• Aucun résultat trouvé

Reversible nature of photo-induced phase segregation and origin of long carrier lifetime in triple cation mixed halide perovskite films

N/A
N/A
Protected

Academic year: 2021

Partager "Reversible nature of photo-induced phase segregation and origin of long carrier lifetime in triple cation mixed halide perovskite films"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: cea-03185858

https://hal-cea.archives-ouvertes.fr/cea-03185858

Submitted on 30 Mar 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Reversible nature of photo-induced phase segregation

and origin of long carrier lifetime in triple cation mixed

halide perovskite films

Subodh Gautam, Minjin Kim, Douglas Miquita, Jean-Eric Bourée, Bernard

Geffroy, Olivier Plantevin

To cite this version:

Subodh Gautam, Minjin Kim, Douglas Miquita, Jean-Eric Bourée, Bernard Geffroy, et al.. Reversible nature of photo-induced phase segregation and origin of long carrier lifetime in triple cation mixed halide perovskite films. JPH 2021 - 6èmes Journées Pérovskites Halogénées, Geffroy, Bernard; Oswald, Frédéric, Mar 2021, Palaiseau, France. �cea-03185858�

(2)

6

èmes

Journées Pérovskites Halogénées 2021

31 Mars, 1 et 2 Avril 2021, PALAISEAU

Reversible nature of photo-induced phase segregation and origin of long

carrier lifetime in triple cation mixed halide perovskite films

Subodh K. Gautam1,*, Minjin Kim2, Douglas R. Miquita1,3, Jean-Eric Bouree2, Bernard Geffroy2,4 and Olivier

Plantevin1

1 Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France.

2 LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau, France. 3 Centro de Microscopia - Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901- Brasil 4 Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191, Gif-sur-Yvette, France

Mixed-halide based hybrid perovskite semiconductors have attracted tremendous attention as a promising candidate for high efficient photovoltaic and light-emitting devices [1]. However, these advanced perovskite materials may undergo phase-segregation under light illumination due to halide ion migration and affecting their optoelectronic properties [2, 3]. In this contribution, we report such phase segregation effect in triple-cation mixed-halide perovskite film when subjected to photo-excitation and quantitatively analyze the processes that occur during phase segregation [4]. We highlight the relationship between photo-induced phase segregation and unusual increase in carrier lifetime in mixed halide perovskite under illumination (> 1 µs). Laser excitation induced halide ion migration lead to formation of smaller-bandgap iodide-rich and larger-bandgap bromide-rich domains which yield to red-shift in photoluminescence. The segregated iodide-rich domains efficiently trap the photo-excited-carriers where they are long lived before recombination, revealing their dominant role in the origin of the unusual long carrier lifetime. Interestingly, these photo-induced changes are fully reversible and thermally activated when laser-excitation is turned off measured in temperature range of 270K-330K. A significant difference in activation energies for halide ion migration is observed during photo-excitation and recovery process under dark. In addition, temperature-dependent PL studies (10 K - 300 K) have been performed for better understanding of the role of exciton–phonon coupling to interpret the phase segregation driving forces. These findings will help to understand the key issues in the perovskite materials for the development of efficient solar cells and optoelectronic devices.

Figure: (a) Laser power-dependent photoluminescence (PL) spectra of triple-cation mixed-halide (MA0.83 FA0.17)0.95Cs0.05 Pb (I0.83 Br0.17)3 perovskite film showing red-shift in PL at room temperature and

(b) PL-decay spectra measured on red-shifted PL positions.

References: [1] Fu et al. Nat. Rev. Mater. 4, 169–188 (2019); [2] Hoke et al. Chem. Sci. 6, 613–617 (2015); [3] Draguta et al. Nat. Commun. 8, 200 (2017); [4] Subodh K. Gautam et al. Adv. Funct. Mater. (2020) 2002622. 1.4 1.5 1.6 1.7 1.8 1.9 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1680 1430 840 630 380 190 114 54 31 23 15 6.8 3.8 2.0 Power density (mW/cm2) N ormal ized I ntens iy (a. u.) Energy (eV) ~ 60 meV (a) 0 5 10 15 20 25 30 35 10 100 1000 1.627 eV 1.625 eV 1.621 eV 1.614 eV 1.61 eV 1.60 eV 1.59 eV 1.57 eV 1.565 eV 1.564 eV Peak position (eV)

PL In te n s it y ( a .u .) Decay time (µs) (b)

Références

Documents relatifs

The first results showed that it was necessary to use a removable titanium anode ruthenium anode instead of stainless steel embedded in the concrete.. Then tests with de-ionized

From the analysis of top-view scanning electron microscopy images, the evolution with the film thickness of relevant parameters describing the growth process was extracted,

The theoretical calculations of mobility of charge carriers in hybrid perovskite, using the density functional theory including van der Waals interaction and the Boltzmann theory

The emission color can be further extended to the infrared region by changing Pb (“B” site) with other metals like Sn. Moreover, 3D perovskites can be reduced to

Le potentiel thérapeutique des cellules T exprimant CAR, en particulier chez les patients atteints de cancers hématologiques tels que le lymphome à cellules B exprimant CD19 ou

— La spectroscopie de transmission optique (300-1 000 nm) résolue dans le temps a été utilisée en conjonction avec les mesures d'absorption optique à l'état statique et de RPE pour

- The analysis of experimental results of the clustering of divalent cation-vacancy pairs by Unger and Perlman is shown here to be unable to distinguish between their model

(b) Energy of different phases in PTO with respect to the 000/00w + structure (dashed dark line), which is the ground state in the dark, showing that non-polar antiferrodis-