slip bands on grain boundaries"

Copied!
33
0
0

Texte intégral

(1)

HAL Id: cea-02339080

https://hal-cea.archives-ouvertes.fr/cea-02339080

Submitted on 13 Dec 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Prediction of intergranular micro-crack initiation induced by the impingement of persistent slip bands on

grain boundaries

J. Hazan, M. Sauzay

To cite this version:

J. Hazan, M. Sauzay. Prediction of intergranular micro-crack initiation induced by the impingement of persistent slip bands on grain boundaries. TMS 2018, Mar 2018, Phoenix, United States. �cea-02339080�

(2)

PREDICTION OF INTERGRANULAR

MICRO-CRACK INITIATION INDUCED

BY THE IMPINGEMENT OF

PERSISTENT SLIP BANDS ON

GRAIN BOUNDARIES

TMS 2018 - MARS 12TH 2018

Jérôme HAZAN, Maxime SAUZAY

(3)

CONTENTS

• CONTEXT & GOALS

• METHODS • RESULTS

• CONCLUSIONS & WORK IN PROGRESS

(4)

CONTEXT

Cyclic deformation induces localization of plastic slip within Persistent Slip Bands (PSBs) for grains oriented for

single slip

 Formation of a two phase microstructure (if 𝜏𝑝 = 𝜏𝑃𝑆𝐵) : - Elastic matrix - Elastic-plastic bands (PSBs) | 3 [Man et al. 2002] [Mughrabi 1979] Poor channels(~1013 m-2) rich walls(~1015 m-2) :

Ladder like structure

[Weidner et al. 2010] Copper single crystal 316L SS polycrystal Nickel polycrystal TMS 2018 | MARS 12th 2018

(5)

CONTEXT

The extrusion of PSBs is due to the production of vacancies during

cyclic deformation 12 MARS 2018 | 4 Extr u si o n h ei g h t, h [n m] Number of cycles, N*103 [Man et al. 2003] Almost constant growth rate of PSBs

during cycling [Polák & Sauzay 2009]

Type A

Type B

(6)

Aim of the present work: Predicting micro-cracks initiation due to the impingement of PSBs on grain boundaries

 Prediction of GB extrusions and GB stress fields

Transgranular initiation treated by [Liu & Sauzay 2014]

CONTEXT

Slip localization in PSBs leads to microcrack initiation (in LCF):

| 5

Transgranular (type B):

[Polák et al. 2009] [Zhang et al. 1999]

Grain Boundaries (type A):

5 µm

(7)

CONTEXT: EXISTING MODELS

Reference models mostly based on dislocations pile-up at GB : - Tanaka & Mura 1981

- Sangid et al. 2011 (Molecular Dynamics input for dislocation absorption and nucleation at GB)

| 6

𝑁𝑖 = 8 µ 𝛾𝑒𝑓𝑓

2 𝜋 1 − ν 𝑎 (∆𝜏 − 2𝜏𝑓

Our aim: Possibility of predicting GB micro-crack initiation through PSB cyclic plasticity and vacancy production ?

TMS 2018 | MARS 12th 2018

Cyclic deformation causes ratcheting of dislocations at grain boundaries Homogeneous slip within PSBs PSB containing Pile-up h = N.b t t [Weidner et al 2006] h = γp.t

(8)

CONTENTS

• CONTEXT & GOAL

• METHODS

• Elastic-plastic model and behavior

• Cohesive zone model • RESULTS

• CONCLUSIONS & WORK IN PROGRESS

(9)

METHOD : ELASTIC-PLASTIC MODEL AND BEHAVIOR

| PAGE 8 TMS 2018 | MARS 12th 2018

Finite Element Calculations based on:

Elastic-Plastic behavior for PSBs

 Armstrong-Fredericks non-linear kinematic hardening

 Plateau behavior

2 Mixture rule of Winter:

𝛾𝑐𝑟𝑦𝑠𝑡𝑝 = 𝛾𝑀𝑎𝑡𝑝 𝑓𝑣𝑀𝑎𝑡 + 𝛾𝑃𝑆𝐵𝑝 𝑓𝑣𝑃𝑆𝐵 𝛾𝑀𝑎𝑡𝑝 ≈ 1 100 𝛾𝑃𝑆𝐵𝑝  𝛾𝑐𝑟𝑦𝑠𝑡𝑝 = 𝛾𝑃𝑆𝐵𝑝 𝑓𝑣𝑃𝑆𝐵  Localisation of slip in PSBs 1 0 10 20 30 -0,01 -0,005 0 0,005 0,01 Sh ear str ess (M Pa ) Shear strain

Experiment - Single crystal behavior Experiment - PSB behavior

Fit Armstrong-Fredericks

(10)

METHOD

Production of vacancies inducing the free dilatation of persistent slip bands

 Resistivity measurements on copper single crystals cycled at 4K [Polák 1987]

 Determination of the vacancy production term

[Polák & Sauzay 2009] p = 3.1 10-7 for Copper

| 9

Finite Element Calculations based on:

3 𝜀𝑣𝑎𝑐𝑎𝑛𝑐𝑦∗ = 𝑁𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑝 TMS 2018 | MARS 12th 2018 Grain size, L Slip band thickness, t 𝒃 Grain boundary impinged by the slip band

Elastic matrix 𝒃 : Burgers vector Grain 1, orientation 1 Grain 2, orientation 2 PSB Matrix cv x Diffusion of vacancies toward matrix

(11)

10 20 30 40 50 60 S h e a r s tr e s s ( M P a )

Plastic shear strain amplitude

Experiment [001] Gong et al 1997 Experiment [011] Li et al 1998 Experiment [-111] Lepistö et al 1986 Experiment [-149] Mughrabi 1978 10-5 10-4 10-3 10-2 10-1 METHOD

Elastic-plastic behavior of neighbor grain impinged by the PSB

| 10

Finite Element Calculations based on:

4

TMS 2018 | MARS 12th 2018

Assumptions for the calculations:

Elastic-Plastic behavior of PSBs & production, annihilation of vacancies within PSBs

and diffusion toward the matrix

Elastic-Plastic behavior of neighbor grain

Elastic matrix

(12)

CONTENTS

• CONTEXT & GOAL

• METHODS

• Elastic-plastic model and behavior

• Cohesive zone model

• RESULTS

• CONCLUSIONS & WORK IN PROGRESS

(13)

Evaluation of three parameters:

- GB Young modulus EGB

- Fracture energy of the interface 𝛾𝑓𝑟𝑎𝑐𝑡 = 2𝛾𝑠 − 𝛾𝐺𝐵

- Critical stress

Output: Opening of the interface, δ => δ/δc = 1 : Complete separation

METHOD : COHESIVE ZONE MODELING

GB obeys a non linear cohesive law: 2 criteria for crack initiation :

- Critical stress (UBER model) [Rice & Wang, 1989] [Rose et al. 1981] - Critical energy released by the

cracked interface [Griffith]

12 MARS 2018 TMS 2018 | MARS 12th 2018 | PAGE 12

GB PSB 𝜎𝑐𝑟𝑖𝑡 = 𝐸 𝑑𝐺𝐵 ∗ 𝛾𝑓𝑟𝑎𝑐𝑡 𝑒 Grain 1 Grain 2 0 5 10 15 0 1 2 3 N o rm al s tr e ss (GPa ) Opening displacement, δ (Å) σcrit γGriffith δ = δc See [Barbé et al 2018]

(14)

CONTENTS

• CONTEXT & GOAL • METHODS

• RESULTS

• GB extrusions and stress-fields

• Prediction of crack initiation • CONCLUSIONS & WORK IN PROGRESS

(15)

0 2 4 6 8 0 20 40 60 80 100 S h e a r s tr e s s ( G P a )

Distance to grain boudary / slip band interface (nm), r 1500 cycles 10500 cycles 20500 cycles 30000 cycles 0 2 4 6 8 0 20 40 60 80 100 N o rm a l s tr e s s ( G P a )

Distance to grain boudary / slip band interface (nm), r

1500 cycles 10500 cycles 20500 cycles 30000 cycles

RESULTS : PREDICTION OF MECHANICAL FIELDS

Copper | PSB thickness = 1 µm | Grain size = 50 µm | 30 000 cycles

| 14 TMS 2018 | MARS 12th 2018

GB

b

σnn

τnm Height of grain boundary extruded by the PSB impingement 0 20 40 60 80 100 0 5 10 15 20 G ra in b o u n d a ry e x tr u s io n ( n m )

Position along grain boundary (µm)

1500 cycles 10500 cycles 20500 cycles 30000 cycles Isotropic elastic grain r + 30000 cycles

(16)

RESULTS: PREDICTION OF MECHANICAL FIELDS

Influence of the persistent slip band characteristic lengths:

=> grain boundary extrusion

| 15

Influence of slip band thickness, t Influence of grain size, L

Φ = 10 µm

Combined effect of the slip band thickness and grain size on the grain boundary extrusion : Higher damage expected

y = 1,7182x0,2348 y = 5,1967x0,2357 0 2 4 6 8 10 12 14 16 18 20 0 50 100 150 200 250 Gr ai n b o u n d ar y extr u si o n h ei g h t (n m) Grain size (µm) 10 000 cycles 30 000 cycles 𝒉 (𝑵) = 𝟎, 𝟓𝟔 . 𝒑. 𝑵. 𝒕𝟎,𝟕𝟕 ∗ 𝑳(𝟏−𝟎,𝟕𝟕) y = 0,0149x0,7652 y = 0,0455x0,7643 0 1 2 3 4 5 6 7 8 9 10 0 200 400 600 800 1000 Gr ai n b o u n d ar y extr u si o n h ei g h t (n m)

Slip band thickness (nm)

10 000 cycles 30 000 cycles

(17)

RESULTS: PREDICTION OF MECHANICAL FIELDS

Influence of neighbor grain crystallographic orientation ?

| 16 High increase in the grain boundary extrusion due to plasticity in the

neighbor grain TMS 2018 | MARS 12th 2018

[Li et al 2010]

8 active systems 4 active systems 6 active systems 1 active system 0 2 4 6 8 10 0 200 400 600 800 1000 G ra in b o u n d a ry e x tr u s io n ( n m )

Slip band thickness (nm)

SSO - 5 degree rotation SSO - 10 degree rotation SSO - 15 degree rotation SSO + 5 degree rotation SSO + 10 degree rotation SSO + 15 degree rotation Isotropic elastic 0 2 4 6 8 10 12 14 16 35 36 37 38 39 40 G ra in b o u n d a ry e x tr u s io n (n m )

Position along grain boundary (µm)

[100] [110] [111]

SSO + 15 degree rotation Isotropic Elastic

Grain size = 10µm

Grain size = 200µm

Slip band thickness = 1µm Neighbor grain :

Neighbor grain :

SSO : Single slip orientation

(18)

RESULTS: PREDICTION OF MECHANICAL FIELDS

Influence of neighbor grain crystallographic orientation ?

| 17

Expected decrease of GB stress fields due to plasticity in the neighbor grain TMS 2018 | MARS 12th 2018

[Li et al 2010]

8 active systems 4 active systems 6 active systems 1 active system 0 0,5 1 1,5 0 20 40 60 80 100 Norma l s tres s (GPa )

Distance to grain boundary / slip band interface (nm), r [100]

[110] [111]

SSO + 15 degree rotation Isotropic Elastic -0,5 0 0,5 1 1,5 0 20 40 60 80 100 S he a r s tre s s (GP a )

Distance to grain boundary / slip band interface (nm), r [100]

[110]

[111]

SSO + 15 degree rotation Isotropic Elastic

Grain size = 200µm

Slip band thickness = 1µm Neighbor grain :

Neighbor grain : Grain size = 10µm

(19)

RESULTS: PREDICTION OF MECHANICAL FIELDS

| 18 TMS 2018 | MARS 12th 2018 Comparison of the prediction to experimental data from literature :

Impact of PSB thickness on GB extrusion height ?

[Zhang & Wang]

[Weidner et al. 2010]

Exponents adjusted using experimental data in reasonable agreement with the exponents provided by

the FE computations ~0.7 y = 0,2309x0,6845 R² = 0,6506 0 0,5 1 1,5 2 2,5 0 10 20 30 G ra in b o u n d a ry e x tr u s io n ( µ m )

Slip band thickness (µm) y = 0,3175x0,973 R² = 0,7208 0 0,2 0,4 0,6 0,8 1 0 1 2 3 G ra in b o u n d a ry e x tr u s io n ( µ m )

(20)

CONTENTS

• CONTEXT & GOAL • METHODS

• RESULTS

• GB extrusions and stress-fields

• Prediction of crack initiation

• CONCLUSIONS & WORK IN PROGRESS

(21)

Prediction: Stronger influence of PSB thickness than grain size Order of magnitude in agreement with experimental observation ?

RESULTS: PREDICTION OF MICRO-CRACK INITIATION

Preliminary results: influence of PSBs characteristic lengths on GB micro-crack initiation : Copper, elastic neighbor

| 20 t (nm) L (µm) Ni (cycles) 50 10 60k 100 10 45k 200 10 25k 500 10 15k 1000 10 13k 1000 20 13k 1000 50 11k 1000 100 10k 1000 200 9k TMS 2018 | MARS 12th 2018 0 0,2 0,4 0,6 0,8 1 100 1000 10000 100000 δ c Number of cycles t = 50 nm | L = 10µm t = 100 nm | L = 10µm t = 200 nm | L = 10µm t = 500 nm | L = 10µm t = 1000 nm | L = 20µm t = 1000 nm | L = 50µm t = 1000 nm | L = 100µm t = 1000 nm | L = 200µm

(22)

RESULTS: PREDICTION OF MICRO-CRACK INITIATION

| 21

Observations of intergranular initiation published in literature (RT, air environment):

TMS 2018 | MARS 12th 2018 Material Δεp/2 t (µm) L (µm) Ni Reference 316L - polycristal 10 -3 ≈0,45 µm <30> <5000 (20%Nr) [Mineur et al. 2000] 316L - polycristal 10 -3 ≈0,45 µm <47> <10000 (20%Nr) [Blochwitz et Richter 1999] 316L - polycristal 2.5 10 -4 ≈0,45 µm <47> <40000 (20%Nr) [Blochwitz et Richter 1999] Ni - polycristal 2.5 10 -4 ≈1 µm <24> <145000 (66% Nr) [Morrison et Moosbrugger 1997] Ni - polycristal 2.5 10 -3 ≈1 µm <290> <200 (4% Nr) [Morrison et Moosbrugger 1997] Ni - polycristal 2.5 10 -4 ≈1 µm <290> <17000 [Morrison et Moosbrugger 1997] Ni - polycristal 2.5 10 -3 ≈1 µm <24> <1200 (19% Nr) [Morrison et Moosbrugger 1997] Ni – polycristal 3 10

-4 ≈1 µm <150> 18000 [Dorr & Blochwitz 1987]

Cu -

polycristal 10

-3 ≈1 µm <100> <10000

(25%Nr) [Liu et al 1992] Cu - bicrystal 2 10-3 ≈1 µm ~5 mm <10000 [Zhang et Wang 2002]

Cu - bicrystal 5 10-4 ≈1 µm ~5 mm <20000 [Zhang Wang Hu 1999] First prediction are in the good order of magnitude

(23)

CONTENTS

• CONTEXT & GOAL • METHODS

• RESULTS

• CONCLUSIONS & WORK IN PROGRESS

(24)

CONCLUSIONS & WORK IN PROGRESS

Conclusions :

• Simulation based on basic physical assumptions

• Prediction of stress-fields induced by impingement of PSBs at GB for different crystallographic orientations of the neighbor grains • Analytical formulas of GB extrusion heights (elastic neighbor) Work in progress :

• Prediction of intergranular initiation introducing atomistic

considerations in the calculations as M.Sangid did [Sangid et al. 2011]

• GB type, environment, material, etc.

• Interrupted fatigue test carried out on two 316L SS containing (i) very large grains and (ii) small grains

• EBSD scan + SEM observations of crack-initiations

 Comparison of predictions to real cases microstructures

• Analytical model for the prediction of intergranular, transgranular and twin boundaries microcrack initiation TMS 2018 | MARS 12th 2018 | 23

(25)

WORK IN PROGRESS

Interrupted fatigue test :

316L SS, 2000 cycles, <200 µm>, Δεp/2 = 10-3

12 MARS 2018 TMS 2018 | MARS 12th 2018 | 24

=> Microstructure informed FE computations based on EBSD data and post-FIB cutting (3D information)

In ter granul ar i ni tiatio n Tw in bo un dary i ni tiatio n

(26)

Nuclear Energy Division Nuclear Material Department

Section for Applied Metallurgy Research Materials Mechanical Analysis Laboratory

French Alternative Energies and Atomic Energy Commission Saclay Center| 91191 Gif-sur-Yvette Cedex

T. +33 (0)1 69 08 17 05 jerome.hazan@cea.fr | PAGE 25

Many thanks for your attention

Any question ?

(27)

WORK IN PROGRESS

=> Case of HCF & VHCF

Same methodology applicable for twin boundary cracking

12 MARS 2018 | 26

[Li et al. 2014]

[Man et al. 2012]

(28)

TRANSGRANULAR OR INTERGRANULAR INITIATION ?

12 MARS 2018 TMS 2018 | MARS 12th 2018 | SLIDE 27

[Obrtlik et al, 1997]

Cylindrical Copper single crystal cyclically deformed : - Each peak is offset by 180°

(29)

NUMBER OF GRAINS CONTAINING PSBS

12 MARS 2018 TMS 2018 | MARS 12th 2018 | SLIDE 28 [Sauzay 2006]

(30)

VALIDITY DOMAIN ?

12 MARS 2018 | 29

Element size = 3,33 nm

Compression test on Ni micropillar [Legros 2014]

1013 m-2< ρ

Matrix < 1015 m-2

Ndislocation, max = 3.33*10-10 x 3.33*10-10 x 1015 = 1.1*10-4 ≈ 0 dislocation Why matrix is supposed to be elastic ?

(31)

ENVIRONMENT EFFECT ON MICRO-CRACK INITIATION

12 MARS 2018 | 30

Air, RT, Δεp/2 = 2.10-3 Vacuum, RT, Δε

p/2 = 2.10-3

Mostly transgranular initiation Mostly intergranular initiation

TMS 2018 | MARS 12th 2018

(32)

METHOD : COHESIVE ZONE MODEL

12 MARS 2018 TMS 2018 | MARS 12th 2018 | PAGE 31

GB , CZM PSB Grain 1 Grain 2 Copper Nickel 316 SS Young modulus (Pa) 1.3 10 11 1.8 1011 1.9 1011 EGB min (Pa) 5.9 1010 8.1 1010 8.6 1010 EGB max (Pa) 1.3 1011 1.8 1011 1.9 1011 dGB min (Å) 3 3 3 dGB max (Å) 7 7 7 γsurf min (J/m²) 1.9 2 2 γsurf max (J/m²) 2.2 2.4 3 γGB min (J/m²) 0.3 0.45 0.48 γGB max (J/m²) 1 1.4 1.6 γfrac (J/m²) min 2.8 2.6 2.4 γfrac (J/m²) max 4.1 4.4 5.5 σc min (GPa) 5.6 6.4 6.3 σc max (GPa) 15 19 22

References : [Latapie & Farkas 2003] [Shen et al 1994], [Barbé et al 2018] [Tschopp & McDowell 2007] [Vitos 1998], [Holm et al 2010]

𝜎𝑐𝑟𝑖𝑡 = 𝐸 𝑑𝐺𝐵 ∗ 𝛾𝑓𝑟𝑎𝑐𝑡

(33)

METHOD : COHESIVE ZONE MODEL

Many experimental and simulation efforts have been carried out to better understand grain boundaries role :

| 32 TMS 2018 | MARS 12th 2018 Influence of the Coincident Site Lattice Grains misorientation and GB characteristics GB energy, GB thickness Influence of Grain Size Influence of environment

[Lim & Raj 1984] [Shenyang group] [Liu et al 1992]

[Tschopp & McDowell 2007]

[Yamakov et al 2006] [Morrison & Moosbrugger 1997] [Taira et al 1979]

Références

Documents relatifs

to solid solution strengthening of the lattice, but lowers the slope owing to a reduction in the effectiveness with which grain boundaries impede slip.. The grain

Abstract - Methods are discussed for the explicit calculation of the excess thermodynamic properties of grain boundaries using molecular dynamics simula- tions in the NPT

The variants are designated relaxation variants, and two such variants exist related by the operation m' (or 2'). These two variants are depicted schematically in fig. 4:

b = &#34; [Oil-] and a (100) glide plane. The structures of the CSL boundaries with 0 r 70.53~ all contained broken bonds, however, a possible reconstruction of bonds

Abstract - Dynamic properties of grain boundaries (GBs), as reviewed in the present re- port, include diffusion along stationary and migrating boundaries, various boundary diffu-

This approach, although very heavy (time and money-consuming), has been adopted all over the world and has proven very fruitful in conjonction with the development of

The direct concequence of this approach is that in the high angle region the boundary is characterized by a high atomic misfit energy, given by the first term, El, of relation (6)

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des