• Aucun résultat trouvé

The effect of column tilt on flow homogeneity and particle agitation in a liquid fluidized bed

N/A
N/A
Protected

Academic year: 2021

Partager "The effect of column tilt on flow homogeneity and particle agitation in a liquid fluidized bed"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: hal-01897401

https://hal.archives-ouvertes.fr/hal-01897401

Submitted on 17 Oct 2018

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

The effect of column tilt on flow homogeneity and

particle agitation in a liquid fluidized bed

Alicia Aguilar-Corona, Olivier Masbernat, Bernardo Figueroa-Espinoza,

Roberto Zenit

To cite this version:

Alicia Aguilar-Corona, Olivier Masbernat, Bernardo Figueroa-Espinoza, Roberto Zenit. The effect

of column tilt on flow homogeneity and particle agitation in a liquid fluidized bed. International

Journal of Multiphase Flow, Elsevier, 2017, 92, pp.50-60. �10.1016/j.ijmultiphaseflow.2017.02.008�.

�hal-01897401�

(2)



$Q\FRUUHVSRQGHQFHFRQFHUQLQJWKLVVHUYLFHVKRXOGEHVHQWWRWKHUHSRVLWRU\DGPLQLVWUDWRU



WHFKRDWDR#OLVWHVGLIILQSWRXORXVHIU



2

SHQ

$

UFKLYH

7

RXORXVH

$

UFKLYH

2

XYHUWH

2$7$2



2$7$2 LV DQ RSHQ DFFHVV UHSRVLWRU\ WKDW FROOHFWV WKH ZRUN RI VRPH 7RXORXVH

UHVHDUFKHUVDQGPDNHVLWIUHHO\DYDLODEOHRYHUWKHZHEZKHUHSRVVLEOH

7RFLWHWKLVYHUVLRQ











2IILFLDO85/

7KLVLV

an



author's

 YHUVLRQSXEOLVKHGLQ

http://oatao.univ-toulouse.fr/20380

http://doi.org/10.1016/j.ijmultiphaseflow.2017.02.008

Aguilar-Corona, Alicia and Masbernat, Olivier and Figueroa, Bernardo and Zenit, Roberto The effect of column tilt on

flow homogeneity and particle agitation in a liquid fluidized bed. (2017) International Journal of Multiphase Flow,

92. 50-60. ISSN 0301-9322

(3)

The

effect

of

column

tilt

on

flow

homogeneity

and

particle

agitation

in

a

liquid

fluidized

bed

A. Aguilar-Corona

a

,

O.

Masbernat

b

,

B.

Figueroa

c

,

R.

Zenit

d,∗

a Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Mujica s/n C.P. 58030, Morelia-Michoacán, México b Laboratoire de Génie Chimique, Université de Toulouse, CNRS/INPT-UPS, 4, allée Emile Monso BP 44362, 31030 Toulouse Cedex 4, France

c Laboratorio de Ingeniería y Procesos Costeros, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Puerto de Abrigo S/N, Sisal, Yucatán

97355, México

d Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo, Postal 70-360, México D.F., 04510, México

Keywords:

Agitation Liquid fluidized bed Homogenization Solid fraction Column tilt

a

b

s

t

r

a

c

t

Themotionofparticles inasolid-liquidfluidizedbedwasexperimentallystudiedbyvideotrackingof markedparticlesinamatchedrefractiveindexmedium.Inthisstudy,twofluidizedstatesarecompared, onecarefullyalignedintheverticaldirectionensuringahomogeneousfluidisationandanotheronewith anon-homogeneousfluidisationregimethatresultsfromaslighttiltofthefluidisationcolumnof0.3° withrespecttothevertical.Asaresultofthemisalignment,largerecirculationloopsdevelopwithinthe bedinawell-definedspatialregion.Itisfoundthatinthatrangeofsolidfraction(between0.3and0.4), theinhomogeneousmotionoftheparticlesleadstosignificantdifferencesinvelocityfluctuationsaswell as inself-diffusioncoefficientoftheparticles intheverticaldirection, whereasthe fluidisationheight remainsunaffected.Atlower(lessthan0.2)orhigher(higherthan0.5)concentration,particleagitation characteristicsarealmostunchangedintheverticaldirection.

1. Introduction

Thestudyofliquidfluidisationissignificantfromboth

theoret-ical andpractical viewpoints. It allows forthe experimental

ver-ification of two-fluid modelling concepts in gravity driven

solid-liquidflows, wheretheslipvelocity isofthesameorderof

mag-nitudeasthatofthecontinuousphaseandwheresolidphase

agi-tationisinducedbycollisionalandhydrodynamicinteractions(the

contribution dueto thecontinuous phaseturbulencebeing

negli-giblecompared totheaforementionedinteractions).Evenifa

liq-uidfluidizedbeddoesnotexhibit chaoticmixingorsharpregime

transitions(asinthecaseofbubblyflows),astateofhomogeneous

fluidisationisseldomobserved.

The concept ofa homogeneous bed is usually referred to the

appearance of solid fraction fluctuationswhich are observable at

macroscopic scale, characterized by particle-free regions or voids

ofdifferentshapes:dependingonthefluidisationconditions,a

flu-idizedbedcan destabilizeinthesense oftheappearanceof

one-dimensionaltravelingwaves(ODTW)(AndersonandJackson,1969)

whichmaylaterdevelopintotwo-dimensionalstructuresand

tran-sitionstootherflowregimessuchastheformationofbubbles,and

Corresponding author.

E-mail address: zenit@unam.mx (R. Zenit).

structuresthatremindobliquewaves(DidwaniaandHomsy,1981;

Duruand Guazzelli,2002; El-Kaissy andHomsy, 1976; Homsyet

al.,1980).Therearemanyinvestigationsthattrytomapsuch

tran-sitionsthroughexperimental,theoreticalandnumericalsimulation

intheliterature,thereadermayreferto(DiFelice, 1995; Homsy,

1998;Sundaresan,2003)foramorecomprehensivereview.

Inthisworkwestudyhomogeneityfromadifferentviewpoint;

the column is (or is not) homogeneous in terms ofthe absence

oflargescalerecirculationandthebreakofsymmetryoftheflow

velocityfield interms ofsome statisticalparametersthat

charac-terizesitinspaceorintime(Gordon,1963;Handleyetal., 1966).

Thehomogenizationconceptisnoteasilydefinedbecauselow

fre-quency motion is always present due to confinement (Buyevich,

1994). Thiseffect is evident when the particlemotion is studied

forrelativelylongtime,so theparticleshaveenough timeto

tra-verse many times the column length and diameter. Two

dimen-sionalanalysesoftenturnouttobeinsufficientbecausethesystem

isnot guaranteedto be symmetricandtheformation oflow

fre-quencystructures maynot be observedfroma givenobservation

direction. This iswhy a full three dimensional analysisis

funda-mentallyimportantto characterizea liquidfluidisation system. It

alsoallowsfordirectcomparisonswithnumericalresults.

The effect of inclination on a fluidized bed is of particular

relevance in the context of this study. It has been investigated

(4)

fluidisa-tion one canfindmany previous relevantworks:in particular,in

Yamazaki et al.(1989) the minimum fluidisation velocity for

in-clined columns was studied. The authors observed three distinct

flow regimes (fixed bed, partially fluidized and completely

flu-idized), andnoted the effectof columninclination on the

corre-spondingregimetransitions.Yakubovetal.(2005) studiedthe

ef-fectofinclinationofaliquid-solidfluidizedbedonseveralworking

parameterssuchascriticalflowrate,bedheightanddynamic

pres-suredrop.Theyobservedapatternofconcentrationwaves(forthe

effectofinclinationinthecaseofcohesivepowders,see(Valverde

etal.,2008)).Numericalinvestigations havealsobeencarriedout

onthesubject;inChaikittisilpetal.(2006)DiscreteElement

Sim-ulations (DEM) were used to study gas-solid two-phase flow, in

orderto investigatethe mixingbehaviorofthesolid phasein

in-clined fluidized beds. A large scale recirculationpattern was

ob-served. Low concentration bubbles tend to move upwards along

the uppermost wall, contrary to the particles that moved

down-ward,closertothewallbelowit,enhancingbackmixing.This

be-havior has also been observed experimentally in gas-liquid

bub-blyflows, dueto buoyancy,forvery smalltiltangles(Zenit etal., 2004).

Forliquid-solidfluidizedbeds,littleattentionhasbeenpaidto

the effect of inclination on the columnhomogeneity. Hudsonet

al.(1996)usedsalttracermeasurementstoconcludethatfluidized

bedinclinationstronglyaffectsthecolumnhydrodynamics.

More-over, inDel Pozo etal.(1992) itwas shownthat a smalltilt

an-gleof1.5°onathree-phasefluidizedbedaffectstheparticle-liquid

mass and heat transfer coefficientssignificantly. Other important

aspectinthecomplexinteractionbetweensolidandliquidphases

istheeffectoftheinclinationangleonmixinganddiffusion,asa

functionoftherelevantparameterssuchastheReynoldsnumber,

Stokes number, andparticle-column width (orheight) ratio.

Sev-eralstudieshavebeendevotedtothediffusioninaliquid-solid

flu-idizedbed(Al-DibouniandGarside,1979;CarlosC.andRichardson

J.,1968;Dorgeloetal.,1985;JumaandRichardson,1983;Kennedy S. andBretton R.,1966;Van DerMeeretal.,1984; Willus, 1970).

Twotrendscanbeidentifiedintheliteratureconcerningdiffusion:

firstly, withrespecttosolid concentration,andsecondly,with

re-spectto theparticle-to-columndiameterratio.Insome

investiga-tions (CarlosC. andRichardson J., 1968; Willus, 1970; Dorgeloet

al.,1985)itisfoundthatthediffusioncoefficientdecreasesassolid

fractionincreases.Ontheotherhand,otherstudiesfromthe

liter-ature(Kangetal.,1990;Yutanietal.,1982)foundasmallpeakon theauto-diffusioncoefficientasthesolidfractionconcentration

in-creases.Concerningtheparticlesizeratio,theexperimentsshowed

that diffusiondecreases astheparticlesize ratioincreases.Those

experimentswere carriedout fordifferentflowregimes

compris-ing superficial Reynolds numbers of O(10–1000) and two-phase

StokesnumbersofO(1–10).Althoughtherearemanyinvestigations

devoted tothe effectofinclination onliquid-solid fluidizedbeds,

none ofthe aforementioned worksremarked the highsensitivity

ofthefluidized bedcharacteristics toasmallinclination; mostof

those studies comprisedranges ofinclination betweenhorizontal

tovertical,butincrementedthetiltinlargesteps,ignoringthe ef-fectsofverysmallinclinationangles.

Thisworkisdevotedtostudytheeffectofasmalltiltofthe

flu-idisationcolumn(0.3°withthevertical),comparedto avertically

aligned column. Low frequencystructures are detected andtheir

effectonthedispersedphasevelocityisassessedthroughthe

anal-ysisof:a)Theparticletrajectories,b)Thespatialdistributionofthe

verticalspeed,c) Theparticlevelocityvariancesandd)The

diffu-sioncoefficient.Thetechniqueusedtocalculatethemeanvelocity

andagitation(velocityvariances)alongthethreedirectionsis

sim-ilartothatusedinHandleyetal.(1966)andCarlosandRichardson (1968) and later revisited in Buyevich (1994), Willus (1970) and

Latif andRichardson(1972), who useda Lagrangiantracking ofa

colored particleinthebulkofa transparentbed.Morerecentlya

similarparticletrackingtechniquewasusedbutinacarefully

con-trolledopticallymatchedsystem(Aguilar,2008;AguilarCoronaet

al., 2011;HassanandDominguez-Ontiveros,2008).Acamerawith

highresolutionwas used(bothintimeandspace),whichallowed

for the determination of detailed information about the particle

phasemotionwithinthefluidizedbed.

2. Experimentalset-up

The experimental device isshownschematically inFig. 1.The

fluidisation section iscomposed ofa 60cmhighcylindricalglass

columnof8cminnerdiameter.Aflowhomogenizer,consistingof

a fixed bedof packedbeads covered by syntheticfoam layers,is

mounted atthe bottom ofthe columnto ensurea homogeneous

flowentry.Theflowtemperatureismaintainedat20°Cbya

con-trolled heat exchanger. Twoparticular cases were studied during

thiswork: 1) Averticallyalignedcolumnand2)Atilted column,

forminganangleinthe(y,z)planeof0.3°withrespecttothe ver-ticalaxisz.ThereferenceframeisshowninFig.2.

2.1. Particlesandfluid

Calibrated 3mmpyrexbeadswere fluidizedby aconcentrated

aqueous solution of Potassium Thiocyanate (KSCN, 64%w/w). At

20°C,thefluidandtheparticlesandfluidhavethesamerefractive

index(∼1.474),sothatatagged(colored)particlecouldbetracked

individually inanearly transparentsuspension (Aguilar-Corona et

al.,2011).ParticleandfluidpropertiesarereportedinTable1.The

particleStokesandReynoldsnumbers,basedontheterminal

(sed-imentation)velocity,areSt=4.8andRe=160,respectively.

2.2. Particletrackingtechnique

The analysisof particle motion in the fluidized bedwas

per-formed by means of highspeed 3-D trajectography. The

fluidisa-tioncolumnisequippedwithanexternalglassboxfilledwiththe

aqueousphaseinordertoreduce opticaldistortion(seeFig.2).A

mirror orientedat45°totheside ofthebox allowed forthe

ob-servationoftheparticlepathinthreedimensions,providingan

ad-ditionalside view.APhotronAPXcameraequippedwithaCMOS

sensorwasusedtorecordthefront((x,z)plane)andthesideview

fromthemirror((y,z)plane)inasingleframe(512pix×1024pix).

Images were recorded over periods of 204 seconds, starting

af-terthestationaryregimehadbeenreached.Takingacharacteristic

particlevelocityof3cm/s(fromthestandarddeviationofthe

par-ticlevelocityofatypicalexperiment),thistotaltimewould

repre-sent morethan 70timesthetimea particlewouldtake totravel

one columndiameter.The averageresidencetime(the averageof

the time it takes to a particle to travel one column height) for

thealignedcasewas 6seconds,whilethecorrespondingvaluefor

the tilted case was 4.5s, so one canexpect the average absolute

speedtoincreasewithinclination.Ablackcoloredparticlewas

in-troducedinthe bedandits trajectory wasrecorded at60frames

persecond(fps).

Fig. 3showsboth front (x-z plane)andside (y-zplane) views

as captured by the camera,for solid fractions of

h

α

p

i

=0.50 and

h

α

p

i

=0.14 (sub-figures (a) and (b), respectively). All the

experi-mentswerecarriedoutwithaparticlesizeofdp=3mm.Theblack

linebetweentheimagesis justthe spacebetweenthe frontwall

and themirror, whichwas maskedin orderto avoida confusing

view oftheadjacentwallofthecolumn.Theimage fromthe

mir-ror hadaslightlydifferentscaleduetotheoptical pathsbetween

the (direct)front view andthat comingfromthe mirror,so each

(5)

Fig. 1. Scheme of the experimental set-up and the entry section.

Table 1.

Fluid and particle properties at 20 °C.

Pyrex beads dp = 3mm ρp = 2230 kgm −3 nD = 1.474

KSCN solution 64% w/w µf = 3.8 × 10 −3 Pa s ρf = 1400kgm −3 nD = 1.474

Fig. 2. Top view scheme of the trajectography 3D system.

ordertoobtaintheactualpositionincentimeters afterimage

dig-italprocessing.Notethatthecoloredparticleisclearly discernible

evenwhen itislocateddeepinsidethebulk ofthecolumn(even

forlargesolidfraction).ItcanbeseenfromtheFigure(d.1andd.2)

thattheparticlediameteroccupiesapproximately13to15pixels.

3. Results

3.1. Globalsolidfraction

The initialvolume ofparticlesinthefixed bedcorrespondsto

an initial height h0 of9.5cm,slightlylarger thanthe column

di-ameter. The maximumcompactness concentration

h

α

c

i

was

esti-matedtobe0.56,correspondingtoarandompacking.Eventhough

thesystemisopticallyhomogeneous,beadsinterfacesarestill

de-tectable;acarefulobservationoftheimagesallowedforthe

deter-mination ofthemaximum height reachedby theparticles hb for

eachsolidfraction.Themeansolidfractionwasobtainedas:

h

α

p

i

=

h

α

c

i

h0

hb

. (1)

The bracket symbol represents the time and space averaging

over the bed volume of the local instantaneous solid fraction. It

wasobservedthat thehbfluctuationsdecreasedasthesolid

frac-tion increased, with a relative error of lessthan 5% in all cases.

Inthiswork, fivefluidisation velocitiesweretested (0.095,0.078,

0.053,0.038 and0.02m/s) correspondingto globalsolid fractions

h

α

p

i

of0.14,0.2,0.3,0.4and0.5respectively.Forthehomogeneous

case,the fluidisation velocityUF (fluidvelocity inempty column)

wasfoundtobeadecreasingpowerlawofvoidfraction:

UF=0.145

(

1−

h

α

p

i

)

2.78 (2)

where the prefactor is close to the particle terminal velocity

(0.135m/s) andtheexponentvalue, n=2.78, iscloseto that

pre-dictedbyRichardson-Zaki’scorrelation(n=4.4Ret−0.1=2.67).

A first visual observationindicates that the slight tilt didnot

haveanymeasurableeffectonthebedexpansion,soforeach

flu-idisation velocity studied, the global solid fractionremained

un-changedinbothhomogeneous (verticallyaligned) and

inhomoge-neous(tiltedcolumn)cases.Thisobservationisconsistentwiththe

averaged momentum balance in the bed volume. At first order,

theeffectoffluidandparticlefrictionatthewallbeingneglected,

thisbalancereducestoequilibriumbetweenbuoyancyforce term

anddragforce termbaseduponmeanslipvelocity, i.e. themean

liquidvelocity. Theaveragesolid fraction, orequivalently thebed

(6)

averag-Fig. 3. Raw images as captured by the camera: a) Large solid fraction: < αp > = 0.5; to the left of the black division: front view ( x-z plane). To the right of the division is the

lateral view ( y-z plane). b) Moderate solid fraction: < αp > = 0.14 (same views as in (a)); c) Particle close-up; c.1) front view and c.2) side view; d) Binarized particle image.

(d.1) front view and (d.2) side view; e) Centroid detection: (e.1) and (e.2) correspond to front view and mirror image, respectively.

ing thelocal two-phase momentumtransport equation, two

con-tributions arisingfromthefluctuatingmotionoftheparticlesand

the fluid need alsoto be considered:one is the non-linear drag

forcetermthroughthevelocityfluctuationsandthesecondisthe

cross-correlationbetweenthespatial fluctuationsofsolidfraction

andpressuregradientinthebed.Itcanbeshownthatinallrange

offluidisationvelocities,thefirstcontributionisalwayslargerthan

thesecond one,whichroughlyscales asfew percentofthemean

drag term. As a consequence, in a homogeneous liquid fluidized

bed,thebedheightisweaklydependentuponphaseagitation.In

areference framewheretheaxialdirection istheaxisofthe

col-umn,thebuoyancyforcecomponentis

1

ρ

gcos

θ

whereisthe

an-gle with the vertical (0.3°), so therelative variation of thisterm

is of order of 10−5 and can be neglected. Therefore, tilting the

columna smallangle(0.3°)will notmodify thebedheight,even

though thisperturbationinduces importantflow inhomogeneities

and significant variations of particle fluctuations, as discussed in

thenextsections.

3.2. Particletrajectories

Fig. 4 shows particle trajectories recorded at three different

concentrations. The left panel of the figure shows the

trajecto-ries projection in thehorizontal(x,y) plane ofthe column, while

therightpanel displaysthe projectionsinthe vertical(x,z) plane. For moderatesolid fractions (<

α

p>=0.14and<

α

p>=0.20)the

particle path was observedto span the wholebed volume

with-outexhibitingclearcoherentstructures.Atlargersolidfractions,a

toroidalstructurewasobservedinthelowerpartofthebed,along

with a corresponding increase ofthe low frequency fluctuations.

The originofthissteadystructurehasnotbeenclarifiedyet.One

possibleexplanationcould bethat duetoawall effect:a slip

ve-locitydifferencebetweenthemiddleandthenear-wallregion

de-velops intheentrysection,resultinginasolid fractionhorizontal

gradient.Thissolidfractiongradientwouldtheninducea

horizon-talpressuregradientthatwouldgeneratethisrecirculationpattern.

But such a mechanismneeds a more indepth analysis, which is

beyondthescopeofthispaper.

Fig.5 showsa comparisonbetweentheparticletrajectoriesof

theverticalcolumnandthetiltedone, correspondingtothe(x,z),

(y,z) and(x,y) planes fora solid fractionof <

α

p>=0.30. In the

tilted columncase(forthatconcentration)awell-defined

recircu-lationloop inthe(y,z) planewas observed,wherethetracer

par-ticle trajectory forms an annulus. For thesame case, inthe (x,z)

plane the particle path spans across the whole column volume

without any preferential motion of the dispersed phase.

Inclina-tioninducesabuoyancyforcecomponentnormaltothewall;

how-ever,thecounterbalanceofthisforcecannotbereadilyidentifiedif

therearenosignificantchangesinconcentrationorvelocity.

There-fore, thissmall imbalancemay generatea radial drift velocity at

thescaleofeachparticle.Nowasthisdriftvelocityislikelyto

in-duce a radial concentration gradient, collectiveeffects (such asa

radial apparentdensitygradient) areprobablydrivingthe

recircu-latingmotionatthebedscale thatis observedontrajectory

pat-terns(similarinthatsensetotheso-calledBoycotteffect).

3.3. Testofhomogeneity

In order to characterize fluidisation homogeneity, for each

mean fluidisation velocity studied,the spatial distribution of

up-ward and downward particle motion was analyzed in four

dis-tinct cross sections Si, (i=1 to 4) regularly distributed along

the bed height (0≤zS1≤0.25hb; 0.25hb<zS2≤0.50hb; 0.50hb<

zS3≤0.75hb;0.75hb<zS4hb),asschematizedinFig.6.

Fig. 7shows thevelocity signdistributions following particles

trajectoriesineachtestsectionSi,foraglobalsolidfractionof0.3.

Bothaligned(leftcolumn)andtilted(rightcolumn)casesare

dis-playedinthisfigure.Thedirectionofthemotionisindicatedwith

a crosssymbol if the particlemoved downwards ora circle ifit

movedupwardsasitcrossedtheplaneSi.Fortheverticallyaligned

casethesignatureofan axisymmetrictoroidalmotionatthe

low-ermostpartofthebedcanbe identified,withapreferential

con-centration ofascending velocities atthe centerof thebed

cross-section,anddescendingvelocityinthenear-wallregion.Inthe

up-permost section, the distribution appears homogeneous over the

cross-section. Forthetilted casethere isapreferential motionin

all test sections,whichconsistsofa large-scalerecirculationover

thewholebedvolume,wheretheparticletendstoriseinone

half-sectioninFig.7-(ii),andtodescendintheotherone.Notethatthis motionisquiteparalleltothe(y,z)plane asexpected. Theseplots

clearly demonstratetheeffectofthetiltontheparticlemotionin

thefluidizedbed.

In order to quantify homogeneityin the cylindricalgeometry,

the (circular) cross-section Si was divided into 12 sectors of 30°

eachintheangulardirection.Theprobabilityofparticlecrossingin

aparticularsectorjwithascendingverticalmotionwascalculated

as:

ϕ

up,j=

nup,j

nj

(7)

Fig. 4. Particle trajectories projection for the vertically aligned case at a) < αp > = 0.14, b) < αp > = 0.20 and c) <αp > = 0.40: left and right columns correspond to the

horizontal ( x,y ) and vertical ( x,z ) planes, respectively.

withnjthetotalnumberofparticlecrossinginsectorj.This

prob-abilityismutuallyexclusivewithrespecttoitscounterpart

(down-wards crossing)

ϕ

down,j. A perfectly homogeneous columnwould

attainavalueof

ϕ

up, j=0.5forallsectors(j=1to12inthiscase),

which ina polarrepresentations wouldgive a circleof radius ½.

Figs. 8and9showthistypeofrepresentation,forthecaseofthe

alignedandtiltedcolumns,respectively. Thedotted circlehas

ra-diusr=0.5,forcomparison.

Fig.8showsanangulardistributionclosetohomogeneous for

S4,whilethereseemstobemoredownwardsmovingparticlesfor

S1. Thereare smalldeviationsfrom½forS2 andS3.Fig.9shows

(8)

Fig. 5. Particle trajectories projection at < αp > = 0.30 in a) ( x,z ) plane; b) ( y,z ) plane; c) ( x,y ) plane. Left and right columns correspond to the aligned and tilted cases,

respectively.

thedistributionisclosetothecenterforthefirstthreesectors,and

morehomogeneous inS4. Howeverthereisstill atrend,showing

ϕ

up,j> 0.5inthesecond quadrant,withvaluesbelow0.5forthe

third andfourthquadrants(values closertoone meanthat more

particlesmove upwards,consistentwithFig.7(ii)).Iftheparticles

were less dense than the liquid,the particles would descend (in

average)onthefirstandthirdquadrants.

Another way to represent Figs. 8 and 9 is to plot the

angu-larstandard deviationof

ϕ

up,j ineach sector forthe verticaland

tiltedcases.ThisquantityisplottedalongbedheightinFig.10for

the verticalandtiltedcases.Anincrease bya factorcloseto 3or

4 of thereference values inthe vertical casecan be observed in

the tilted case. Note there isa correspondence betweenthe four

points inFigs. 10and9forS1,S2,S3 andS4.Themore

heteroge-neousdistributionoftheverticalvelocitycomponentwasobserved

at S2 and S3, where the value of

ϕ

up,j is very small in the 3rd

and4thquadrants,indicatingdownwardsverticalmotioninthese

quadrants.ThemosthomogeneoussectionwasS4,consistentwith

Fig. 9, where

ϕ

up,j is close to 0.5 in the 3rd and 4th quadrants.

(9)

s

1

s

2

s

3

1h

b

s

4

0.75

h

b

0.50

h

b

0.25

h

b

Fig. 6. Bed test cross sections S 1 , S 2 , S 3 and S 4. .

Consequences of column tilt-induced flow inhomogeneities

upon particleagitationareexamined inwhatfollows,by

comput-ingtheparticlesvelocityvarianceandself-diffusioncoefficientand

comparingtheirintensitieswiththoseofthealignedcase.

3.4. Effectofcolumntiltingonparticlevelocityvariance

The varianceoftheithparticle velocitycomponentinthebed

iscomputedas:

D

u′2 pi

E

=

D

¡

upi

(

t,x

(

t

)

)

­

upi

®¢

2

E

(6)

whereupi(t,x(t))istheinstantaneousvelocityi-component

follow-ing particle trajectory x(t), and the bracketsymbol denotes here

theaverageofparticlevelocityith-componentoveralltrajectories

(equivalent to an ensemble average operator). Note that

h

upi

i

is

closetozero,theaverageparticlevelocityinthebedbeingzerofor a steadyfluidizedbed(sou

piisvery closetoupi). InFig.11,the

variance ofeach velocity componentis reportedas a function of

globalsolidfraction,inbothhomogeneous(verticallyaligned)and

inhomogeneous (tilted) cases. In both cases, particle agitation is

stronglyanisotropicasexpectedingravity-driventwo-phaseflows.

In thehomogeneous case, theaxial componentofparticle

ve-locityvariance(z-component)beingabout2timeslargerthanthe

components in the horizontal plane (x,y) for all concentrations.

Particle velocity variance isa continuouslydecreasing functionin

therangeofconcentrationinvestigated[0.14–0.5],withaprobable

maximumlyingintherange[0–0.14].

In the non-homogeneous case, the evolution of the axial

ve-locity variance is quite different compared to the homogeneous

case, mainly in the range ofsolid fraction[0.3–0.4]. At the

low-est concentration (<

α

p>=0.14), the axial velocity variance is

smallerthaninthehomogeneouscase,thenabruptlyincreasesup

to a maximum at <

α

p>=0.3, then strongly decreases between

<

α

p>=0.3 and 0.5. This evolution results fromthe progressive

development of the large-scale loop induced by the column tilt

as the particle concentration increases. In the horizontal plane,

particle velocity variance is a continuous decreasing function of

solid fraction, slightlybelowthehomogeneous casevaluesinthe

range [0.14–0.3] with a similar behavior at higher concentration

(<

α

p>=0.5).

Table2reportstherelativedifference betweentheparticle ve-locity component variances forthe homogeneous (noted

h

u

2pi

i

H)

andnon-homogenous (noted

h

u

2pi

i

H) fluidisation cases,measured

Table 2.

Relative difference δupi of h u ′2piiH between homogeneous and inho-

mogeneous cases. <αp > δux δuy δuz 0 .14 0 .12 0 .22 0 .15 0 .2 0 .10 0 .16 −0 .015 0 .3 0 .20 0 .08 −0 .59 0 .4 0 .18 −0 .04 −0 .6 0 .5 −0 .08 −0 .1 0 .09

atfivedifferentglobalsolidfractions

h

α

p

i

,anddefinedas:

δ

upi=1−

D

u′2 pi

E

nH

­

u′2 pi

®

H (7)

Positivevaluesof

δ

upiindicatethattheith-componentvelocity

varianceinthenon-homogeneous caseissmallerthanthatofthe

homogeneouscasewhereasnegative valuesof

δ

upireveal the

op-positetrend.Notethatinthehomogeneouscase,thevelocity

vari-ance inxandy-direction shouldbe equal.The relativedifference

betweenthesevaluesisinaverageoftheorderof0.05forall

con-centrations,so the relative difference betweennon-homogeneous

andhomogeneouscaseisconsidered assignificantwhenitsvalue

exceeds0.1.Largenegativevaluesareobservedfortheaxial

com-ponents of the variance, reaching

δ

upz=0.6 at<

α

p>=0.3 and

0.4, which confirms the predominance of large-scale motions in

thatrange ofconcentration.In thehorizontal(x,y) plane, the

rel-ative difference is smaller than in the homogeneous case when

<

α

p>≤0.3. At the highestconcentration (<

α

p>=0.5), the

dif-ferencebecomesslightlynegative.

If, in the non-homogeneous case, particles are globally

accel-erated in the vertical direction by a large scale motion induced

bycollective effects,thenit canbe understoodthat velocity

fluc-tuations in the transverse directions will diminish in the

ascen-dantand descendantparts ofthe loop, andincrease in the

hori-zontalpart.Inaverage,thetransversecomponentvariancewill

de-crease,probablybecausetheweightoftheascendingand

descend-ingpartsisstrongerthanthatinthehorizontalplane.Athigh

con-centration(0.5), thesignofthecriterionisreversed,likelydueto

anaspectratioeffect(inthiscase,theheightofthebedisindeed

closetothecolumndiameter).Intherange[0.14,0.2],the

concen-tration seem tobe too smallto induce a large recirculationloop

inthebed,butanon-zerotransversecomponentofbuoyancystill

existsandisabletodamp inthehorizontalplane thefluctuating

motionofparticlesproducedbythemeandragforce.

3.4.Effectofcolumntiltingonparticlediffusioncoefficient

Particle diffusioncoefficient is determined fromthe

computa-tionof Lagrangianvelocity autocorrelationcoefficient, definedfor

eachvelocitycomponentupias:

Rii

(

t

)

=

­

upi

(

τ

)

upi

(

τ

+t

)

®

­

u2pi

(

τ

)

®

(8)

In the range of globalsolid fraction investigated, particle

La-grangianvelocity decorrelateswithin atime intervalsmallerthan

4seconds,asillustrated in Fig.12. Thecurves insuch figure can

be fitted to a decaying exponential of the form Rii(t)=exp(-bt);

Thefitted curve hasan exponentb=5.541s−1 (withR square of

0.990)forthez component, whileforthe xandycomponents it

givesb=11.15 s−1 (withR square of 0.987).The time integration

oftheautocorrelationcoefficient overthistime intervalgives the

Lagrangianintegraltimescaleforeachcomponent:

TL ii =

Tmax

(10)

Fig. 7. Projection of trajectories in test sections S i for < αp > = 0.30 a) S 1 ; b) S 2 ; c) S 3 ; d) S 4 ; in the case of i) aligned case and ii) tilted case. Symbols (o) and ( + ) indicate the directions (ascending and descending, respectively). < αp > = 0.3.

(11)

Fig. 9. Homogeneity analysis in terms of particle crossing moving upwards ϕup, j , for different cross sections S i , for the tilted column.

Fig. 10. Evolution of the standard deviation of ϕup, j as a function of the normalized bed height, z/hb .

Thediffusioncoefficientineachdirectionisthengivenby:

Dii=

­

u2pi

(

t

)

®

TL

ii (10)

It isthenclearfromplotsofFigs. 11and12thatthe diffusion

in the vertical direction z is stronger than that ofthe transverse

plane (x,y), resultingfromboth alarger decorrelationtime anda

largervelocityvarianceinz-directionthaninxandy-directions. Diffusion coefficients in transverse (Dxx and Dyy) and vertical

(Dzz) directions asa function of global solid fraction are plotted

inFig. 13,forboth homogeneousandnon-homogeneouscases.In

Fig. 11. Variance of particle velocity component as a function of <αp > . Comparison

between homogeneous (vertically aligned) and non-homogeneous (tilted column).

both cases as expected, particle diffusion is strongly anisotropic,

the diffusion in z-direction being an order of magnitude larger

thanthatinxandy-directionsatallsolidfractions.Inthe

homo-geneous case, thediffusion coefficientis a decreasingfunction of

solid fraction butexhibitsa slightmaximum around <

α

p>=0.2

(open symbols in Fig. 13) for the three components. As for the

evolutionofparticleaxialvelocityvariancewithsolidfraction(Fig. 11),thismaximumisaround<

α

p>=0.3inthenon-homogeneous

(12)

Fig. 12. Particle Lagrangian velocity autocorrelation coefficient versus time for < αp > = 0.3. Homogeneous case. ( ο) z, ( 1) y and (—) x components.

Fig. 13. Particle diffusion coefficient D ii in 3 directions ( D zz , D yy and D xx ). Compari-

son between homogeneous (open symbols) and non-homogeneous (filled symbols) cases.

Table 3.

Relative difference δDii between homo-

geneous and inhomogeneous cases. <αp > δDxx δDyy δDzz 0 .14 0 .17 0 .10 −0 .05 0 .2 0 .02 0 .06 −0 .07 0 .3 −0 .07 −0 .23 −2 .62 0 .4 −0 .07 −0 .75 −2 .14 0 .5 −0 .02 0 .14 0 .07

observed in thesame rangeof

h

α

p

i

, between0.3and0.4.

Maxi-mum relativedifferencesare reachedforthez-componentinthat

rangeofconcentration,duetothedevelopmentofalarge

recircu-lationpatternevidencedby thetrajectoriesenvelopedisplayedin

Fig.5.

Relativedifferences

δ

Dii=1-DiinH/DiiHarereportedinTable3for

allsolidfractioninvestigated.Atlowerconcentration(<

α

p>=0.1

and0.2),differencesbetweenbothcasesarenotsignificantinthe

vertical direction, suggesting that the large-scale coherent

struc-tureis notfullydeveloped,probablydueto atoo smallapparent

density-induced collective effect.However, at the lowest

concen-tration,theeffectofthetiltistodecreasethediffusivityof parti-cles inthe horizontalplane. Athighconcentration (<

α

p>=0.5),

this coherentmotion ofparticles is damped probablydueto the

bedaspect ratio(heightofthebedcompares withcolumn

diam-eter inthat case) andthe differencesbetweenthe two casesare

also negligible. The maximum difference is reached in therange

ofconcentration0.3–0.4,thediffusioncoefficientinz-direction

be-ing morethan2timeslargerinthenon-homogeneous (tilted

col-umn) casethan in the homogeneous (vertically aligned column)

case. Note alsothat in that range ofconcentration, the diffusion

inthe(x,y) planeisnotisotropicduetothefact thattheplaneof inclination isthe (y,z) plane, andthe relative difference of

diffu-sion coefficient in the y-direction is larger than that observedin

the x-direction.Inthe tiltedcase, thetransverse component

vari-anceisveryclosetothevalueobtainedintheverticalcase.Itwas

alsoshownpreviouslythatthevelocityfluctuationinthe

horizon-tal plane was the correct scaling velocity for collisions (

Aguilar-Corona et al., 2011); or in other words, the horizontal

fluctua-tionsdeterminedtheuncorrelatedmotionoftheparticles(notonly

Gaussian but also Maxwellian, hence isotropic). As a result,

tilt-ing the columndoes not significantly affectthe velocity variance

(hencethepdf)oftheuncorrelatedpartofparticlesmotion.In

re-turn,asshownbyourmeasurements, thediffusivemotioninthe

y-direction is slightly affected by the column tilt. Therefore, the

decorrelation time isincreasedby the tiltdue tothe small

grav-itycomponentnormaltothewall.

Itcanbe concludedthatwhenarecirculationloopdevelopsin

thewholebedvolume,itmainlycontributestotheincreaseof

par-ticlevelocity fluctuationsinthe verticaldirection andalsointhe

decorrelationtime,leadingtoasignificantincreaseofparticle

dif-fusivity in that direction. In this range of highparticle Reynolds

and finiteStokes numbers, thevertical alignment ofthe

fluidisa-tion column isan important criterion regardingthe validationof

numerical methodsinconcentrated two-phase flows.The present

experimentshavebeencarriedoutinaliquidfluidizedbedwhere

theagitationoffluid,andconsequentlythatofparticles,ismainly

induced by wake effects (also referred to aspseudo-turbulence).

Note that thissituation is quite differentfrom gas-solid

fluidisa-tion whereasgeneralcase, particleagitationisdrivenby the

tur-bulenceofthecontinuousphase,modulatedbyparticleinertiaand

finitesizeeffects.Inthelattercase,theeffectofasmalltiltofthe

columnwouldprobablynotbethesame,becauseoftheturbulent

large-scale induced intensemixingthat wouldprevent the

devel-opmentofcoherentstructures atthebedscale.Hence,this

situa-tion isparticulartogravitydrivendispersed flowathigh

concen-tration forwhichproperturbulenceofthecarryingphaseremains

smallcomparedtothatinducedbywakeeffects.

4. Conclusions

In this work, we carried out an experimental investigation

of the 3-D particle fluctuating motion in a liquid fluidized bed

andcomparetwodifferentsituations:ahomogeneous fluidisation

regime (homogeneous feeding in the entry section and carefully

verticallyalignedbed)andanon-homogeneousfluidisationregime

resultingfromasmalltilt(0.3°)ofthefluidisationcolumnwiththe vertical.

The bedexpansion is not modifiedsignificantly by thetilt, as

a resultof momentumconservation averagedin thebedvolume,

whichatfirstorderbalancesthebuoyancyforceandthedragforce

basedonaveragedslipvelocity.Inturn,weshowthattheparticle

trajectoriesinthebedarestronglymodified,shiftingfroman

over-all uniformlydistributedrandommotioninthebedwith

axisym-metrictoroidalstructureinthebottompart,tolarge-scale

recircu-lation patternsina givenrangeofbedexpansion(solidfraction).

As aconsequence,theparticlevelocityvariance andself-diffusion

coefficientaresignificantlyaffectedbythetiltinverticaldirection.

(13)

quan-titiesdependsonthe fluidisationvelocity andthatthemaximum

variationoccursforsolidfractionsrangingbetween0.3and0.4.It

is also possible, although not investigated in thisstudy, that the

particle velocity fluctuations depend also on the particle inertia

(Stokesnumber).Theseresultsarerelevantwhencomparisons

be-tweenexperimentsandnumericalsimulationsareconductedatan

industrial scale. Ifthe experiment is not accurately aligned with

thevertical,mixingofpassivescalarand/or thetransport ofmass

or heat could be significantly affected by the non-homogeneous

state offluidisation. It isalso clearfromthe resultspresentedin

this work that thethree dimensionalcharacter of thefluctuating

motionhastobetakenintoaccountwhencomparingwiththe

nu-mericalsimulationsandmodels.

This investigationshowedevidence oflargesensitivity tovery

smallmisalignmentswithrespecttotheverticalinfluidizedbeds.

The implications of such an effect are very important when

de-signingamodelexperimentsforthevalidationofnumerical

simu-lations.

Acknowledgements

TheauthorswishtoexpresstheirgratitudetotheNational

Sci-ence and Technology Council of Mexico (CONACYT) and the

re-searchfederationFERMaT(FRCNRS3089)forfundingthisproject.

References

Aguilar, A. , 2008. Agitation Des Particules Dans Un Lit Fluidisé liquide. Étude expéri- mentale Ph.D. thesis. Institut National Polytechnique de Toulouse, France . Aguilar-Corona, A. , Zenit, R. , Masbernat, O. , 2011. Collisions in a liquid fluidized bed.

Int. J. Multiphase Flow 37 (7), 695–705 .

Al-Dibouni, M.R. , Garside, J. , 1979. Particle mixing and classification in liquid flu- idized beds. Trans. Inst. Chem. Eng. 57 (2), 94–103 .

Anderson, T.B , Jackson, R. , 1969. Fluid mechanical description of fluidized beds. Comparison of theory and experiments. Ind. Eng. Chem. Fundam. 8, 137–144 . Buyevich, Y.A. , 1994. Fluid dynamics of coarse dispersions. Chem. Eng. Sci. 49 (8),

1217–1228 .

Carlos, C.R. , Richardson, J.F. , 1968. Solids movements in liquid fluidized beds-I Par- ticle velocity distribution. Chem. Eng. Sci. 23 (8), 813–824 .

Chaikittisilp, W. , Taenumtrakul, T. , Boonsuwan, P. , Tanthapanichakoon, W. , Charin- panitkul, T. , 2006. Analysis of solid particle mixing in inclined fluidized beds using DEM simulation. Chem. Eng. J. 122 (1), 21–29 .

Del Pozo, M. , Briens, C.L. , Wild, G. , 1992. Effect of column inclination on the perfor- mance of three-phase fluidized beds. AIChE J. 38 (8), 1206–1212 .

Didwania, AK , Homsy, GM , 1981. Flow regime and flow transitions in liquid-flu- idized beds. Int. J. Multiphase Flow 7, 563–580 .

Di Felice, R. , 1995. Hydrodynamics of liquid fluidisation. Chem. Eng. Sci. 50 (8), 1213–1245 .

Dorgelo, E.A.H. , Van Der Meer, A.P. , Wesselingh, J.A. , 1985. Measurement of the axial dispersion of particles in a liquid fluidized bed applying a random walk method. Chem. Eng. Sci. 40 (11), 2105–2111 .

Duru, P. , Guazzelli, É. , 2002. Experimental investigation on the secondary instabil- ity of liquid-fluidized beds and the formation of bubbles. J. Fluid Mech. 470, 359–382 .

El-Kaissy, M.M. , Homsy, G.M. , 1976. Instability waves and the origin of bubbles in fluidized beds. Int. J. Multiphase Flow 2-4, 379–395 .

Gordon, L.J. , 1963. Solids Motion in a Liquid Fluidized Bed PhD thesis. University of Washington .

Handley, D. , Doraisamy, A. , Butcher, K.L. , Franklin, N.L. , 1966. A study of the fluid and particle mechanics in liquid-fluidized beds. Trans. Inst. Chem. Eng. 44, T260–T273 .

Hassan, A.Y. , Dominguez-Ontiveros, E.E. , 2008. Flow visualization in a pebble bed reactor experiment using PIV and refractive index matching techniques. Nucl. Eng. Des. 238 (11), 3080–3085 .

Homsy, G.M. , 1998. Nonlinear waves and the origin of bubbles in fluidized beds. App. Sci. Res. 58 (1), 251–274 .

Homsy, G.M. , El-Kaissy, M.M. , Didwania, A. , 1980. Instability waves and the origin of bubbles in fluidized beds - II. Int. J. Multiphase Flow 6, 305–318 .

Hudson, C. , Briens, C.L. , Prakash, A. , 1996. Effect of inclination on liquid-solid flu- idized beds. Powder Tech. 89 (2), 101–113 .

Juma, A .K.A . , Richardson, J.F. , 1983. Segregation and mixing in liquid fluidized beds. Chem. Eng. Sci. 38 (6), 955–967 .

Kang, Y. , Nah, J.B. , Min, B.T. , Kim, S.D. , 1990. Dispersion and fluctuation of fluidized particles in a liquid-solid fluidized bed. Chem. Eng. Comm. 97 (1), 197–208 . Kennedy S., C. , Bretton R., H. , 1966. Axial dispersion of spheres fluidized with liq-

uids. AIChE J. 12 (1), 24–30 .

Latif, B.A.J. , Richardson, J.F. , 1972. Circulation patterns and velocity distribution for particles in a liquid fluidized bed. Chem. Eng. Sci. 27, 1933–1949 .

Sundaresan, S. , 2003. Instabilities in fluidized beds. Annu. Rev. Fluid Mech 35 (1), 63–88 .

Valverde, J.M. , Castellanos, A . , Quintanilla, M.A .S. , Gilabert, F.A . , 2008. Effect of in- clination on gas-fluidized beds of fine cohesive powders. Powder Tech. 182 (3), 398–405 .

Van Der Meer, A.P. , Blanchard, C.M.R.J.P. , Wesselingh, J.A. , 1984. Mixing of particles in liquid fluidized beds. Chem. Eng. Res. Des. 62, 214–222 .

Willus, C.A. , 1970. An Experimental Investigation of Particle Motion in Liquid Flu- idized Bed. Thesis of California Institute of Technology, United States of Amer- ica .

Yakubov, B. , Tanny, J. , Maron, D.M. , Brauner, N. ,2005. The effect of pipe inclination on a liquid-solid fluidized bed. HAIT J. Sci. Eng. B 3, 1–19 .

Yamazaki, R. , Sugioka, R. , Ando, O. , Jimbo, G. , 1989. Minimum velocity for fluidisa- tion of an inclined fluidized bed. Kagaku Kogaku Ronbunshu 15 (2), 219–225 . Yutani, N. , Ototake, N. , Too, J.R. , Fan, L.T. , 1982. Estimation of the particle diffusivity

in a liquid-solids fluidized bed based on a stochastic model. Chem. Eng. Sci. 37 (7), 1079–1085 .

Zenit, R. , Tsang, Y.H. , Koch, D.L. , Sangani, A.S. , 2004. Shear flow of a suspension of bubbles rising in an inclined channel. J. Fluid Mech. 515, 261–292 .

Figure

Fig. 1. Scheme  of the experimental set-up and the entry section.
Fig. 3.  Raw images as captured by the camera: a) Large solid fraction: &lt; α p &gt; = 0.5; to the left of the black division: front view ( x-z  plane)
Fig. 4. Particle trajectories projection for the vertically aligned case at a)  &lt; α p &gt; =  0.14, b)  &lt; α p &gt; =  0.20 and c)  &lt; α p &gt; =  0.40: left and right columns correspond to the horizontal ( x,y ) and vertical ( x,z ) planes, respect
Fig. 5. Particle trajectories projection at &lt;  α p &gt;  =  0.30 in a) (  x,z  ) plane; b) (  y,z  ) plane; c) (  x,y  ) plane
+5

Références

Documents relatifs

Recognizing the increasing importance of congenital and genetically determined disorders in the Region, WHO’s Regional Office for the Eastern Mediterranean has undertaken a number

[r]

These equations govern the evolution of slightly compressible uids when thermal phenomena are taken into account. The Boussinesq hypothesis

By applying pressure, the fluidized bed passes into a 3m-long transparent glass tube of 4.5 cm internal diameter and is collected in a fluidized bed collector,

This paper is focused on the conditions of occurrence of this instability that can result, in the solar application, in an emergency stop of the power plant and aims to define

The dynamics of the fluctuations suggests that the flow possesses the three following properties: (1) The liquid volume involves a wake region in which vertical fluctuations

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Further, we are concerned only with the case where the Service Provider’s edge devices, whether at the provider edge (PE) or at the Customer Edge (CE), determine how to route