• Aucun résultat trouvé

Egg serpins: The chicken and/or the egg dilemma

N/A
N/A
Protected

Academic year: 2021

Partager "Egg serpins: The chicken and/or the egg dilemma"

Copied!
14
0
0

Texte intégral

(1)

HAL Id: hal-01595204

https://hal.archives-ouvertes.fr/hal-01595204

Submitted on 27 May 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0

International License

Egg serpins: The chicken and/or the egg dilemma

Clara Dombre, Nicolas Guyot, Thierry Moreau, Philippe Monget, Mylène da

Silva, Joël Gautron, Sophie Réhault-Godbert

To cite this version:

Clara Dombre, Nicolas Guyot, Thierry Moreau, Philippe Monget, Mylène da Silva, et al.. Egg serpins:

The chicken and/or the egg dilemma. Seminars in Cell and Developmental Biology, Elsevier, 2017,

62, pp.120-132. �10.1016/j.semcdb.2016.08.019�. �hal-01595204�

(2)

SeminarsinCell&DevelopmentalBiology62(2017)120–132

ContentslistsavailableatScienceDirect

Seminars

in

Cell

&

Developmental

Biology

jo u r n al h om ep age : w w w . e l s e v i e r . c o m / l o c a t e / s e m c d b

Review

Egg

serpins:

The

chicken

and/or

the

egg

dilemma

Clara

Dombre

a,b,c,d

,

Nicolas

Guyot

e

,

Thierry

Moreau

f

,

Philippe

Monget

a,b,c,d

,

Mylène

Da

Silva

e

,

Joël

Gautron

e

,

Sophie

Réhault-Godbert

e,∗

aINRA,UMR85PhysiologiedelaReproductionetdesComportements,F-37380Nouzilly,France bCNRS,UMR6175PhysiologiedelaReproductionetdesComportements,F-37380Nouzilly,France cUniversitéFranc¸oisRabelaisdeTours,F-37041Tours,France

dIFCE,F-37380Nouzilly,France

eINRA,UR83RecherchesAvicoles,F-37380Nouzilly,France

fCEPR,UMRINSERMU1100,FacultédeMédecine,UniversitédeTours,10Bd.Tonnellé,F-37032ToursCedex,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received15March2016

Receivedinrevisedform22June2016 Accepted22August2016

Availableonline24August2016 Keywords: Serpins Birds Eggformation Reproduction Development

a

b

s

t

r

a

c

t

Twenty-sevenserpinsbelongingtocladeA,B,C,D,E,F,G,HandIserpinsarecurrentlyreferencedin chickengenomedatabases.Phylogeneticanalysisofchickenserpinsrevealedthatovalbumin(Serpinb14) anditsparalogsovalbumin-relatedproteinY(Serpinb14b)andovalbumin-relatedproteinX(Serpinb14c) arefoundinbirdspecies.ThesecladeBserpinsarespecificallyexpressedinreproductivetissuesand exportedintheeggwheretheyconstitutemajorproteincomponents.Thesedatasuggestthatthese threeparalogshaveprobablyappearedinbirdstofacenewenvironmentsandensuretheextra-uterine developmentofanembryoinashellegg.Twelveotherserpinshavebeenidentifiedinthenewlyproduced egg,someofthemhavingaspecificdistributionintherespectiveeggstructures(eggshell,eggwhite, vitellinemembraneandeggyolk).Thephysiologicalroleoftheseeggserpinsremainlargelyunexplored, butthereisincreasingevidenceinliteratureorbyhomologieswiththeirmammaliancounterparts,that someofthemparticipateincellproliferation,tissueremodelingand/orangiogenesisassociatedwith folliculogenesisanddevelopmentofextraembryonicstructures,eggshellbiomineralization,eggdefense andnutritionoftheembryo.Abetterknowledgeofthephylogeneticevolutionofthese15serpinsin otheroviparousspecies,ontheireggdistribution,ontheirregulationduringembryonicdevelopment (activation/degradation/transfer)andontheirfunctionalspecificity,isneededtobetterappreciatetheir roleandtheirbird-specificity.Thesereviewshedlightonthemultiplepossibilitiesthatoffertheavian eggmodeltostudytheroleofserpinsinreproductionanddevelopmentalbiology.

©2016TheAuthor(s).PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

1. Evolutionanddistributionofeggserpins...121

1.1. Phylogeneticanalysisofchickenserpins...121

1.2. Tissuedistributioninchicken(thechickenand/ortheeggquestion)...123

2. Eggserpins:anupdate...123

2.1. Biologicalsignificanceofeggyolkserpins ... 124

2.2. Vitellinemembraneserpins:apredictedroleinfolliculogenesis,defenseandangiogenesis...126

2.3. Eggwhiteserpins:aroleinnutritionanddefense.Whatelse?...127

2.4. Eggshellserpinsasregulatorsofbiomineralizationprocess...127

2.5. Serpinsinextraembryonictissues...130

2.5.1. Amnioticfluid...130

Abbreviations:ACC,amorphouscalciumcarbonate;CAM,chorioallantoicmembrane;ESM,eggshellmembrane;OVAX,ovalbumin-relatedproteinX;OVAY, ovalbumin-relatedproteinY.

∗ Correspondingauthorat:INRACentreValdeLoire,UR83RecherchesAvicoles-FunctionandRegulationofEggProteins,37380Nouzilly,France. E-mailaddress:srehault@tours.inra.fr(S.Réhault-Godbert).

http://dx.doi.org/10.1016/j.semcdb.2016.08.019

1084-9521/©2016TheAuthor(s).PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

(3)

2.5.2. Chorioallantoicmembraneandallantoicfluid...130

2.5.3. Eggshellmembranes...130

2.5.4. Yolkandyolksac...131

3. Conclusions...131

Conflictofinterest ... 131

Acknowledgements...131

References...131

1. Evolutionanddistributionofeggserpins

SystematicanalysisofNationalCenterforBiotechnology Infor-mationandchickenEnsembldatabasesforidentifyingserpinsin chickenspeciesrevealedthepresenceof27membersofthis fam-ily(Table1, Fig.1).Amongthese,16 serpinsare stillpredicted andhave beenreferenced indatabasesbyautomated computa-tionalanalysisofgenomicchickensequencesannotatedusinggene predictionmethods,whichsometimescanleadtodiscrepancies betweengeneandproteinnames(asanexample,Serpinb2gene correspondstoapredictedSerpinb10protein,Table1).However, therelevanceof5ofthemhavebeenrecentlyvalidated,as ser-pinsa8,c1,d1andf1wereunambiguouslyidentifiedintheegg (see§1.2).Thus,11oftheserpinsidentifiedtodatefromgenome analysis, need further validation and the information available abouttheirphysiologicalfunctionsisthereforeverypartial,even inexistent. Surprisingly enough, Serpine1was not identified in this analysis.To investigatewhether Serpine1 existsas a pseu-dogeneinchickenorwhetheritwasnotannotatedcorrectlyin databases,Serpine1wassearched inthechicken genomeusing reciprocaltBLASTn.Theserpinwasnotfoundandtheclosestgene identifiedbyreciprocaltBLASTnagainsthumangenomereferred toSERPINE2,which wasactually identifiedinboth Pubmedand Ensembldatabasesandreferenced inTable1.Thus,todate,we cannotascertainthatthisgeneisabsentduetoerrorsingenome annotationorwhetheritactuallydisappearedinchickensduring evolution.Chickenov-serpinsarelargelyrepresentedas10clade Bserpinscouldbeidentified[1,2].Theseov-serpinsareclustered ona150kblocuschromosome2q(Fig.1B)andcompriseSerpinb1, Serpinb2,Serpinb5,Serpinb6,twoSerpinb10homologs(Serpinb10, Serpinb10b/MENT),Serpinb12 andSerpinb14,Serpinb14b and Ser-pinb14cnamelyovalbuminanditsrelatedgenesY(OVAY)andX (OVAX).Anotherclusteronchromosome5wasidentified contain-ing7membersoftheSerpinafamily(Fig.1E).Thisclusterincludes5 homologsofalpha1-antitrypsin/alpha1-proteinaseinhibitors, Ser-pina1,Serpina3,Serpina4,Serpina5,Serpina9,whichcorrespondto humanantitrypsin, alpha1-antichymotrypsin,kallistatin, Protein Cinhibitor,andSERPINA9,respectively.Outofthese27serpins, only15areactuallyrecoveredinthechickenegginwhichthe bio-logicalsignificanceandbiologicalactivityintimatelydependson theprocessofeggformationandontheirsubsequentlocalization (eggshell/eggwhite/vitellinemembrane/yolk).Thisfirstpartwill reviewtheevolutionofthesechickenserpinsinvertebratespecies andtheirdistributioninthevariouseggcompartments.

1.1. Phylogeneticanalysisofchickenserpins

Inserpingenes,somehaveshownastrongcorrelationbetween genomicorganization,patternsofaminoacidsatspecificsites,and insertion/deletionpatterns,whichcontributedtoidentifyserpin groupsandtodeciphervertebrateserpinevolution[3,4].Serpin geneshaverapidlyevolved;ahighsequencedivergenceisfound betweenallserpinclades,thesequenceidentityvaryingfrom22% to29%.

Phylogeneticanalysisofthe27serpins foundinthechicken genomeshowsthatserpingeneshavebeenoriginatedand

dupli-catedbeforethedivergence ofteleosteans.Anotherduplication eventoccurredafterdivergencebetweenspecies,forexample,the cladeAofGallusgallusencompassessevenSerpinageneswitha sequenceidentityaround47%.Thesamephenomenonisobserved formammalandfish.

UsingthephylogenetictreesavailableinEnsembl(http://www. ensembl.org),andbecauseofthestringencyofthemethodused, threeserpinsgroupsaredistinguished.Thefirstphylogenetictree containsserpinsfromcladeB,C,EandI(Fig.2),thesecondrefersto serpinsfromcladeA,D,F,GandH(Fig.3),andthelasttree,contains onlyonecladeAserpin,Serpina8.

ThecladeBserpin,present inthefirsttree,contains ovalbu-mingene(Serpinb14)anditsrecentlyduplicatedOVAY(Serpinb14b) andOVAX(Serpinb14c)[5–7].OVAX,isnotannotatedinEnsembl butbyusingreciprocaltBLASTnalignment method(http://blast. ncbi.nlm.nih.gov/Blast.cgi),thisgenecouldbeeasilyidentifiedas the closestneighbor of OVAY in chromosome2 witha 73% of proteinsequenceidentityaspreviouslyshown [1,2].The evolu-tionofcladeBserpinsstartsbeforethesplitofbonyfishesand tetrapods,450millionsyearsago,leadingtoatleastsixcladeB serpingenesfoundinmammaland birdgenomes.TheG.gallus genomecontainstencladeBserpingenesonchromosome2in thesamesynteniclocus(Figs.1and2).Sixofthemcouldalsobe foundinHomosapiensgenome(SERPINB1,B2,B5,B6,B10,B12). ChickencladeBserpins(Figs.1and2)aresyntenicwithtwolocion chromosome6and18inhumanandothermammaliangenomes, whichsuggestsasplitresultingtoabreakofsyntenyinmammals

[2].Recentduplicationseventsoccurredindependentlyinfishes, mammalsandbirds,afterdivergencebetweenthesespecies.Due torecent duplication,avian Serpinb14 (ovalbumin),Serpinb14b (OVAY)andSerpinb14c (OVAX),havenohumanorother mam-malianspeciesorthologuesandseemtobespecifictooviparous species[1,8,9].Threeorthologuestoovalbuminarereferencedin duck,flycatcherandturkeyinEnsembldatabasebutinformation islackingforotheroviparousspecies.However,itisnoteworthy thatwefoundapotentialorthologousofSerpinb14c inAlligator mississippiensis(A0A0Q3ZV65),sharing56%proteinsequence iden-titywiththechickenhomolog.Theseovalbumingenesadaptedto oviparousspecies,aresupposedtohavelosttheirproteaseinhibitor activity[1],and potentiallyacquiredspecificpropertiesadapted tothedevelopmentofanembryoinaneggexposedtoterrestrial environments[8,9].

CladeA,D,F,GandHserpinsarefoundinthesecond phyloge-netictree.AsshowninFig.3,exceptcladeAserpins,eachofthese serpinshasanorthologueinbothG.gallusandBostaurus.

SimilarlytocladeBserpins,andforbothspecies(G.gallus;B. taurus), duplicationevents ledtothepresence of severalclade A serpinsafterspecies divergence(Fig.4).ConcerningG. Gallus genome,thisduplicationgaverisetoSerpina1,a3,a4,a5,a9,a10 anda12.Theseserpinshavesimilarpeptidaseinhibitorfunction and areessentiallyexpressedbytheliver.Thesynteny analysis (http://www.genomicus.biologie.ens.fr/)revealsthatcladeAgenes arelocalizedinageneclusterinchickenchromosome5(Fig.3). ThesamephenomenonisobservedinB.Taurus,whereallcladeA serpinsarelocalizedinauniquegeneclusteronchromosome21. CladeAserpinsshowmultiplerecentduplicationsleadingtoten

(4)

122 C.Dombreetal./SeminarsinCell&DevelopmentalBiology62(2017)120–132

Fig.1.Chromosomelocalizationofchickenserpins.Serpinsandflankinggeneswiththeirrespectiveorientation(backward/forward)aredrawntoscale.Assignmentofgene nameswasestablishedbasedonEnsembldatabaseinformationorbycomparisonwithhumanorthologs.ThenameMENT(GeneID:1017749622)hasbeenreplacedby Serpinb10inaccordancewith[1],basedonthehighsequenceidentityofSerpinb10andSerpinb10b,suggestingthattheyareparalogs.Accessionnumbersareindicatedin Table1.WiththeexceptionofSerpinb14c,allgeneswerefoundinEnsembldatabase.

(5)

Table1

Chickenserpins.AnalysisofPubmeddatabase(http://www.ncbi.nlm.nih.gov/pubmed/)using“serpin”and“gallus”askeywordsin“Protein”databaseresultedin93proteins hits;whereasusing“serpin”tosearchrelatedproteinsinChickenEnsembldatabase(http://www.ensembl.org/Gallusgallus/)gave83hits(01-18-2016).Manualcompilation andintegrationofresultsbyremovingredundancytokeeponlygeneIDsresultedinatotalof27distinctserpingenes.

ProteinName[Gallusgallus] Proteinaccessionnumber Genesymbol GeneID Geneaccessionnumber serpinpeptidaseinhibitor,cladeA(alpha-1antiproteinase,

antitrypsin),member1precursor

NP001264422.1 Serpina1 423434 ENSGALG00000023070 PREDICTED:proteinZ-dependentproteaseinhibitor XP015143253.1 Serpina10 423432 ENSGALG00000020391 PREDICTED:serpinA3-4-likeisoformX1 XP015143255.1 Serpina12 107049127 ENSGALG00000028598 PREDICTED:alpha-1-antiproteinase XP015143260.1 Serpina3 772339 ENSGALG00000020388 serpinpeptidaseinhibitor,cladeA(alpha-1antiproteinase,

antitrypsin),member4precursor

NP 001264421.1 Serpina4 423433 ENSGALG00000010969 PREDICTED:alpha-1-antitrypsinisoformX1 XP421344.1 Serpina5 423435 ENSGALG00000020390 PREDICTED:angiotensinogen XP004935550.1 Serpina8 421543 ENSGALG00000011117 PREDICTED:alpha-1-antitrypsin XP004941955.1 Serpina9 423436 ENSGALG00000020389 PREDICTED:leukocyteelastaseinhibitorisoformX1 XP015137679.1 Serpinb1 420894 ENSGALG00000019555 PREDICTED:heterochromatin-associatedproteinMENT XP 004939740.1 Serpinb10 101749622 ENSGALG00000019554 heterochromatin-associatedproteinMENT O73790.1 Serpinb10b 395715 ENSGALG00000019553 PREDICTED:serpinB12 XP418985.2 Serpinb12 420899 ENSGALG00000012872

ovalbumin AAB59956.1 Serpinb14 396058 ENSGALG00000012869

ovalbumin-relatedY NP 001026172 Serpinb14b 420897 ENSGALG00000019551 ovalbumin-relatedproteinX AGN32861.1 Serpinb14c 420898 NM001276386.1 PREDICTED:serpinB10 XP418982.1 Serpinb2 420896 ENSGALG00000019552 PREDICTED:serpinB5 XP418986.3 Serpinb5 420900 ENSGALG00000012873

serpinB6 NP001006377.1 Serpinb6 420895 ENSGALG00000012866

PREDICTED:antithrombin-III XP422282.3 Serpinc1 424440 ENSGALG00000004591 PREDICTED:heparincofactor2 XP001232767.1 Serpind1 395877 ENSGALG00000001396 SERPINE2serpinpeptidaseinhibitor,cladeE(nexin,plasminogen

activatorinhibitortype1),member2

E1BWU2 Serpine2 424805 ENSGALG00000005135 PREDICTED:serpinE3 XP015131346.1 Serpine3 418875 ENSGALG00000017017 PREDICTED:pigmentepithelium-derivedfactorisoformX1 NP001244218.1 Serpinf1 417561 ENSGALG00000003015 serpinpeptidaseinhibitor,cladeF(alpha-2antiplasmin,pigment

epitheliumderivedfactor),member2

XP015151529.1 Serpinf2 100857105 ENSGALG00000002987 plasmaproteaseC1InhibitorPrecursor XP003641424.1 Serping1 423132 ENSGALG00000007381 PREDICTED:serpinH1isoformX1 XP015136453.1 Serpinh1 396228 ENSGALG00000011214 neuroserpinprecursor NP001004411.1 Serpinh1 425002 ENSGALG00000009470

Serpina(Serpina1,a3,a4,a5,a6,a7,a10,a11,a12,a14).Sixofthem belongtothesubgroupofSerpina3(Serpina3-1,a3-5,a3-6,a3-7, a3-7-like,a3-8),andsharealmost70%ofidentitywithhuman SER-PINA3members[10].ThesyntenyanalysisofcladeAserpinsfor B.taurusshowsthepresenceofageneclusterinchromosome21, similartotheclusteronchromosome5foundinG.gallus.Inboth G.gallusandB.taurusloci,serpinsfromcladeAarelocalizedinthe samesynteniclocus.

Inthethird phylogenetictree,onlySSerpina8ispresentand couldbefoundinallspecies.Incontrasttotherecentpublication whereauthorsusedsyntenyandsignaturesequencestoanalyse Serpina8gene inotherspecies[11],Ensemblphylogenetictools revealsthattheduplicationofSerpina8occurredbeforedivergence ofteleosteans.Thisserpinhasalsodivergedrapidlyasopposedto theotherserpins.ComparedwithothercladeAinhibitoryserpins, thisSERPINA8alsonamedangiotensinogenhasaveryspecificrole invertebrates,inthatit isproteolyticallyprocessedbyreninto generateangiotensinI,whichisfurthertrimmedintovasoactive angiotensinIIthatregulatesbloodpressure.

Toconclude,serpinshavebeenduplicatedbeforethedivergence ofteleosteangivingriseto16clades(fromAtoP)[12,13].Nine cladesarepresentin theaviangenomeandtwoofthem (clade AandB)havebeenrecentlyduplicatedleading,amongothers,to ovalbumin,OVAXandOVAY,whicharespecifictobirdspecies.A betterunderstandingofthefunctionoftheseproteinsisnecessary tohighlightthereasonoftheirduplicationandspecificity. 1.2. Tissuedistributioninchicken(thechickenand/ortheegg question)

Thereisveryfewinformationontheexpressionandbiological activitiesof chickenserpins.Chickens,byhomologywith

mam-mals areexpectedtoexpressserpins ata basal statetoensure basicbiological processes suchascoagulation/hemostasis (PRE-DICTED:angiotensinogen,PlasmaProteaseC1InhibitorPrecursor, PREDICTED:antithrombin-III,PREDICTED:heparincofactor2),cell proliferation(SERPINB5)althoughcontroversial[14],inflammation (PREDICTED:leukocyteelastaseinhibitor),etc.Atsexualmaturityof thepullets,thesecretionofovariansteroidhormonesbythetheca ofthegrowingfollicletriggersthedevelopmentand differentia-tionofthehenoviduct.Thisdevelopmentisconcomitantwiththe formationofthefirsteggthatwillcontainnutrientsandbioactive proteinstosupportembryonicdevelopment[15].Theformation ofchickeneggisaspatialandtemporalprocessthatreliesonthe ovary(siteofsexsteroidsynthesis,gametogenesisandyolk for-mation)andtheoviduct,whichreceiptstheovulatedmatureyolk andwherethewhite,theshellmembranesandtheshellare suc-cessivelydepositedinveryspecializedregions,themagnum,the isthmusandtheuterus/vagina,respectively(Fig.5)[15].Analyses andintegrationofthevariousproteomicdatapublishedonthe cuti-cle/eggshell,eggwhite,vitellinemembraneandeggyolkrevealed thepresenceof15serpinsinthefreshlylaidegg[16–28](Fig.5).The eggshellcontains14differentserpins,withSerpinb6andSerpini1 beingspecificallyfoundinthiscompartment.Theeggwhite recov-ers6serpinsincludingonewhichhasbeenidentifiedonlyinthis compartment(Serpinb5).Thevitellinemembranepossesses5 ser-pinswhicharealsocomponentsoftheeggwhiteandtheeggshell, andtheeggyolkcontains10serpinsthatarealsolistedintheother eggcompartments(Fig.5).Aspreviouslydiscussed,3oftheseegg serpins(Serpinb14,Serpinb14b,Serpinb14c)mightbespecifically associatedwithbirdspeciesandtheextra-uterinedevelopmentof theembryowithinanegg.

(6)

124 C.Dombreetal./SeminarsinCell&DevelopmentalBiology62(2017)120–132

Fig.2. PhylogenetictreeofSERPINB,C,EandIandlocirepresentation.Phylogenetictree,generatedbyEnsembl,mergingmaximumlikehoodandneighborjoiningtrees, showsserpinsorthologsfoundforchickenandcow.AllG.galluscladeBserpinsarelocalizedinthesamegeneclusteronchromosome2.

*TheSerpinb14c,notannotatedinEnsemblwasmanualyaddedtothisfigure.Theproteinsequencesofthe27serpinsgenesfoundinthechickengenegenomewerealigned andaserpinphylogenetictreewasgenerated(usingthewebsitehttp://www.phylogeny.fr),inordertocomparevalidatethepositionofSerpinb14cinthephylogenetictree.

2. Eggserpins:anupdate

Withtheexceptionofovalbumin (Serpinb14)and itsrelated proteinX(Serpinb14c)andY(Serpinb14b),mosteggserpins recov-ered in the egg are not specifically expressed to support egg formation.Therefore,toappreciatetheirrespectivephysiological activityinegg,itisimportanttohaveagoodrepresentationofthe processofeggformationinmind,astheirfunctionisintimately linkedtotheirlocalizationwithintheegg.

2.1. Biologicalsignificanceofeggyolkserpins

Major proteins of the egg yolk, with the exception of immunoglobulins,aresynthesizedbytheliveroflayinghensin whichproteinsynthesisandlipogenesisarestimulated15–20fold atsexualmaturity.Eggyolkproteinsresultfromthestimulation ofhepaticexpressionofpreexistingproteinsandneosynthesisof specificeggcomponents.Oncesecretedintotheblood,eggyolk

precursorssuchasvery-lowdensitylipoproteinsaretransported totheovarianfollicleandincorporatedinthegrowingyolky folli-cles,viareceptor-mediatedendocytosis[29].Meanwhile,theliver continuestoexpressmanyproteinswhicharenotrelatedto vitel-logenesisand which canbeunselectively incorporatedintothe eggyolkbypassivebindingtoeggyolk-specificproteins.Eleven serpins havebeenidentified intheegg yolk:Serpina1 (alpha1-antitrypsin), Serpina4 (kallistatin), Serpina8 (angiotensinogen), Serpinb14(ovalbumin),Serpinb14b(OVAY),Serpinb14c(OVAX), Serpinc1(antithrombinIII),Serpind1(heparincofactorII),Serping1 (plasma Protease C1 Inhibitor), Serpinf1 (pigment epithelium-derivedfactor)andSerpinf2(alpha2-antiplasmin)[25,27].Except Serpina1,Serpinb14,Serpinb14b,Serpinb14c,serpinsidentifiedin eggyolkareexpressedbythechickenliver,regardlessofthe sex-ualmaturityofthehens[30],corroboratingthattheseserpinsare notspecificallyexpressedtosupportvitellogenesis.Serpina1, Ser-pinb14, Serpinb14b,Serpinb14c might beexpressedwithinthe ovarybysurroundingcellsincludinggranulosacellsandthecato

(7)

Fig.3.ComparativeanalysesofGallusgallusandBosTauruslociincludingcladeA,D,F,G,andHserpins.PhylogenetictreesaregeneratedbyEnsembl.CladeAserpinsare foundinthesamesyntenicclusterinbothG.gallusandB.taurus.TheB.taurusgenomewaspreferredforthisstudyasitiswellreferencedforthislocus.Moreover,serpinsfrom cladeBfoundinB.taurusgenomepossessmoreduplications(aschickenSerpinb14forexample)ascomparedwithhumangenome.Thephylogenetictreeswereprocessed byENSEMBL,withthecompletesequencesincludingamino-andcarboxy-terminalextensions.

Fig.4.EvolutionaryscenarioofSERPINfromcladeA,D,F,GandHformammal,birdsandfishes.LastSERPINAduplicationappears,formammals,birds,andfishes,after divergencebetweenspecies.Speciationbranchesarerepresented:forexample,forSERPING1andSERPINF2thenoderepresentsthelastcommonancestor,andthedivergence beforespeciationbetweendifferentspecies.Thereddotrepresentsparalogduplicationafterdivergencebetweenspecies.ThisphylogenetictreewasmadeusingPRANK (http://www.ebi.ac.uk/goldman-srv/prank/)toalignsequencesandRAxML(http://sco.h-its.org/exelixis/software.html)tobuildthetree.

(8)

126 C.Dombreetal./SeminarsinCell&DevelopmentalBiology62(2017)120–132

Fig.5.Schematicrepresentationofeggformationandserpinsidentifiedineacheggcompartments.Foreachcompartment,thesizeofthefontroughlyindicatestherelative quantityofoneserpintoanother.Biggerlettercorrespondstoabundanttoveryabundantproteins,smallerletterscorrespondtolowabundantproteinsandnormalletters toproteinswithintermediateabundance.Notethatcompartmentsarenotcomparable,astherelativequantityintimatelydependsontheintrinsiccompositionofeach compartment.Datawereextractedfrom[25,27](eggyolk),[26](vitellinemembrane),[22,28](eggwhite),and[23,80](eggshell).

beincorporatedin theyolk,orberecoveredintheeggyolk by passivediffusionfromtheeggwhitewheretheyaremajor com-ponents.Actually,theexhaustiveanalysisofserpinsexpressionin chickenmaleorfemaletissueshasneverbeeninvestigatedandin females,exceptforSerpinb14,Serpinb14bandSerpinb14c,their expressiondoesnotseemtobehormone-regulated[30].The func-tionalannotationof eggyolkproteinshasrevealedthat serpins identifiedintheeggyolkareessentiallyknownactorsof coagu-lation/fibrinolysiscascades[24].Thisconsideration,togetherwith theirverylowabundanceineggyolk,questionsthebiological rel-evanceoftheseelevenserpinsintheeggyolk.

2.2. Vitellinemembraneserpins:apredictedrolein folliculogenesis,defenseandangiogenesis

Thevitellinemembraneis theacellularproteinaceous mem-braneat theinterfacebetweentheeggwhiteand theeggyolk. Thismembraneiscomposedoftwodistinctlayers(outerandinner layers)separatedbyathincontinuousmembrane[31].Theinner layer,incontactwiththeyolkandtheoocyteandcorresponding tothezonapellucidainmammals,isconstitutedofinterlaced pro-teinaceousfibersmostlikelyproducedbygranulosacellsand/or livercells,duringvitellogenesis/folliculogenesis.Theouterlayer containsproteinsformingalatticenetworkoffinefibrils,secreted bytheinfundibulum(Fig.5).Fertilizationoftheoocytebyasperm celloccursintheinfundibulum,presumablypriortothesecretion ofthevitellinemembraneouterlayer.Thevitellinemembranehas differentrolesinavianreproduction.Theinnerlayerencloseszona

pellucidaproteinsknownfortheirroleinsperm-egginteraction duringfertilization[32].Theinnersurfaceofvitellinemembrane promotescellgrowth[33]followingeggfertilization,whichinturn progressivelydegradesthevitellinemembranetoforma vascular-izedtissuearoundtheyolk,namelytheyolksac[34].Thevitelline membraneactsasa natural filterbarriertoseparateeggwhite fromyolkcomponents,andtopreventmicrobialcontaminationof yolkpotentiallycomingfromthealbumen.Theouterlayerofthe vitellinemembraneisalsorichinantimicrobialproteins(lysozyme, ovotransferrin,avianbetadefensin11).Proteomicanalysisofhen eggvitellinemembranerevealedthepresenceof137proteins[26]

including5serpins:Serpinb14(ovalbumin),Serpinb14b(OVAY), Serpinb14c(OVAX),Serpine2(glia-derivednexin/protease nexin-1) and Serpinf2 (alpha2-antiplasmin). The distributionof these avian serpins within the various layers of the vitelline mem-braneremainsunknowntodateandtheirbiologicalrolesarestill unclear.Aspreviouslymentioned,Serpinb14,Serpinb14band Ser-pinb14careegg-specificproteins.Theirrolewithintheeggandthe vitellinemembranestillremainselusivealthoughtheyconstitute majorcomponentsofthiscompartment[26](Fig.5).No protease-inhibitingactivityhasbeenfoundfortheseserpinstodate.Arecent study demonstrated that Serpinb14c possesses heparin-binding properties (Fig.6)and antibacterialactivities, in contrasttoits homologSerpinb14[35].Serpinb14cmightthereforecontributeto eggdefensetogetherwithotheractiveantimicrobialspresentin thevitellinemembrane.

By comparison with theirmammalian homologs, avian Ser-pine2 and Serpinf2 are presumed to have important functions

(9)

ineggformation,especiallyduringfolliculardevelopmentand/or ovulation phases. Both serpins are expressed in bovine gran-ulosa cells [36,37] and temporal expression of Serpine2 gene canbeobservedduringfollicular growth:highexpressionlevel isindeed associatedwithlargegrowingfollicles whereaslower expression is rather observed in small growing follicles or in pre-ovulatoryfollicles[36].Plasmin,thecognateserineprotease of Serpine2 and Serpinf2 [38,39], is involved in the extensive remodeling of the follicular connective tissue and degradation of the basal lamina during follicular expansion. Ovulation also involvesproteolyticeventsatthefollicularapexresponsiblefor theformationofthestigmaandthereleaseofthematureoocyte. Plasminogen activators/plasmin system is believed to partici-pateinfollicularmaturationinchickens[40].Serpine2possesses glycosaminoglycan-bindingproperties[38]andknowingthatthere aresome pre-ovulatorychanges of glycosaminoglycanscontent (i.e. degradation) in the stigma, the area of the ovarian sur-facewherethematurechickenfolliclewillburstthroughduring ovulation [41],glycosaminoglycansproduced bygranulosa cells and their degradation might regulate theproteolytic processes duringthefolliculargrowthand/ortheovulation,viathe inter-actionwithfollicularserpinsandthemodulationoftheiractivity

[42].

Besides follicular growth, the vitelline membrane also sup-portscellproliferationandangiogenesisassociatedwithembryonic development. In chicken, Haas and Spratt have reported that componentsof theinner membrane promotethe outgrowthof extraembryonic tissues onto the vitelline membrane [33]. Ser-pinsfromvitellinemembranemightparticipateintheseprocesses viaboth antiprotease-dependentand independentmechanisms. SERPINE2 is known to interact with several modulators of angiogenesis,suchasproteases(thrombin,plasmin,plasminogen activators),extracellularmatrixproteinsandglycosaminoglycans

[43,44]. Antiangiogenic properties have been reported in vitro and in vivo for SERPINE2, which has been demonstrated to inhibit vascular epithelial growthfactor activity onendothelial cells(includingproliferationandmigration)andtodecreasecell spreading onvitronectin [45]. Interestingly, its anti-angiogenic effects do not involve its inhibitory site but rather rely onits glycosaminoglycan-bindingproperties[45].Serpine2might there-foreregulateangiogenesiswhichguidesthedevelopmentofyolk sacbytargetingpivotalcellsignalingpathwayssuchasthe Hedge-hogpathway[46].

2.3. Eggwhiteserpins:aroleinnutritionanddefense.Whatelse? Eggwhiteis anaqueoussolutionmainlycomposedofwater (88%), proteins(90%dry matter),minerals (6%dry matter) and freeglucose (3.5%drymatter). Thedominantphysiological role of egg white is assumed to provide nutrients for the embryo and protection against microbial contamination. Clade B ser-pins including ovalbumin (Serpinb14), OVAY (Serpinb14b) and OVAX(Serpinb14c)aremajorcomponentsoftheeggwhite[28], withovalbuminaccountingfor54%ofeggwhiteproteins(about 50mg/mL).Allthreeproteinsaremainlyproducedbytheoviduct and more specifically by tubular gland cells of the chicken’s magnum,responsibleforeggwhiteformation[8](Fig.5).The addi-tionalmajor proteinsfoundin this compartment arelysozyme, ovotransferrin,whichbothpreventbacterialproliferationand dis-semination. Eggwhite is alsocharacterized by thepresence of numerous active protease inhibitors including ovomucoid and ovoinhibitor (Kazal-like proteins), cystatin and ovostatin [47], which are assumed to protect egg white proteins from inap-propriate/early proteolytic events. Non-inhibitory properties of certainserpinsincludingovalbumin,ovalbumin-relatedproteinX ormaspin(Serpinb5)canbepossiblyexplainedbymultiple

devi-ationsinthehingeregionofthereactivecenterloop,compared withtheconsensus sequence for inhibitoryserpins [1] (Fig. 6). Thephysiologicalfunctionofallthreeparalogsisstillunclear.The on-goinghypothesisisthatitwouldserveasasourceof amino-acidsforthedevelopingchickenembryo fromtheeleventhday ofincubationwhiletheeggwhitemigratestotheamnioticfluid tobeorallyabsorbedbytheembryo.Uptothatstage,eggwhite proteinsareprobablyprotectedfromproteolysisthankstomajor eggwhiteactiveantiproteases.Indeed,eggwhiteproteinsremain essentiallyuncleavedduringthefirsthalfincubation,asrevealed by proteomicapproaches [48]. It is noteworthythat Serpinb14 naturallyundergoessomeconformationalchangesduringegg incu-bation,toconverttoaheat-stableformnamedS-ovalbumin[49]. ThisS-ovalbuminischaracterizedbychemicalinversionsof ser-ineresiduesintotheDconfiguration,andothersubtlechanges, that are supposed to give a thermodynamic advantage to the structuralstabilityofS-ovalbumin[50].Interestingly,once swal-lowed fromtheamnioticfluid,ovalbumin doesnotseem tobe fullyalteredinthegastrointestinaltractoftheembryo[49]. Oval-bumin is recovered in the extracts of many embryonic organs includingthehead,eye,heart,liver,intestine,spinal cord, mus-cle,dermis,andbone[49].Surprisinglyenough,thepresenceof uncleavedovalbuminpersistsinembryonicorganssuggestingthat atleastafractionofovalbumin moleculescouldbetransported intacttoembryonicorgans [49].Thisobservationtogetherwith theabsenceofovalbuminmRNAexpressionintheseorgansand withthefactthattheneonateorgansarenolongerpositivefor ovalbumin shortly afterhatching [49], suggeststhat egg white ovalbuminmaynotmerely serveasa sourceofamino acidbut mayalso havea more active/directfunctionon developing tis-sues.

WithregardtoOVAYandOVAX,thereisnoinformation avail-ableabouttheirsusceptibilitytoconverttoaS-form,similarlyto ovalbumin,norabouttheirpresenceinembryonictissuesduring incubation.But,theabundanceofOVAYineggwhitewasshown tobesignificantlyaffectedduringincubation [48].Its predicted Lys-His reactive site suggeststhat OVAY couldinhibit trypsin-like proteases [1] and thus possibly gastrointestinal proteases of theembryo and/oryolk proteases.ConsideringOVAX,it was shown tolack inhibitory activityagainst trypsin/chymotrypsin-likeproteases [35].However, itexhibits antimicrobialactivities against two pathogens, Listeria monocytogenes and Salmonella enterica Enteritidis via its heparin-binding domain [35]. These activities suggest a role for OVAX at least in innate defense. Similar function has been proposed for mammalian heparin-binding serpins including Heparin cofactor II/SERPIND1 [51], which is also present in theegg white. The expressionof Ser-pind1 and Serping1 in the oviduct and more particularly in the magnum has not been investigated yet. Their presence in the egg white could be the consequence of oviducal expres-sionbut couldalsoresultfrompassivediffusionfromtheyolk. Concerning Serpinb5, itsrole in the eggwhite willnot be fur-therdiscussedsinceit wasidentifiedasveryminorcomponent

[52].

2.4. Eggshellserpinsasregulatorsofbiomineralizationprocess Thecalcifiedchickeneggshellisanaturalenvelopewhich pro-tectsthedevelopingembryofromphysicalandmicrobialassaults. Itiscomposedof95%calciumcarbonate(calcitepolymorph),1.5% waterand3.5%proteins,polysaccharidesandproteoglycans[53]. Avianeggshellisaporousminerallayerwithawell-defined struc-turalpolycrystallineorganization(Fig.7A).Biomineralizationmay bedefinedastheproductionofthehardtissuecharacterizedbya specificminerals/organicmatrixframework,byalivingorganism. Eggshellproteinsandproteoglycansplayakeyroleinshell

(10)

forma-128 C.Dombreetal./SeminarsinCell&DevelopmentalBiology62(2017)120–132

Fig.6.Three-dimensionalstructuresofcladeAandcladeBserpins.

(A)Cartoonrepresentationofhumanalpha-1antitrypsin/SerpinaA1(1QLP)showingtheexposedreactivesiteloopthatinteractswiththeproteaseactivesiteviathe P1-P1residues(Met358-Ser359)toformaMichaeliscomplex.Thisloopisfurthercleavedbytheproteaseandleadstotheformationofanirreversible,covalentcomplex betweentheserpinanditscognateprotease.(BandC)3Dstructuresofovalbumin/Serpinb14andOVAX/Serpinb14c,respectively.Althoughthestructuresofovalbumin andovalbumin-relatedproteinXarehighlysimilartothatofknowninhibitoryserpins,theirreactivesiteloopareunlikelytointeractwithproteases[35,81],which canbeexplainedbymultipledeviationsinthehingeregionofthereactivecenterloop,comparedwiththeconsensussequenceforinhibitoryserpins[1].Thesolvent-accessible

(11)

Fig.7. Structureoftheeggshellandeffectofovalbuminoncalciumcarbonatecrystals.(A)Ultrastructuralstructureofchickeneggshell(scanningelectronmicroscopy).(B) Controlcrystal.(C)Crystalobtainedinthepresenceofovalbumin(133␮g/mL).Themorphologyandthesizeofcrystals(halfreduction)aresignificantlymodifiedinthe presenceofovalbumin.Unpublisheddata(J.Gautron,S.Solomon,M.Bain,Y.Nys).1bar=100␮m.

tion[54].Thiscontrolledprocessoccursinaconfinedspace(lumen oftheuterus)whereionicconcentrations(calciumand bicarbon-ates)arehighlysupersaturated[15].Recently,theinvestigationof earlyshellmineralizationmechanismshighlightedtheimportance oftheformationofatransientamorphouscalciumcarbonate min-eral(ACC)attheinitialstageofeggshellmineralization[55].The ACCmineralfirstaccumulatesoneggshellmembranesandon spe-cificnucleationsites(mammillaryknobs)(Fig.7A).ACCdeposited aroundthesesitesdissolvesrapidly,providingacontinuoussupply ofionstoformcalcitecrystalsonspecificnucleationsites.These unitscoalescetoformlargercrystalsinthemammillarylayer,and thenduringthenextrapidgrowthphase,theyformthecompact shellpalisadelayercharacterizedbycolumnarcrystalswitha pre-ferredorientation(Fig.7A).Calcitecrystalsresultfromaggregation ofACCparticlesthatsupportrapidmineralizationoftheeggshell andthereisevidencethatthisnon-crystallineformofcalcium car-bonateispresentthroughoutthevariousphasesofshellformation

[55].Duringthesedistinctphases,matrixproteinsplayakeyrole tostabilizethistransientformofcalciumcarbonate[55]butalso influencetheselectionofthecalcitepolymorphintowhichitis ulti-matelyconvertedandthepreferentialorientationofcalcitecrystals intheeggshell[53,56].Thisinteractionleadstotheeggshell ultra-structureanditsassociatedmechanicalproperties[53,54].Many effortsaredriventoidentifyandcharacterizetheroleofeggshell matrixproteinsintheeggshellbiomineralizationprocess. Ovalbu-min/Serpinb14wasthesecondproteinandthefirsteggshellserpin identifiedintheshellmatrix[57].Itspresenceinthemammillary bodiesofdecalcifiedshellwasconfirmedby immunohistochem-istry,indicatingthatovalbuminispresentduringtheinitialphaseof shellformationandbecomesincorporatedintotheproteinmatrix ofthemammillarybodies[57].Thenumerouseggshellproteomics studiesperformedinthelastdecade,widelyconfirmedthe pres-enceofovalbuminineggshellasanabundantproteinandidentified 13additionalserpinsinthisbiomineral[17–21,23,58].

Ovalbumin/Serpinb14isbelievedtoplayacrucialrolein cal-ciumcarbonateformationandACCstabilization[59,60].Calcium bindstoovalbuminandthisaccumulationcreatesanucleation cen-terfortheminerals[60].Calciumionsareboundtotheproteinby complexationviaacidicgroupsleadingtoproteinstructural rear-rangements[59].Thecalciumcationsarethestartingpointsforthe subsequentformationofACCnuclei,whichthenundergoaseries oftransitionphasestothestablecrystallinepolymorphs[59].In arecentstudy,ovalbuminwasreportedasamajorproteinatall keytimeeventsofshellmineralization.Furthermore,ovalbuminis overabundantwhenlargercalcitecrystalunitsaregrowingonthe seedingsitesofshell(mammillaryknobs)[18]anditcontrolsboth calcitecrystalmorphologyandsize(Fig.7BandC).

Serpinf2, wasidentifiedas a proteinof intermediate[23] or major abundance in the shell [18]. Serpinb14b, Serpine2, Ser-pinf1andSerpini1areeggshellmatrixproteinwithintermediate abundance.Serpinb14c,Serpina8,Serping1,Serpinc1,Serpind1are presentintheshellatlowabundanceorintermediateabundance

[18,23].Theremaining4eggshellserpins(Serpinb6,Serpina1, Ser-pina4andSerpinb14c)wereidentifiedinverylowconcentrationin theshell.Thefunctionofalltheseserpinshasnotbeenexploredyet. Aspotentialantiproteases,theycouldparticipateincontrollingthe calcificationprocessbylimiting proteolyticdegradation[61,62]. OthereggshellserpinssuchastheantibacterialSerpinb14ccould alsoparticipateineggdefense[35]withintheeggshelland/or dur-ingtheprocessofitsformation.Itisalsonoticeablethatseveralof theseeggshellserpinsareactuallyglycosaminoglycanbinding pro-teins(Serpinb14c,Serpind1,Serpinc1,Serpine2).Consideringthat eggshell matrix contains numerous glycosaminoglycans includ-ingkeratansulfate,chondroitinsulfate,hyaluronanandheparan sulfate[63],theseheparin-bindingproteinsmayalsotriggerthe interactionwiththemineralphaseand/ortheothereggshell pro-teins.

surfaceofbothserpinsisshownandcoloredaccordingtovaluesofelectrostaticpotentials(blue:positivecharges;red:negativecharges).Theclusterofpositivechargesin OVAXcorrespondingtotheputativeheparin-bindingsiteissurroundedbyablackcircle.ThisclusterisnotpresentinovalbuminnorinOVAYdespitetheirhighsequence identitywithOVAX.Atomiccoordinatesofovalbumin(1OVA)andthoseofOVAXmodelwereobtainedbycomparativemodelingbasedonovalbuminstructureusing Swiss-Modelserver(swissmodel.expasy.org).ThefigurewaspreparedwithPYMOLsoftware.

(12)

130 C.Dombreetal./SeminarsinCell&DevelopmentalBiology62(2017)120–132

Fig.8. Schematicrepresentationofafertilizedeggatday16ofincubationandserpinsidentifiedineacheggstructureduringchickendevelopment.Foreachcompartment,the sizeofthefontroughlyindicatestherelativequantityofoneserpintoanother.Biggerlettercorrespondstoabundanttoveryabundantproteins,smallerletterscorrespondto lowabundantproteinsandnormalletterstoproteinswithintermediateabundance.Notethatcompartmentsarenotcomparable,astherelativequantityintimatelydepends ontheintrinsiccompositionofeachcompartment.*Datarelatedtotherelativeabundanceofserpinsinthechorioallantoicmembranewerenotavailable[71].Serpinsfound amnioticfluidcorrespondtoeggwhiteproteinsthatpresumablytransfertoamnioticfluidfromday11onwards(thecompositionofeggwhiteremainsgloballyunchanged duringthefirsthalfofincubation[48]).Datawereextractedfrom[71](shellmembraneandchorioallantoicmembrane),[76](yolk),and[22,28,52](eggwhite).

2.5. Serpinsinextraembryonictissues

Duringthe21-dayincubation, theextraembryonicstructures thatincludetheamniotic,chorioallantoicandyolksacs,are essen-tialduringembryonicdevelopment(Fig.8).Amnioticsacappears earlyinthedevelopmentandembracestheembryotoprotectit frommechanicalshocks,dehydrationandadhesion[64].In paral-lel,theallantoisexpandsfromthehindgutoftheembryoatday3 ofthedevelopment(E3)andfuseswiththechorion,an extraem-bryonicmembranelyingundertheeggshellmembranes(Fig.8). Theclosecontactbetweenthechorioallantoicmembrane(CAM) andtheeggshellallowsoxygenationoftheembryo,aswellas cal-ciumintakeforitsskeletaldevelopment[64].Thisstructurealso providesareservoirfordisposalwastesproducedbythe embry-onicmetabolism,someofitscomponentsbeingreabsorbedbythe CAMandusedbytheembryoforitsgrowth.Theyolksacbeginsto formfromtheembryo’sgutandenclosestheyolkduringincubation whilethevitellinemembraneisdisrupted(Fig.8).Thisresulting membranesupportsyolk nutrientsdigestionandtheirtransport throughthebloodsystemtotheembryo[65,66].Bothyolksacand CAMsupportangiogenesis.Meanwhile,extraembryonicfluidsare transferredfromonecompartmenttoanotherduringincubation. Thus,eggwhiteanditscomponentsaremovingtotheamniotic sacfromE11onward,andareorallyabsorbedbytheembryo[64]

beforereachingtheyolksac[67].

Exceptovalbuminwhichhasbeendetectedinmany extraem-bryonicandembryonictissues,thereislittleinformationrelated totheanalysisofserpinsinthevariousstructuresandfluidsof incubatedeggs.

2.5.1. Amnioticfluid

Giventhateggwhitetransfersintotheamnioticsac,ovalbumin (Serpinb14)areothereggwhiteserpinsareassumedtobefound intheamnioticfluidfromday11onward[68],intheembryonic serumandorgans[49].TheantimicrobialpropertiesofOVAX (Ser-pinb14c)couldprotecttheembryoduringitsdevelopment[35],but theimpactofthechangingenvironment(i.e.transfertothe amni-oticfluid)onitspropertieshasnotbeenexploredyet.Asregards

totheSerpinb14b,itsroleinembryonicdevelopmentisstillnot known.Theplasma proteaseC1inhibitor/Serping1 and heparin cofactorII/Serpind1aseggwhiteproteinsaresupposedtobe sim-ilarlytransferredintotheamnioticfluid(Fig.8).Theformerhas beendetectedinthewomanamnioticfluid[69]andhasevenbeen describedassynthesizedbytheamnion[70].

2.5.2. Chorioallantoicmembraneandallantoicfluid

Exhaustive analysis of allantoic fluid using proteomic tools hasnotbeeninvestigatedyetwhereastheproteomeoftheCAM allowedtheidentificationofthreeserpins:ovalbumin(Serpinb14) anditsrelatedproteinSerpinb14b(OVAY),andSerpinb14c(OVAX)

[71].Serpinb14hasbeenfoundinthechorioallantoicfluidfromE6 toE12[68]andintheCAMandthebloodatE19[71].Serpinb14c andSerpinb14bhavealsobeendetectedintheCAMatE19[71], butfurtherstudiesareneededtoidentifytheirorigins,evenifthe albumen–amnioticfluid–gastrointestinaltract–chorioallantoic fluid–CAMisassumedtobethemainroute.

2.5.3. Eggshellmembranes

Duringtheembryonicdevelopment,there isaglobal enrich-ment in serpins’ amount in the eggshell membranes (ESM). Serpinb14, Serpinb14b, and Serpinb14c has been described as higherinabundanceintheESMoffertilizedeggscomparedtothe ESMofunfertilizedsampleallalongtheincubation.However, Ser-pinb14candSerpinb14bhavenotbeendetectedintheembryonic bloodatE19,whichsuggestsalocalexpressionbythe chrorioallan-toicmembraneoragradualsolubilizationfromtheupperpartofthe eggshell.Serpinb10wasfoundtobeenrichedintheESMfrom fer-tilizedeggsatE3.Thisserpinismainlyknownasanuclearprotein convertingDNAintoacompacttranscriptionallyinert heterochro-matin[72].Ithasbeenshowntoberegulatedduringdevelopment toaccumulateinadultchickenerythrocytenuclei[73]andcould also be involved in the chicken host defense [74]. In contrast, neuroserpin/Serpini1,plasmaproteaseC1inhibitor/Serping1and alpha2-antiplasmin/Serpinf2wereonlyincreasedinthethirdpart of thedevelopmentjust beforepipping (E19).Thisdistribution impliesthateachserpinislikelytohaveaspecificroleintheESM

(13)

duringincubation.Serpini1isinvolvedinneuronaldevelopment andsynapticplasticity,andisrestrictedtothenervoussystemof thechicken[75].Thebiologicalsignificanceofitspresenceinthe ESMatE15remainsunclear.Oftheeightserpinsidentifiedinthe ESMduringembryonicdevelopment,Serpinb6istheonlyoneto decreaseinabundance.Itsroleinthiscompartmentisnotknown todate.

2.5.4. Yolkandyolksac

Ovalbumin/Serpinb14hasbeenfoundintheyolkatE18[49].It hasbeenproposedthatthisproteincouldbedigestedbyenzymes oftheeggyolktoreleaseamino-acidsandsomespecificpeptides withadditionalbiologicalactivities(antioxidant,antihypertensive etc.)[8].

Asmallamountofangiotensinogen/Serpina8hasbeenfound in theyolk sacatE0 and decreasesuntilE12 [76]. Theprotein isexpressedbythechickenyolksacmembranefromE2onward

[77],indicatingapotentialfunctionoftheproteininthe regula-tionofhomeostasisandprimitiveerythropoiesisintheyolksac. Moreover,somehaveshownthattargeteddeletionofthegenes encodingSERPINA8producesspecificrenalabnormalitiesin mam-malianembryossuggestingacrucialroleofSERPINA8inkidney development[78]. Plasmaprotease C1inhibitor/Serping1, hep-arincofactor/Serpind1,andalpha-1antitrypsin/Serpina1havebeen detectedin very small amountin the yolk of unfertilized eggs

[25,27],which question theirbiological significance (§2.1). Ser-pind1andSerpina4havebeendescribed atlowerabundancein theeggyolkoffertilizedeggsafterE12[76],andthus,mightbe usedbytheembryoortheextraembryonicstructuresduringthis period.

3. Conclusions

Outofthe27serpinsidentifiedinthechickengenome,only15 havebeendetectedintheegg.Theirlocalizationinthedifferentegg compartmentssuggestsaspecificroleeitherduringeggformation orduringembryonicdevelopment.Thebiologicalfunctionofmost eggserpinsisstillunknownbuttheavailabledatasuggeststhat theyparticipateintissueremodelingandangiogenesis (folliculo-genesis,developmentofyolk,amnioticandallantoicmembranes), eggdefenses (antibacterialserpins, eggshellserpins) and nutri-tion(asasourceofamino-acids).Amongstthe15serpinspresent inthe chickenegg,chicken cladeBovalbumin (Serpinb14)and itsrelatedproteins(Serpinb14b,Serpinb14c)retainmuch inter-estastheseserpinsarefoundexclusivelyintheeggandastheir functionsremainslargelyunknown.Thisobservationsuggeststhat Serpinb14membersmighthavecontributedtoevolutionofegg lay-ingspecies,similarlytoeggyolkvitellogenins,whichhavebeenlost inmammals,concomitantlywiththedevelopmentofplacentation ineutherianandmarsupialanimals[79].Additionalevidencefrom otherspecieslayingeggswouldbeveryinformativetostrengthen this hypothesis/conjecture.Allthree Serpinb14paralogs display subtleconformationalandphysicochemicaldifferences,whichmay affecttheirrespectiveactivity.Uniquelyintheserpinsworld, oval-buminisconvertedtoaheat-stableformwhilemigratingtothe extraembryonic fluidsand embryonic organs where it recovers asanuncleavedprotein.Thisobservationdoesnotactually sup-portitsuniqueroleasasourceofamino-acidsandsuggestssome moredirectfunctionondevelopingorgans.Ovalbuminalso con-tributestoshapeeggshellultrastructurebyinteractingwiththe mineralphase.Comprehensiveandfunctionalanalysesofegg ser-pinsinembryonicandextraembryonictissuesislackingtodate. Thisreviewhighlightsthatchickeneggserpinsoffermultiplesaxes ofresearchinthefieldofdevelopmentalbiology.

Conflictofinterest

Allauthorsdeclarenoconflictofinterest.

Acknowledgements

WethankAurélienBrionne(UR83RecherchesAvicoles)forhis remarkableworktointegrateallpublishedproteomicdataonthe chickenegg.WethankRegionCentre–ValdeLoire,FranceforM. DaSilvaPhDfellowship.

References

[1]C.Benarafa,E.Remold-O’Donnell,Theovalbuminserpinsrevisited: perspectivefromthechickengenomeofcladeBserpinevolutionin vertebrates,Proc.Natl.Acad.Sci.U.S.A.102(2005)11367–11372. [2]D.Kaiserman,P.I.Bird,Analysisofvertebrategenomessuggestsanewmodel

forcladeBserpinevolution,BMCGenomics6(2005)167.

[3]W.R.Atchley,T.Lokot,K.Wollenberg,A.Dress,H.Ragg,Phylogeneticanalyses ofaminoacidvariationintheserpinproteins,Mol.Biol.Evol.18(2001) 1502–1511.

[4]H.Ragg,T.Lokot,P.B.Kamp,W.R.Atchley,A.Dress,Vertebrateserpins: constructionofaconflict-freephylogenybycombiningexon-intronand diagnosticsiteanalyses,Mol.Biol.Evol.18(2001)577–584.

[5]P.Chambon,Determinationoftheorganizationofcodingandintervening sequencesinthechickenovalbuminsplitgene,Differentiation13(1979) 43–44.

[6]R.Heilig,R.Muraskowsky,C.Kloepfer,J.L.Mandel,Theovalbumingene family:completesequenceandstructureoftheYgene,NucleicAcidsRes.10 (1982)4363–4382.

[7]R.Heilig,F.Perrin,F.Gannon,J.L.Mandel,P.Chambon,Theovalbumingene family:structureoftheXgeneandevolutionofduplicatedsplitgenes,Cell20 (1980)625–637.

[8]M.DaSilva,S.Beauclercq,G.Harichaux,V.Labas,N.Guyot,J.Gautron,etal., Thefamilysecretsofavianegg-specificovalbuminanditsrelatedproteinsY andX,Biol.Reprod.93(2015)71.

[9]X.Tian,J.Gautron,P.Monget,G.Pascal,Whatmakesaneggunique?Clues fromevolutionaryscenariosofegg-specificgenes,Biol.Reprod.83(2010) 893–900.

[10]P.Pelissier,D.Delourme,A.Germot,X.Blanchet,S.Becila,A.Maftah,etal.,An originalSERPINA3genecluster:elucidationofgenomicorganizationandgene expressionintheBostaurus21q24region,BMCGenomics9(2008). [11]A.Kumar,S.J.Sarde,A.Bhandari,Revisingangiotensinogenfromphylogenetic

andgeneticvariantsperspectives,Biochem.Biophys.Res.Commun.446 (2014)504–518.

[12]G.A.Silverman,P.I.Bird,R.W.Carrell,F.C.Church,P.B.Coughlin,P.G.Gettins, etal.,Theserpinsareanexpandingsuperfamilyofstructurallysimilarbut functionallydiverseproteins.Evolution,mechanismofinhibition,novel functions,andarevisednomenclature,J.Biol.Chem.276(2001) 33293–33296.

[13]J.A.Irving,R.N.Pike,A.M.Lesk,J.C.Whisstock,Phylogenyoftheserpin superfamily:implicationsofpatternsofaminoacidconservationforstructure andfunction,GenomeRes.10(2000)1845–1864.

[14]S.S.Teoh,J.Vieusseux,M.Prakash,S.Berkowicz,J.Luu,C.H.Bird,etal.,Maspin isnotrequiredforembryonicdevelopmentortumoursuppression,Nat. Commun.5(2014)3164.

[15]Y.Nys,N.Guyot,Eggformationandchemistry,in:Y.Nys,M.Bain,F.Van Immerseel(Eds.),ImprovingtheSafetyandQualityofEggandEggProducts, WoodheadPublishingLimited,Cambridge,U.K,2011,pp.83–132. [16]C.Guerin-Dubiard,M.Pasco,D.Molle,C.Desert,T.Croguennec,F.Nau,

Proteomicanalysisofheneggwhite,J.Agric.Food.Chem.54(2006) 3901–3910.

[17]M.Rose-Martel,J.Du,M.T.Hincke,Proteomicanalysisprovidesnewinsight intothechickeneggshellcuticle,J.Proteomics75(2012)2697–2706. [18]P.Marie,V.Labas,A.Brionne,G.Harichaux,C.Hennequet-Antier,A.B.

Rodriguez-Navarro,etal.,Quantitativeproteomicsprovidesnewinsightsinto chickeneggshellmatrixproteinfunctionsduringtheprimaryeventsof mineralisationandtheactivecalcificationphase,J.Proteomics126(2015) 140–154.

[19]I.Miksik,A.Eckhardt,P.Sedlakova,K.Mikulikova,Proteinsofinsolublematrix ofavian(Gallusgallus)eggshell,Connect.TissueRes.48(2007)1–8. [20]I.Miksik,P.Ergang,J.Pacha,Proteomicanalysisofchickeneggshellcuticle

membranelayer,Anal.Bioanal.Chem.406(2014)7633–7640.

[21]I.Miksik,P.Sedlakova,K.Lacinova,S.Pataridis,A.Eckhardt,Determinationof insolubleavianeggshellmatrixproteins,Anal.Bioanal.Chem.397(2010) 205–214.

[22]C.D’Ambrosio,S.Arena,A.Scaloni,L.Guerrier,E.Boschetti,M.E.Mendieta, etal.,Exploringthechickeneggwhiteproteomewithcombinatorialpeptide ligandlibraries,J.ProteomeRes.7(2008)3461–3474.

[23]K.Mann,B.Macek,J.V.Olsen,Proteomicanalysisoftheacid-solubleorganic matrixofthechickencalcifiedeggshelllayer,Proteomics6(2006)3801–3810.

(14)

132 C.Dombreetal./SeminarsinCell&DevelopmentalBiology62(2017)120–132 [24]A.D’Alessandro,P.G.Righetti,E.Fasoli,L.Zolla,Theeggwhiteandyolk

interactomesasgleanedfromextensiveproteomicdata,J.Proteomics73 (2010)1028–1042.

[25]A.Farinazzo,U.Restuccia,A.Bachi,L.Guerrier,F.Fortis,E.Boschetti,etal., Chickeneggyolkcytoplasmicproteome:minedviacombinatorialpeptide ligandlibraries,J.Chromatogr.A1216(2009)1241–1252.

[26]K.Mann,Proteomicanalysisofthechickeneggvitellinemembrane, Proteomics8(2008)2322–2332.

[27]K.Mann,M.Mann,Thechickeneggyolkplasmaandgranuleproteomes, Proteomics8(2008)178–191.

[28]K.Mann,Thechickeneggwhiteproteome,Proteomics7(2007)3558–3568. [29]H.D.Griffin,M.M.Perry,A.B.Gilbert,Yolkformation,in:D.J.Bell,B.M.

Freeman(Eds.),PhysiologyandBiochemistryoftheDomesticFowl,Academic Press,London/NewYork,1984.

[30]M.Bourin,J.Gautron,M.Berges,C.Hennequet-Antier,C.Cabau,Y.Nys,etal., Transcriptomicprofilingofproteasesandantiproteasesintheliverofsexually maturehensinrelationtovitellogenesis,BMCGenomics13(2012)457. [31]R.Bellairs,M.Markness,R.D.Markness,Thevitellinemembraneofthehen’s

egg,J.Ultrastruct.Res.8(1963)339–359.

[32]T.Sasanami,T.Murata,M.Ohtsuki,K.Matsushima,G.Hiyama,N.Kansaku, etal.,Inductionofspermacrosomereactionbyperivitellinemembrane glycoproteinZP1inJapanesequail(Coturnixjaponica),Reproduction133 (2007)41–49.

[33]H.J.Haas,N.T.Spratt,Contributionstoananalysisofavianvitelline membranespotentialtopromoteoutgrowthofyolksacserosalmembrane, Anat.Rec.184(1976)227–231.

[34]N.Yoshizaki,W.Yamaguchi,S.Ito,C.Katagiri,Onthehatchingmechanismof quailembryos:participationofectodermalsecretionsintheescapeof embryosfromthevitellinemembrane,Zoolog.Sci.17(2000)751–758. [35]S.Rehault-Godbert,V.Labas,E.Helloin,V.Herve-Grepinet,C.Slugocki,M.

Berges,etal.,Ovalbumin-relatedproteinXisaheparin-bindingov-serpin exhibitingantimicrobialactivities,J.Biol.Chem.288(2013)17285–17295. [36]J.Bedard,S.Brule,C.A.Price,D.W.Silversides,J.G.Lussier,Serineprotease

inhibitor-E2(SERPINE2)isdifferentiallyexpressedingranulosacellsof dominantfollicleincattle,Mol.Reprod.Dev.64(2003)152–165. [37]K.-G.Hayashi,K.Ushizawa,M.Hosoe,T.Takahashi,Differentialgene

expressionofserineproteaseinhibitorsinbovineovarianfollicle:possible involvementinfolliculargrowthandatresia,Reprod.Biol.Endocrinol.9 (2011).

[38]M.-C.Bouton,Y.Boulaftali,B.Richard,V.Arocas,J.-B.Michel,M. Jandrot-Perrus,EmergingroleofserpinE2/proteasenexin-1inhemostasis andvascularbiology,Blood119(2012)2452–2457.

[39]P.B.Coughlin,Antiplasmin–theforgottenserpin,FEBSJ.272(2005) 4852–4857.

[40]J.A.Jackson,P.Zhang,J.M.Bahr,Plasminogenactivatoractivityin

preovulatoryfolliclesduringtheovulatorycycleofthechicken,Biol.Reprod. 49(1993)1141–1146.

[41]J.A.Jackson,A.C.Friberg,J.M.Bahr,Preovulatorychangesin

glycosaminoglycansandcollagencontentinthestigmaregionofthefollicle ofthedomestichen,Biol.Reprod.45(1991)301–307.

[42]S.Hasan,G.Hosseini,M.Princivalle,J.C.Dong,D.Birsan,C.Cagide,etal., Coordinateexpressionofanticoagulantheparansulfateproteoglycansand serineproteaseinhibitorsintheratovary:apotentsystemofproteolysis control,Biol.Reprod.66(2002)144–158.

[43]P.Rossignol,B.Ho-Tin-Noe,R.Vranckx,M.C.Bouton,O.Meilhac,H.R.Lijnen, etal.,Proteasenexin-1inhibitsplasminogenactivation-inducedapoptosisof adherentcells,J.Biol.Chem.279(2004)10346–10356.

[44]D.A.Low,R.W.Scott,J.B.Baker,D.D.Cunningham,Cellsregulatetheir mitogenicresponsetothrombinthroughreleaseofproteasenexin,Nature 298(1982)476–478.

[45]S.Selbonne,F.Azibani,S.Iatmanen,Y.Boulaftali,B.Richard,M. Jandrot-Perrus,etal.,Invitroandinvivoantiangiogenicpropertiesofthe serpinproteasenexin-1,Mol.Cell.Biol.32(2012)1496–1505.

[46]N.Byrd,S.Becker,P.Maye,R.Narasimhaiah,B.St-Jacques,X.Y.Zhang,etal., Hedgehogisrequiredformurineyolksacangiogenesis,Development129 (2002)361–372.

[47]I.Saxena,S.Tayyab,Proteinproteinaseinhibitorsfromavianeggwhites,Cell. Mol.LifeSci.53(1997)13–23.

[48]N.Qiu,M.Ma,Z.Cai,Y.Jin,X.Huang,Q.Huang,etal.,Proteomicanalysisof eggwhiteproteinsduringtheearlyphaseofembryonicdevelopment,J. Proteomics75(2012)1895–1905.

[49]Y.Sugimoto,S.Sanuki,S.Ohsako,Y.Higashimoto,M.Kondo,J.Kurawaki, etal.,Ovalbuminindevelopingchickeneggsmigratesfromeggwhiteto embryonicorganswhilechangingitsconformationandthermalstability,J. Biol.Chem.274(1999)11030–11037.

[50]M.Yamasaki,N.Takahashi,M.Hirose,CrystalstructureofS-ovalbuminasa non-loop-insertedthermostabilizedserpinform,J.Biol.Chem.278(2003) 35524–35530.

[51]M.Kalle,P.Papareddy,G.Kasetty,D.M.Tollefsen,M.Malmsten,M.Morgelin, etal.,ProteolyticactivationtransformsheparincofactorIIintoahostdefense molecule,J.Immunol.190(2013)6303–6310.

[52]K.Mann,M.Mann,In-depthanalysisofthechickeneggwhiteproteomeusing anLTQOrbitrapVelos,ProteomeSci.9(2011)7.

[53]Y.Nys,J.Gautron,J.M.Garcia-Ruiz,M.T.Hincke,Avianeggshell mineralization:biochemicalandfunctionalcharacterizationofmatrix proteins,C.R.Palevol3(2004)549–562.

[54]M.T.Hincke,Y.Nys,J.Gautron,Theroleofmatrixproteinsineggshell formation,J.Poult.Sci.47(2010)208–219.

[55]A.B.Rodriguez-Navarro,P.Marie,Y.Nys,M.T.Hincke,J.Gautron,Amorphous calciumcarbonatecontrolsavianeggshellmineralization:anewparadigmfor understandingrapideggshellcalcification,J.Struct.Biol.190(2015)291–303. [56]A.Hernandez-Hernandez,M.L.Vidal,J.Gomez-Morales,A.B.

Rodriguez-Navarro,V.Labas,J.Gautron,etal.,Influenceofeggshellmatrix proteinsontheprecipitationofcalciumcarbonate(CaCO3),J.Cryst.Growth 310(2008)1754–1759.

[57]M.T.Hincke,Ovalbuminisacomponentofthechickeneggshellmatrix, Connect.TissueRes.31(1995)227–233.

[58]K.Mann,J.V.Olsen,B.Macek,F.Gnad,M.Mann,Phosphoproteinsofthe chickeneggshellcalcifiedlayer,Proteomics7(2007)106–115.

[59]V.Pipich,M.Balz,S.E.Wolf,W.Tremel,D.Schwahn,Nucleationandgrowthof CaCO(3)mediatedbytheegg-whiteproteinovalbumin:atime-resolved insitustudyusingsmall-angleneutronscattering,J.Am.Chem.Soc.130 (2008)6879–6892.

[60]D.Schwahn,M.Balz,W.Tremel,CrystallizationoftheCaCO(3)mineralinthe presenceoftheproteinovalbumin,Phys.B350(2004)E947–E949. [61]V.Jonchere,S.Rehault-Godbert,C.Hennequet-Antier,C.Cabau,V.Sibut,L.A.

Cogburn,etal.,Geneexpressionprofilingtoidentifyeggshellproteins involvedinphysicaldefenseofthechickenegg,BMCGenomics11(2010). [62]A.Brionne,Y.Nys,C.Hennequet-Antier,J.Gautron,Henuterinegene

expressionprofilingduringeggshellformationrevealsputativeproteins involvedinthesupplyofmineralsorintheshellmineralizationprocess,BMC Genomics15(2014).

[63]Z.G.Liu,F.M.Zhang,L.Y.Li,G.Y.Li,W.Q.He,R.J.Linhardt,Compositional analysisandstructuralelucidationofglycosaminoglycansinchickeneggs, Glycoconj.J.31(2014)593–602.

[64]A.L.Romanoff,TheAvianEmbryo,StructuralandFunctionalDevelopment, MacmillanPublishersLtd,NewYork,1960.

[65]R.Bauer,J.A.Plieschnig,T.Finkes,B.Riegler,M.Hermann,W.J.Schneider,The developingchickenyolksacacquiresnutrienttransportcompetencebyan orchestrateddifferentiationprocessofitsendodermalepithelialcells,J.Biol. Chem.288(2013)1088–1098.

[66]J.S.Speier,L.Yadgary,Z.Uni,E.A.Wong,Geneexpressionofnutrient transportersanddigestiveenzymesintheyolksacmembraneandsmall intestineofthedevelopingembryonicchick,Poult.Sci.91(2012)1941–1949. [67]E.T.MoranJr.,Nutritionofthedevelopingembryoandhatchling,Poult.Sci.86

(2007)1043–1049.

[68]N.Cirkvencic,M.Narat,P.Dovc,D.Bencina,Distributionofchickencathepsins BandL,cystatinandovalbumininextra-embryonicfluidsduring

embryogenesis,Br.Poult.Sci.53(2012)623–630.

[69]N.Tamura,S.Kimura,M.Farhana,T.Uchida,K.Suzuki,K.Sugihara,etal.,C1 esteraseinhibitoractivityinamnioticfluidembolism,Crit.CareMed.42 (2014)1392–1396.

[70]Y.Katz,S.Gur,M.Aladjem,R.C.Strunk,Synthesisofcomplementproteinsin amnion,J.Clin.Endocrinol.Metab.80(1995)2027–2032.

[71]C.M.Cordeiro,M.T.Hincke,Quantitativeproteomicsanalysisofeggshell membraneproteinsduringchickembryonicdevelopment,J.Proteomics130 (2016)11–25.

[72]S.A.Grigoryev,J.Bednar,C.L.Woodcock,MENT,aheterochromatinprotein thatmediateshigherorderchromatinfolding,isanewserpinfamilymember, J.Biol.Chem.274(1999)5626–5636.

[73]S.A.Grigoryev,V.O.Solovieva,K.S.Spirin,I.A.Krasheninnikov,Anovel nonhistoneprotein(MENT)promotesnuclearcollapseattheterminalstage ofavianerythropoiesis,Exp.CellRes.198(1992)268–275.

[74]I.Rychlik,M.Elsheimer-Matulova,K.Kyrova,Geneexpressioninthechicken caecuminresponsetoinfectionswithnon-typhoidSalmonella,Vet.Res.45 (2014)119.

[75]T.Osterwalder,J.Contartese,E.T.Stoeckli,T.B.Kuhn,P.Sonderegger, Neuroserpin,anaxonallysecretedserineproteaseinhibitor,EMBOJ.15 (1996)2944–2953.

[76]S.Rehault-Godbert,K.Mann,M.Bourin,A.Brionne,Y.Nys,Effectof embryonicdevelopmentonthechickeneggyolkplasmaproteomeafter12 daysofincubation,J.Agric.FoodChem.62(2014)2531–2540.

[77]K.Savary,A.Michaud,J.Favier,E.Larger,P.Corvol,J.M.Gasc,Roleofthe renin-angiotensinsysteminprimitiveerythropoiesisinthechickembryo, Blood105(2005)103–110.

[78]C.D.Sigmund,D.E.Stec,Geneticmanipulationoftherenin-angiotensin systemusingcre-loxP-recombinase,MethodsMol.Med.51(2001)53–65. [79]D.Brawand,W.Wahli,H.Kaessmann,Lossofeggyolkgenesinmammalsand

theoriginoflactationandplacentation,PLoSBiol.6(2008)e63.

[80]C.Sun,G.Xu,N.Yang,Differentiallabel-freequantitativeproteomicanalysis ofavianeggshellmatrixanduterinefluidproteinsassociatedwitheggshell mechanicalproperty,Proteomics13(2013)3523–3536.

[81]P.E.Stein,A.G.Leslie,J.T.Finch,R.W.Carrell,Crystalstructureofuncleaved ovalbuminat1.95Aresolution,J.Mol.Biol.221(1991)941–959.

Figure

Fig. 1. Chromosome localization of chicken serpins. Serpins and flanking genes with their respective orientation (backward/forward) are drawn to scale
Fig. 2. Phylogenetic tree of SERPINB, C, E and I and loci representation. Phylogenetic tree, generated by Ensembl, merging maximum likehood and neighbor joining trees, shows serpins orthologs found for chicken and cow
Fig. 3. Comparative analyses of Gallus gallus and Bos Taurus loci including clade A, D, F, G, and H serpins
Fig. 5. Schematic representation of egg formation and serpins identified in each egg compartments
+4

Références

Documents relatifs

COMPARING EXPERT AND NON-EXPERT SPACES OF DISCOVERED PROPERTIES FOR Table 3 shows the investigation process performed by the non-experts (properties 1.1.-1.7) and the expert

Arrondissez chaque fraction au nombre entier le plus proche.. Arrondissez à l’entier supérieur en

Calculez le perim` etre et l’aire de chaque triangle.. Perim`etre et Aire d’un Triangle

Within the two areas, the most probable locations of the QTL a ffecting quality at high (HU40) or late (HU60) production periods coincide quite closely (at QTL-1 HU40 at 137 cM

Viral RNA synthesis corresponding to the NP and P genes (D) and viral gene transcription corresponding to the M and GFP genes (E) of rSS1GFP in chBRD2 siRNA#2- or control

PARAM -L train an en:L model; translate the parameters; apply on test data Table 1: Summary of proposed methods, for bridge language L.. in any scenario: while annotation projection

Conclusions from such a complex protein solution as egg white are difficult to draw; this is the reason why we choose ovalbumin, the major egg white protein (54% of total

We then tested whether filial egg cannibalism depends on the number of eggs produced and/or received by the females using two statistical models, in which the response variable was