• Aucun résultat trouvé

Dynamic analysis of a multi-contact problem with clearances, application to the SFR fuel pins bundle.

N/A
N/A
Protected

Academic year: 2021

Partager "Dynamic analysis of a multi-contact problem with clearances, application to the SFR fuel pins bundle."

Copied!
21
0
0

Texte intégral

(1)

HAL Id: cea-02508894

https://hal-cea.archives-ouvertes.fr/cea-02508894

Submitted on 16 Mar 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

clearances, application to the SFR fuel pins bundle.

Catterou Thomas, Bruno Cochelin, Stéphane Bourgeois, V. Blanc, Guillaume Ricciardi

To cite this version:

Catterou Thomas, Bruno Cochelin, Stéphane Bourgeois, V. Blanc, Guillaume Ricciardi. Dynamic analysis of a multi-contact problem with clearances, application to the SFR fuel pins bundle.. EU-RODYN 2017 - 10th international conference on structural dynamics, Sep 2017, Rome, Italy. �cea-02508894�

(2)

pins bundle.

CATTEROU Thomas, PhD student.

thomas.catterou@cea.fr

Bruno Cochelin, Stephane Bourgeois –

LMA Marseille, France

Victor Blanc, Guillaume Ricciardi

– CEA Cadarache, France

September, 11

th

2017

EURODYN2017 – X

th

international conference on structural

(3)

Goal

Caracterize the non-linear dynamical behavior of the

ASTRID pins bundle with mounting gaps for different

loads (handling, transport, earthquake).

Ensure the integrity of the first

containment barrier.

Introduction

Wrapper tube Clad Spacer wire LOWER PLENUM SPACER FUEL PELLETS SPRING

A fuel pin

Ø~1cm L~2m

(4)

A large number of pins (217) and localized contact zone

(~15000)

(5)

Hypothesis:

o Timoshenko beams o Small deformations

Methodology of numerical method validation

“Toy model” Semi-analytical and experimental validation Simplified model One row of pins

Experimental validation

Full model

Final validation

(6)

Numerical method (Cast3M finite element

software)

Explicit integration scheme (central difference method)

Modal analysis without contacts

Resolution of the fundamental equation of the dynamic on

the modal base

Modal recombination for each time step on contact points

to estimate contact forces 𝐹

𝑠ℎ𝑜𝑐𝑘

Sub-structuring for the full model

(7)

Semi-analytical method

Modal basis analysis of two basic problems

Resolution of the fundamental equation of the dynamic on

the modal base

Clamped beam colliding on a spring

𝑋

𝑓

𝑥 , 𝜔

𝑓

𝑋

𝑠

𝑥 , 𝜔

𝑠

ሷ𝑞

𝑖

+ 2𝜉

𝑖

𝜔

𝑖

ሶ𝑞

𝑖

+ 𝜔

𝑖2

𝑞 = 0

𝑞

𝑖

(𝑡) = 𝑒

−𝜉𝑖𝜔𝑖𝑡

𝐴

𝑖

cos 𝜔

𝑑

𝑡 + 𝐵

𝑖

sin 𝜔

𝑑

𝑡

𝐴

𝑖

=

׬Ωu0.Φ𝑖 ׬ΩΦ𝑖𝑖

; 𝐵

𝑖

=

׬Ω𝑣0𝑖 𝜔𝑖׬Ω Φ𝑖𝑖

+

𝜉𝑖 𝜔𝑖 1−𝜉𝑖2

𝐴

𝑖

; 𝜔

𝑑

= 𝜔

𝑖

(1 − 𝜉

i2

).

𝑢

𝑓

𝑥, 𝑡 = Σ𝑋

𝑓𝑖

𝑥 𝑞

𝑓𝑖

(𝑡)

𝑢

𝑠

𝑥, 𝑡 = Σ𝑋

𝑠𝑖

𝑥 𝑞

𝑠𝑖

(𝑡)

Switching time ?

(8)

Semi-analytical method

Root finding algorithm to find the switching time

𝑡

𝑛+1

= 𝑡

𝑛

𝑓 𝑡𝑛 𝑡𝑛−𝑡𝑛−1

𝑓 𝑡𝑛 −𝑓 𝑡𝑛−1

(Secant method)

Creation of the solution

Initial conditions

𝑢

0

, 𝑣

0

, 𝑡

0

If 𝑢

0

𝐿 > 0

Clamped−spring

solution

Clamped-free

solution

If 𝑢

0

𝐿 < 0

Root finding algorithm

Identification of contact

or take off instant

Loop

Solution building

between two contacts

(9)

Results : displacements

Clamped beam colliding on a spring

𝑅

𝑓𝑡𝑟𝑢𝑛𝑐

= 10 / 𝑅

𝑘

= 3000

𝑅

𝑓𝑡𝑟𝑢𝑛𝑐

= 300 / 𝑅

𝑘

= 3000

Analytical

Numerical

Analytical

Numerical

𝑅

𝑓𝑡𝑟𝑢𝑛𝑐

= 300 / 𝑅

𝑘

= 5

𝑅

𝑘

=

𝐾𝑠𝑝𝑟𝑖𝑛𝑔 𝐾𝑏𝑒𝑛𝑑𝑖𝑛𝑔

,

Hardness of the contact

𝑅

𝑓𝑡𝑟𝑢𝑛𝑐

=

𝑓

𝑡𝑟𝑢𝑛𝑐

𝑓

1

(10)

Validation – Frequency truncation

𝑅

𝑓𝑡𝑟𝑢𝑛𝑐

=

𝑓

𝑡𝑟𝑢𝑛𝑐

𝑓

1 Err = max( Γ𝑛𝑢𝑚 − Γ𝑟𝑒𝑓 ) max Γ𝑛𝑢𝑚 , Γ𝑟𝑒𝑓

Local error when

𝑡

𝑐𝑜𝑛𝑡𝑎𝑐𝑡

≈ 𝑡

𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑤𝑎𝑣𝑒𝑠

reference = semi-analytic method

𝑅

𝑘

=

𝐾𝑠𝑝𝑟𝑖𝑛𝑔

(11)

Validation - Frequency truncation

𝑅

𝑓𝑡𝑟𝑢𝑛𝑐

= 10

𝑅

𝑓𝑡𝑟𝑢𝑛𝑐

= 300

Err = max( Γ𝑛𝑢𝑚 − Γ𝑟𝑒𝑓 ) max Γ𝑛𝑢𝑚 , Γ𝑟𝑒𝑓

Analytical

Numerical

Analytical

Numerical

A high frequency truncation is necessary when 𝑅𝑘 is high.

(12)

Validation – Time step

A small time step is needed for a high 𝑅𝑘

A small time step doesn’t mean a greater accuracy.

Err

= max( Γ𝑛𝑢𝑚 − Γ𝑟𝑒𝑓 ) max Γ𝑛𝑢𝑚 , Γ𝑟𝑒𝑓

(13)

𝑓

𝑡𝑟𝑢𝑛𝑐

Frequency

truncation

<<

<

𝟏 𝝅 𝒌𝒔 𝒎 𝟏 𝟒𝒅𝒕

𝑑𝑡

Time step

<

<

𝑑𝑥

Spatial

discretization

<

<

0,8 𝑑𝑡𝑚𝑎𝑥𝑖𝟒𝒇𝟏 𝒕𝒓𝒖𝒏𝒄 • 𝝅 𝟐 𝒎 𝒌𝒔

𝝀𝒎𝒊𝒏𝒊 𝟒 = 𝒄𝒃𝒆𝒏𝒅 𝟒𝒇𝒕𝒓𝒖𝒏𝒄

Clamped beam colliding on a spring

𝑭𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒉𝒐𝒄𝒌 𝒐𝒇 𝒂 𝒎𝒂𝒔𝒔 𝒎 𝑬𝒙𝒑𝒍𝒊𝒄𝒊𝒕 𝒔𝒄𝒉𝒆𝒎𝒆 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝑨 𝒔𝒎𝒂𝒍𝒍 𝒕𝒊𝒎𝒆 𝒔𝒕𝒆𝒑 𝒅𝒐𝒆𝒔𝒏’𝒕 𝒊𝒏𝒗𝒐𝒍𝒗𝒆 𝒂 𝒈𝒓𝒆𝒂𝒕𝒆𝒓 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝑻𝒊𝒎𝒆 𝒔𝒉𝒐𝒄𝒌 𝑬𝒙𝒑𝒍𝒊𝒄𝒊𝒕 𝒔𝒄𝒉𝒆𝒎𝒆 𝑩𝒆𝒏𝒅𝒊𝒏𝒈 𝒘𝒂𝒗𝒆 𝒑𝒓𝒐𝒑𝒂𝒈𝒂𝒕𝒊𝒐𝒏

(14)

Finite element

model

Fuel pins : Timoshenko beams Wrapper tube : Shells

One row modeled (~500 contact zones)

Sectional view of the assembly

Contact zone

WT edges

Fue

l reg

io

n

Application to the SFR

tube bundle

(15)

Release of an assembly in bending on a rigid stop

Several phenomena at different time scale WT contact time (~20ms)

WT breathing waves (~15ms)

Compression waves in the bundle (~3ms) Bending waves in the bundle (~5ms)

Local phenomena in a contact zone if there is a gap (<0.5ms)

WT contact time

Compression waves go back and forth

WT « Breathing » modes

Dynamical behavior of a tube bundle

(16)

Peak force depending on clearance

Clearance (m) Pe ak Forc e (N ) Prestressing Linear decrease with

clearance

Similar to a Newton’s cradle behavior

Donahue 2008 Hutzler 2004

(17)

Conclusion and outlook

Analytical validation of a contact problem

Semi-analytical solution

Numerical method choice

Creation of a validity domain of the numerical model

Application to a pin bundle

Several phenomena highligthed.

Beneficial impact of clearance size for an homogeneous distribution.

Outlooks

Study of heterogeneous distribution of clearances. Experimental validation

(18)
(19)

Annex 1 Timoshenko Beam

Rationale of the selection of timohenko beam.

0 5 10 15 20 25 10 20 36 50 100 (Fr éq -Fr éq 3D )/ Fr éq (% ) L/R POUT TIMO Timo 0,5 COQUE Théorie

(20)

• Contact law

Hertzian spring

𝐹 = ෨𝑘𝛿

32

Linear spring

𝐹 = 𝑘𝛿

95% des chocs Max Non-linear stiffness : Hertz theory Shell stiffness : [Millard 1981] , [Madureira 2004,2010,2015]

(21)

Annex 3 Sub structuring

• Sub-structuring

Modal analysis

Φ

𝐻𝑇

, Φ

𝑝𝑖𝑛1

, …

HT

17 fuel pins

Grid and

assembly foot

Connectivity mode

Ψ

c1

, Ψ

𝑐2

, …

𝑥 = ΣΦ

i

𝑞

𝑖

+ Σ𝜓

𝑗

𝑞

𝐿𝑗

,

𝐵

𝑟

= [Φ, Ψ]

𝐾 = 𝐵

𝑟𝑡

K𝐵

𝑟

𝑒𝑡 ෡

𝑀 = 𝐵

𝑟𝑡

𝑀𝐵

𝑟

Modal analysis on ෡

𝐾 and ෡

𝑀

𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑛𝑑 𝐸𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑜𝑛 𝐵

𝑟

Modal recombination

Références

Documents relatifs

ةضرع رثكأ &#34;أ&#34; طمنلا يوذ نأ ىلع ايرظن رسفي امم &#34;ب&#34; طمنلا يوذل لمعلا يف يصخشلا زاجنلإا قارتحلال طمنلا يوذ نم يسفنلا كيلوك نم لك ةسارد هيلإ

After World War I, the development of international academic relations benefited from the rise of “Geneva internationalism.” 21 In 1933 an observer noted that “the number of

Though numerous studies have dealt with the α− methods, there is still a paucity of publi- cations devoted to the clarification of specific issues in the non-linear regime, such

Built by the TROPES software, diagram 2 represents all the bundles identified in a non-directive interview using the algorithm presented previously. All the graphic forms have

quadrics in (2) are linearly independent. If s is a non-zero holomorphic vector field on the pro- jective plane P 2 which vanishes on a positive dimensional subscheme then

flava (Claus) est délicate. Cette dernière, abondante dans les algues, fut maintes fois signalée dans la zone boréale. Nous avons nous-mêmes obtenu un important

Taking local primitives of ω, we can equipped the foliation with a transverse projective structure different from the hyperbolic one (attached to ε = 1).. One must take care that

Define the sampled-data operator K, the LTI operator K, and their respective impulse response matrices K(t,e) and K(t-e).. Even if we were clever enough to find an