• Aucun résultat trouvé

USE OF SUPERCONDUCTING MAGNETS IN MAGNETIC SEPARATION

N/A
N/A
Protected

Academic year: 2021

Partager "USE OF SUPERCONDUCTING MAGNETS IN MAGNETIC SEPARATION"

Copied!
6
0
0

Texte intégral

(1)

JOURNAL DE PHYSIQUE

Colloque C1, supplCment a u n o 1, Tome 45, janvier 1984 page C1-753

USE OF SUPERCONDUCTING MAGNETS IN MAGNETIC SEPARATION

M.R. Parker

Department of Physic's, University of SaZford, U.K.

Resum6 - Un aperGu des p o s s i b i l i t e s de l ' u t i l i s a t i o n des systemes d'aimants sup-aconducteurs 1 champs f o r t s pour l a separation magnetique sera donne.

Une a t t e n t i o n p a r t i c u l i e r e e s t accordge aux avantages de l a methode de l a b o i t e ?i mouvement a l t e r n a t i f pour l a separation magnetique dans des champs i g r a d i e n t s f o r t s , e t i l ' u s a g e d'aimants quadrupolaires pour l a separation magnetique en g r a d i e n t s ouverts.

A b s t r a c t

-

A review i s given assessing t h e p o t e n t i a l f o r superconducting h i g h - f i e l d magnet systems i n magnetic separation. P a r t i c u l a r a t t e n t i o n i s

given t o t h e advantages o f t h e r e c i p r o c a t i n g c a n i s t e r approach t o h i g h g r a d i e n t magnetic separation and t o t h e use o f quadrupole magnets i n open g r a d i e n t magnetic separation.

I

-

INTRODUCTION

Since about 1970 an i n c r e a s i n g and widespread i n t e r e s t has developed i n t h e design and working p r i n c i p l e s and i n t h e commercial development o f h i g h f i e l d magnetic separation. This i s commonly r e f e r r e d t o /1/ as ' h i g h g r a d i e n t magnetic s e p a r a t i o n ' (HGMS). Much o f t h e f o l l o w i n g i s concerned w i t h t h e development p o t e n t i a l f o r super- conducting (S/C) magnets i n t h a t technology. Other novel S/C magnet systems used i n magnetic separation a r e a l s o reviewed b r i e f l y .

A c r u c i a l f a c t o r i n any magnetic separation device i s t h e magnetic t r a c t i o n f o r c e a c t i n g upon p a r t i c l e s i n t h e separating zone. For many o f these though n o t a l l /2/

t h i s force, FM, i s a magnetic d i p o l a r i n t e r a c t i o n o f t h e approximate form /3/

where VB i s t h e s p a t i a l g r a d i e n t o f an e x t e r n a l i n d u c t i o n f i e l d , Bo, a t t h e l o c a t i o n o f a p a r e i c l e o f volume V p and o f magnetic volume s u s c e p t i b i l i t y

xp

i n a medium o f corresponding value x ( x =

x - x,).

I n Eq. ( 1 ) x and V are e x c l u s i v e l y p r o p e r t i e s o f t h e p a r t i c l e and A u i d medyum. The q u a n t i t y f, ; a l e a s u r e o f t h e f o r c e d e n s i t y on t h e p a r t i c l e s /4,5/ can be optimised by m a x i m i s ~ n g Bp and vB0 ( t h e magnetic f i e l d g r a d i e n t ) independently over s p a t i a l dimensions a p p r o p r i a t e t o t h e p a r t i c l e s . I n HGMS, t h e g r a d i e n t i n Bo i s achieved by t h e i n s e r t i o n i n the separating zone of a m a t r i x o f ferromagnetic f i b r e s ( o r expanded metal screens). Above a t h r e s h o l d value o f Bo t h e m a j o r i t y o f these f i b r e s , wires, g r i d s , etc., are magnetised t o s a t u r a t i o n i n a d i r e c t i o n transverse t o t h e i r axes, whereupon Bo approaches a l i m i t i n g value o f order MS/a /2,5/ where MS i s t h e s a t u r a t i o n magnetisation o f t h e f i b r e s and a i s t h e i r ( e f f e c t i v e ) r a d i u s o f curvature. I n HGMS systems, fm is , t y p i c a l l y , o f order 1011 ~ m - 3 and increases l i n e a r l y w i t h i n c r e a s i n g values o f Bo. In HGMS, t h e l a r g e values o f fm extend o n l y over l i m i t e d volumes o f space adjacent t o f i b r e surfaces i n t h e separating zone and have a f o r c e range, t h e r e f o r e , o f order a ( s 0.1 mm)

.

Other h i g h - f i e l d separation devices are c h a r a c t e r i s e d by much s m a l l e r values of fm ( o f order 108 ~ m - ~ ) b u t by v e r y much l a r g e r (0.05 t o 0.1 m) f o r c e ranges. Such devices, which achieve separation by p a r t i c l e d e f l e c t i o n r a t h e r than by magnetic Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19841153

(2)

JOURNAL DE PHYSIQUE

Av Fez03 extract~on eff 1%)

70 -

0 90 L 36

10 -

I

0 2 1 6 8 10 12 11

Canister volumes [no)

F i g . 1

-

Fe O3 r e c o v e r y a t v a r i o u s F i g . 2

-

Dependence o f rc on Stokes values o f a

ti

.e.V / V ) . (Courtesy number ( K ) f o r v a r i o u s va7ues of Vm/Vo o f J.H.P. ats son 77/7 ( a f t e r R.P. Walker / 8 / ) .

entrapment a t a f i b r e s u r f a c e a r e n o r m a l l y r e f e r r e d t o c o l l e c t i v e l y as open g r a d i e n t magnetic s e p a r a t i o n (OGMS) systems /2/.

The b a s i c mechanisms o f magnetic p a r t i c l e entrapment and b u i l d u p on f i b r e s i n HGMS systems a r e now w e l l understood as i s t h e r e d u c t i o n i n t h e performance o f f i l t e r s w i t h i n c r e a s e d p a r t i c l e l o a d i n g /2,6/. I t i s , t h e r e f o r e , s u f f i c i e n t t o n o t e here t h a t , a p a r t from v a r i o u s f i l t e r constants,the r e c o v e r y o f magnetic p a r t i c l e s depends, i n s i m p l e terms upon a s i n g l e dimensionless v a r i a b l e rca. T h i s q u a n t i t y , a ( n o r m a l i s e d ) p a r t i c l e c a p t u r e c r o s s - s e c t i o n p e r u n i t l e n g t h o f f i b r e ( o r w i r e , g r i d , e t c . ) , can i t s e l f be expressed a p p r o x i m a t e l y as /2/

f o r paramagnetic p a r t i c l e s i n t h e l o n g i t u d i n a l /2/ c o n f i g u r a t i o n . Here, VoI i s t h e average f 1 ow v e l o c i t y o f t h e p a r t i c l e s , Vm = 2 ~ ~ ~ ~ ~ b ~ / 9 1 1 ~ ~ a i s t h e 'magnet, c v e l o c i t y ' / 6 / , b i s t h e p a r t i c l e r a d i u s and q i s t h e f l u i d v i s c o s i t y . I t f o l l o w s t h a t , t o a f i r s t approximation, rC and, t h e r e f o r e , f i l t e r performance depends o n l y on t h e r a t i o Vm/Vo. T h i s i s o f c o n s ~ l e r a b l e advantage i n h i g h - f i e l d HGMS systems where an i n c r e a s e i n magnetic f i e l d t o a h i g h e r v a l u e ( B ,) can be accompanied by a corresponding i n c r e a s e i n Vo (and, t h e r e f o r e , i n p r o a u c t i o n r a t e ) w i t h o u t l o s s o f performance. Some i n d i c a t i o n o f t h i s i s p r o v i d e d i n F i g . 1 where t h e r e c o v e r y o f i r o n o x i d e contamina- t i o n f r o m k a o l i n s l u r r i e s / 7 / i s shown f o r v a r i o u s values of Bo ( r a n g i n g from 1.17 t o 5.0 T) and f o r corresponding v a l u e s o f Vo a d j u s t e d t o m a i n t a i n a f i x e d v a l u e o f a

( i . e . o f Vm/Vo). A p a r t f r o m t h e low f i e l d d a t a (1.17 T) t h e f i l t e r performance i s seen t o be i n accordance w i t h t h e above-described t h e o r y . There are, o f course, o t h e r l i m i t s t o t h e r e l a t i o n s h i p s expressed i n Eq. ( 2 ) . F i g . 2 shows computed v a l u e s /8/ of rca as a f u n c t i o n o f l o g K where K i s t h e Stokes number. F o r values o f l o g K > -0.18, t h e s i m p l e r e l a t i o n s h i p f o r f i l t e r performance embodied i n E q . ( 2 ) s t a r t s t o break down. The Stokes number may be regarded as a measure o f t h e balance between i n e r t i a l and hydrodynamic f o r c e s and, a t h i g h e r K values, t h e former becomes i n c r e a s i n g l y

(3)

STEEL RETURN i m p o r t a n t . One consequence o f t h i s i s t h a t magnetic gas f i l t r a t i o n which r e q u i r e s low p a c k i n g d e n s i t y f i l t e r s (and, c o r r e s - p o n d i n g l y , h i g h v a l u e s o f r c a ) i s l i k e l y t o b e n e f i t l e s s f r o m t h e use o f v e r y h i g h f i e l d s .

I 1

-

HIGH GRADIENT MAGNETIC SEPARATION (HGMS)

ED I n t h e l i g h t o f t h e above a n a l y s i s i t may

seem a l i t t l e odd t h a t , w i t h t h e i r h i g h - f i e l d advantage, S/C magnets have, s o f a r , made e s s e n t i a l l y no commercial impact F i g . 3

-

Conventional HGMS magnet system upon HGMS.

he&

a r e s e v e r a l reasons f o r ( a f t e r Gerber / 5 / ) . t h i s n o t t h e l e a s t o f which i s t h e

e f f e c t i v e n e s s o f t h e c o n v e n t i o n a l HGMS c y c l i c system shown s c h e m a t i c a l l y i n F i g . 3. L a r g e - s c a l e v e r s i o n s o f t h i s d e v i c e , w i t h values o f d > 2.0 m and w i t h f i e l d s o f up t o 2.0 T have been produced w i d e l y on a commercial b a s i s . The magnetic c i r c u i t and d e s i g n o f t h i s d e v i c e has been des- c r i b e d i n d e t a i l elsewhere / 5 / and o n l y a b r i e f mention i s g i v e n here. The main advantages o f t h i s d e v i c e i n c l u d e i t s r o b u s t c o n s t r u c t i o n (which i s o f c o n s i d e r a b l e importance i n t h e t y p i c a l l y h o s t i l e environments found i n m i n e r a l s p r o c e s s i n g ) , i t s r e l i a b i l i t y (founded on c o n s e r v a t i v e e n g i n e e r i n g p r i n c i p l e s ) and t h e comparative ease w i t h which t h e d e s i g n may be s c a l e d upwards i n t h e dimension d o f F i g . 3.

However, t h e r e a r e m a j o r disadvantages a s s o c i a t e d w i t h t h e s e d e v i c e s i n c l u d i n g com- p a r a t i v e l y h i g h c a p i t a l c o s t s and o p e r a t i n g power c o s t s and an unfavourably l o n g (- 200 s) 'dead' t i m e ( a s s o c i a t e d w i t h magnetic f i e l d removal, f o l l o w e d by washing f o l l o w e d by f i e l d r e s t o r a t i o n ) . They a r e a l s o l i a b l e t o l o n g - t e r m m a t r i x c o n t a m i n a t i o n by u l t r a - f i n e p a r t i c l e s .

The p r o d u c t i o n r a t e , P, o f a c y c l i c magnetic s e p a r a t o r may be expressed /6/ as a p r o d u c t o f mass f l u x p vo(*d2) and o f t h e d u t y c y c l e n o ~ / p o v + nrT + D) where no i s

t h e number o f e q u i v a l e n t c a n i s t e r s o f t h e f e e d stream processed b e f o r e t h e r e c o v e r y o f t h e magnetic component becomes unaccept- a b l y low. When t h e f l o w i s h a l t e d by a p p r o p r i a t e heavy d u t y v a l v e o p e r a t i o n t h e m a t r i x i s r i n s e d w i t h nr c a n i s t e r s of water ( a t speed Vo and a t f u l l f i e l d ) t o remove e s s e n t i a l l y a1 1 o f t h e non-magnetic f r a c t i o n f r o m t h e m a t r i x . T y p i c a l l y n r z 1.

Thus s i n c e Vo

z

&/I-, P can be expressed i n terms o f t h e s e p a r a t i n g z o n e g e o m e t r y as

P = pAano/[ (no + n,)~ + D l ( 3 P then c l e a r l y depends l a r g e l y on t h e v a l u e of D. F o r c o n v e n t i o n a l ( c ) HGMS, Dc = 200 s i s n o t unreasonable /6/. I n l a r g e - s c a l e S/C magnets t h e corresponding v a l u e would be somewhere between 300 s and

+ Mlddllngs 600 S. Under such circumstances a1 1 o f t h e

,

b e n e f i t o f reduced r e s i d e n c e t i m e r S ( = r c / h ) i n Eq. ( 3 ) f r o m t h e magnetic f i e l d r a t i o h (= Bos/Bo ) would be l o s t . T h i s unfavour- a b l e s~ tu a f i o n i s r e t r i e v e d i n S/C s o l e n o i d s F i g . 4

-

Schematic o f c r y o g e n i c RC system by t h e use o f r e c i p r o c a t i n g c a n i s t e r (R.C.)

( a f t e r R i l e y and Hocking / 9 / ) . systems. These were developed o r i g i n a l l y b y s c i e n t i s t s and engineers a t E n g l i s h China Clays (ECLP) and based upon designs

(4)

C1-756 JOURNAL DE PHYSIQUE

A: Active filter an i s o l a t e d Y c a n i s t e r from a large-bore '

solenoid a t f u l l f i e l d i s immense. Watson

0: Dummy

filter

e t a1

/ l o /

e s t i m a t e somewhere between 300 t

s l c solenoid

and p a t e n t s 0 f Z . J . J . S t e k l y / 9 / . A s c h e m a t i c i l l u s t r a t i o n o f an R.C. system i s shown i n F i g . 4. I n t h i s design, a f u l l y loaded c a n i s t e r i s e x p e l l e d from t h e S/C magnetat

Fig. 5

-

R.C. t r a i n ( a f t e r Watson and 5 0 0 t f o r a c a n i s t e r o f 2 . 0 m l e n g t h and

e t a1 / l o / ) . 1.0mdiameter taken froma s o l e n o i d a t 8 . 0 T .

The same authors have c a r r i e d o u t a computer s i m u l a t i o n o f t h e r e s i d u a l h y d r a u l i c f o r c e requirements f o r a c a n i s t e r t r a i n o f t h e t y p e

ps

/PC

shownin Fig. 5. Here,the c a n i s t e r t r a i n

comprisestwo a c t i v e (A) f i l t e r s interspaced

T ~ = ~ O S

a l t e r n a t e l y w i t h t h r e e dummy (D) c a n i s t e r s

6 -

i n an i n f i n i t e t r a i n o f constant suscepti- b i l i t y . P e r i o d i c r e s i d u a l f o r c e s o f a m p l i t u d e

5,0.15 -

5 x 103 N a c t i n g on a t r a i n o f c a n i s t e r s w i t h t h e dimensions given e a r l i e r a r e found a s a f u n c t i o n o f a x i a l p o s i t i o n ( w i t h assumed c a n i s t e r r e t r a c t i o n speeds o f

-

1 ms-1).

The requirements o f t h e h y d r a u l i c r a m system a r e t h e r e f o r emodest. Asecondmajor advantage

3~0.15

o f a compensated c a n i s t e r system i s a g r e a t l y reduced f o r c e on t h e S/C magnet c o i 1 s them- selves. Watson e t a1

/ l o /

have describedan

2,015

ingenious c o i l p r o t e c t i o n device i n which, as a l i v e c a n i s t e r i s r e t r a c t e d from t h e magnet bore, t h e movement o f t h e c o i l s i s sensed (say) by s t r a i n gauges whereupon a

1 -

c l a s s i c a l f i e l d c o i l , adjacent t o t h e end o f (and c o - a x i a l w i t h ) t h e c r y o s t a t , i s energised i n o p p o s i t i o n t o t h e S/C magnet

0 1

I I I I I f i e l d . A t a (main) f i e l d value o f 5.0 T approximately 103 ampere-turns a r e r e q u i r e d

0 2 4 6 8 lo "0

i n t h e comoensatina c o i l s t o r e s t r a i n f u l l v t h e magnets d u r i n g E a n i s t e r withdrawal

.

~ i i h

Fig. 6 - P r o d u c t i o n r a t e r a t i o f o r i d e n t i c a l this type of safeguard a

solenoidcan be superconducting ( s ) and f c ) operated safely i t h e persistent mode wi t h HGMS systems ( D c = s y D ~ = 3 0 16/' consequent r e d u c t i o n o f the helium r e q u i r e - ment o f the r e f r i g e r a t o r (- l a h - l f o r 300 A leads)

/lo/.

Second, and o f g r e a t e r im- portance, i s t h a t t h e magnet can be mounted s a f e l y on a modest support s t r u c t u r e w i t h an estimated helium l o s s saving o f o r d e r 3 t o 4 l h - 1 i n t h i s type o f system.

These savings i n helium consumption a r e a l s o r e f l e c t e d i n savings i n c a p i t a l c o s t s o f the l i q u e f i e r and power costs o f t h e r e f r i g e r a t o r .

f u l l f i e l d b y a h y d r a u l i c r a m and i s replaced meanwhile by a f r e s h c a n i s t e r . As F i g . 4

A number o f advantages accrue from t h e R.C. system. As F i g . 4 indicates,the withdrawn c a n i s t e r may be s h i e l d e d m a g n e t i c a l l y and de-gaussed d u r i n g washing. The wash p e r i o d i t s e l f can be increased t o a value approaching t h e residence time ( n ~ , / h = n,~,) o f t h e second a c t i v e c a n i s t e r i n t h e S/C magnet. Nevertheless, by f a r tRe g r e a t e s t advantage o f the R.C. system i s i n t h e r e d u c t i o n o f D t o a value (D,) which i s j u s t t h e withdrawal ( o n l y ) t i m e o f s t h e loaded c a n i s t e r from t h e system. Watson /11/ has r e c e n t l y d e s c r i b e d a d e s i g n s p e c i f i c a t i o n o f 1 0 s f o r a l a r g e b o r e (dl=0.30m)5T solenoid.

shows, t h e spent and fresh c a n i s t e r s maybe

Ezl

p a r t o f a l i n e a r c a n i s t e r t r a i n . There are several a d v a n t a g e s t o t h i s design. F i r s t , the t o t a l h v d r a u l i c f o r c e r e a u i r e d t o o u l l

0

Fig. 6 shows production r a t e (P) comparisons between l a r g e - s c a l e superconducting ( s ) and conventional ( c ) HGMS systems o f i d e n t i c a l s i z e as a f u n c t i o n o f no. Here, T~ i s f i x e d a t 5 0 s a n d t h e value o f t h e f i e l d r a t i o h ( = BoS/Boc) and the dead-time r a t i o

A

D A D

(5)

k ( = Ds/Dc) a r e l i s t e d i n t h e s e t o f c u r v e s A t l o w v a l u e s o f nn, Pc/P, shows, i n a d d i -

I

t i o n t o t h e b e n e f i i s c? h;'gh f i e l d s a

I

vibrating feeder c l e a r e n g i n e e r i n g advantage. When Ds f a l l s

! t o 1 0 s t h i s advantaqebecomes c o n s i d e r a b l e .

I n a d d i t i o n t o t h i s - p r o d u c t i o n r a t e ad- vantage, t h e r e a r e c l e a r c a p i t a l c o s t a n d o p e r a t i n g c o s t advantages f o r t h e R.C.

system. The f o r m e r comes f r o m t h e reduced p h y s i c a l s c a l e o f theR.C. system compared t o i t s c o n v e n t i o n a l c o u n t e r p a r t . I t has been e s t i m a t e d /11/ t h a t a 5TR.C. system, w i t h a p r o d u c t i o n r a t e e q u i v a l e n t t o a 2.1 m b o r e 2 T c o n v e n t i o n a l system, w i l l have a r e f r i g e r a t i o n power consumption o f around 20 KW.

separation boxes

C l e a r l y , problems do e x i s t f o r R.C. c r y o - g e n i c systems. Economic and t e c h n i c a l

U ~ I a

reasons p u t an upper l i m i t on t h e f i e l d r a t i o , h o f around 4 /11/. Cryoqenic s o l e n o i d s o p e r a t e comfortably- up t o about 8 . 0 T w i t h c o n v e n t i o n a l Nb-Ti w i r e . Above F i g . 7

-

Schematic o f S/C s p l i t - p a i r d r y OGMS t h i s f i e l d value costs escalate.

system. ( C o u r t e s y o f H . K . C o l l a n / 3 / ) a d d i t i o n , i n l a r g e - b o r e ( d : 0.3m) S/C

8 0

- ,

I I I I I

,

s o l e n o i d s , c o i l s t r e s s e s become s i g n i f i - c a n t i n terms o f d e s i g n and f a b r i c a t i o n

'=loo* c o s t s a t f i e l d s g r e a t e r t h a n 5.0 T. T h i s i s a l s o an approximate upper f i e l d l i m i t a t which d i s p l a c e m e n t s o f f i n e m a t r i c e s i n f i e l d g r a d i e n t s a t t h e e x t r e m i t i e s o f s o l e n o i d s d u r i n g c a n i s t e r w i t h d r a w a l cease t o be r e v e r s i b l e /11/.

I 1 1

-

OPEN GRADIENT MAGNETIC SEPARATION ( OGMS)

z(mm) T h i s s e p a r a t i o n method c o n t r a s t s s h a r p l y F i g . 8 - R a d i a l f o r c e d e l l s i t y p a t t e r n ( i n u n i t s with.HGMS i n i t s u s e o f m u c h s m a l l e r f o r c e o f ~2 m-1). ( C o u r t e s y o f H. K. C o l l an / 3 / ) d e n s i t i e s (- 108 Nme3), generated b y

s p e c i a l l y designed magnet c o i l s , and o f much l a r g e r f o r c e ranges ( u p t o 0 . l m ) t o d e f l e c t p a r t i c l e streams s e l e c t i v e l y and c o n t i n u o u s l y towards c o l l e c t i o n p o i n t s a c c o r d i n g t o magnetic s u s c e p t i b i l i t y . Such d e v i c e s a r e a l s o c h a r a c t e r i s e d by t h e absence b o t h o f a m a t r i x and o f a d u t y c y c l e r e l a t i n g t o c y c l i c b e h a v i o u r .

E a r l y designs o f OGMS systems /12,13/ appear t o have f a v o u r e d t h e use o f a n n u l a r quadrupole magnets. Here t h e s e p a r a t i n g zone has a p r e d o m i n a n t l y r a d i a l f i e l d g r a d i e n t and f o r c e d e n s i t y p a t t e r n . One c l a s s i c a l magnet system o f t h i s t y p e used as l o n g ago as 1968 by Kolm /2/ f o r t h e u p g r a d i n g o f molybdenum o r e s had t h e wet f e e d stream moving a x i a l l y i n a p a i r o f c o n c e n t r i c p i p e s connected by p e r f o r a t i o n c o v e r i n g t h e s u r f a c e o f t h e i n n e r p i p e . Magnetic p a r t i c l e s i n t h e i n n e r p i p e d i f f u s e r a d i a l l y o u t - wards t h r o u g h t h e p e r f o r a t i o n s under t h e i n f l u e n c e o f t h e r a d i a l f i e l d g r a d i e n t s . A t t h e end o f t h e magnet t h e magnetic and non-magnetic f r a c t i o n s e x i t s e p a r a t e l y . A number o f papers were p u b l i s h e d by Cohen and Goqd /12/ on t h e use o f a S/C a n n u l a r quadrupole f o r OGMS s e p a r a t i o n on dense m i n e r a l s l u r r i e s . Here, t h e f i e l d and f o r c e d e n s i t y decrease s h a r p l y across t h e w i d t h o f t h e p i p e and s e p a r a t i o n o f t h e mixed s l u r r y i s enhanced by p r o m o t i n g o r b i t a l m o t i o n o f t h e s l u r r y t o a l l o w a l l p a r t i c l e s t o e n t e r t h e s t r o n g e s t p a r t o f t h e f i e l d . A s l o w l y moving dense s l u r r y o f magnetic p a r t i c l e s forms c l o s e t o t h e c r y o s t a t w a l l and i s d i s c h a r g e d s e p a r a t e l y a t a s p l i t t e r a t t h e e x i t p o i n t o f t h e system.

(6)

C1-7.58 JOURNAL DE PHYSIQUE

I n more r e c e n t t i m e s S/C l i n e a r m u l t i p o l e OGMS systems appear t o have c o m p l e t e l y r e - p l a c e d t h e a n n u l a r systems f o r b o t h wet and d r y s e p a r a t i o n . The f i r s t r e p o r t e d system o f t h i s t y p e was t h e ( w e t ) s o l e n o i d p i l e , s e p a r a t o r d e s c r i b e d by Schonert e t a1 /13/

i n 1977. More r e c e n t l y , t h r e e systems have been r e p o r t e d which reduce t h i s l i n e a r m u l t i p o l e t o a S/C s p l i t p a i r d r i v e n i n t h e cusp mode. The f i r s t o f t h e s e i s a p i l o t - s c a l e d r y OGMS used s u c c e s s f u l l y by Holman and H i s e /14/ f o r t h e b e n e f i c a t i o n o f d r y powdered c o a l s . Here, t h e coal i s f e d under g r a v i t y ( i n a f a s h i o n n o t u n l i k e t h a t of Schonert e t a l ) as an a n n u l a r c u r t a i n a d j a c e n t t o t h e i n n e r s u r f a c e s o f a v e r t i c a l a x i s S/C s p l i t p a i r i n a warm-bore c r y o s t a t o f i n n e r diameter 90mm.The f o r c e d e n s i t y a t a r a d i a l d i s t a n c e o f 30mm f r o m t h e c o i l s i s around 2.3 x

l o 7

~ m - 3 . The second two systems /3,15/ p r e f e r t o c a r r y o u t s e p a r a t i o n by a l l o w i n g powdered m i n e r a l t o f a l l under g r a v i t y as an a n n u l a r c u r t a i n ( F i g . 7 ) i n c l o s e p r o x i m i t y t o t h e c y l i n d r i c a l c r y o s t a t w a l l . The f o r c e d e n s i t y p a t t e r n o f one o f t h e s e /3/ i n u n i t s o f ~ ~ m - 1 as a f u n c t i o n o f t h e v e r t i c a l d i s t a n c e f r o m t h e h o r i z o n t a l p l a n e o f symmetry o f t h e s p l i t p a i r i s shown i n F i g . 8 f o r v a r i o u s r a d i a l d i s t a n c e s ( s ) f r o m t h e c r y o s t a t w a l l w i t h a peak v a l u e o f about 5.0 x

l o 7

~ m - 3 a t s = 0. An a n a l y s i s o f t h e f o r c e d e n s i t y p a t t e r n s f o r S/C s p l i t p a i r system o f v a r i o u s s i z e s i n d i c a t e s t h a t , u n l i k e t h e s o l e n o i d systems o f F i g s . 3 and 4, t h e r e i s e s s e n t i a l l y no p r o d u c t i o n r a t e advantage i n s c a l i n g t h e s e systems upwards i n s i z e . A g a i n s t t h a t an OGMS system such as MASU 3 /3/ can o p e r a t e i n t h e p e r s i s t a n t mode w i t h minimal h e l i u m l o s s ( u s i n g c r y o c o o l e r s ) and can process d r y m i n e r a l s a t r a t e s approaching 1 t h-1. I t i s p r o b a b l e t h a t f u r t h e r development w i l l i n d i c a t e an optimum c o i l diameter e n a b l i n g ( w i t h a warm bore) use o f b o t h t h e i n n e r and o u t e r s u r f a c e s o f t h e c o i l s .

I V - LONG-TERM DEVELOPMENTS

No r e v i e w o f t h i s t y p e would be complete w i t h o u t some p r e d i c t i o n s o f f u t u r e S/C sepa- r a t o r development. By f a r t h e most p r o m i s i n g o f these i s t h e c r y o g e n i c drum s e p a r a t o r , a S/C m u l t i o o l e d e v i c e f i r s t conceived and n a t e n t e d by Ries e t a1 /16/ i n 1978. An i n d u s t r i a l p r o t o t y p e o f t h i s d e v i c e o f approximate dimensions l . 0 m l e n g t h and 1.0m d i a m e t e r has r e c e n t l y been under i n d u s t r i a l t e s t . C l e a r l y , a d e v i c e o f t h i s t y p e combine t h e m e r i t s o f OGMS w i t h o v e r 100 y e a r s o f e n g i n e e r i n g experience i n drum technology. Another p o t e n t i a l development which combines t h e h i g h - f i e l d advantages o f magnetic f l o c c u l a t i o n w i t h those o f m a g n e t o - h y d r o s t a t i c s e p a r a t i o n (MHS) i s des- c r i b e d i n d e t a i l elsewhere i n t h e s e Proceedings.

REFERENCES

/1/ KOLM H.H., OBERTEUFFER J.A. and KELLAND D.R., S c i . Am.

223

(1975) 46.

/2/ BIRSS R.R. and PARKER M.R., Progress i n F i l t r a t i o n and Separation, v o l . 2 ( E l s e v i e r , 1981) 171.

/3/ COLLAN H.K., KOKKALA M.A., MEINANDER T. and TOIKKA O.E., Trans. I n s t . Min.

M e t a l l . ( s e c t . C) - 91 (1982) C5.

/4/ OBERTEUFFER J.A., IEEE Trans. on Magn. MAG-10 (1974) 223.

/5/ GERBER R., IEEE Trans. on Magn. MAG-18 812.

/6/ WATSON J.H.P., Proc. 6 t h I n t . Cryogenic Eng. Conf., Grenoble (1976) 223.

/7/ WATSON J.H.P. and HOCKING D., IEEE Trans. on Magn. MAG-11 (1975) 1588.

/8/ WALKER R.P., MSc D i s s e r t a t i o n , Univ. o f S a l f o r d (1979).

/9/ RILEY P.W. and HOCKING D., IEEE Trans. on Magn. MAG-17 (1981) 3299.

/ l o /

WATSON J.H.P., SCURLOCK R.G., SWALES A.W. and H O m T . A . , Proc. 9 t h I n t . Eng.

Conf. 6 Kobe ( B u t t e r w o r t h 1982) 120.

/11/ WATSON J.H.P., Seminar, Univ. o f Nijmegen, J u l y 11 (1983).

/12/ COHEN H.E. and GOOD J.A., IEEE Trans. on Magn. MAG-12 (1976) 552.

/13/ SCHONERT K., SUPP A. and DORR H., 1 2 t h I n t . M i n e r a l Processing Congress, Meeting 4, paper no. 1, Sao PauTo, B r a z i l (1977).

/14/ HOLMAN A.S. and HISE E.C., Report no. ORNL-5764, Oak Ridge Nat Lab.

,

May (1981).

/15/ KOPP J. and GOOD J.A., IEEE Trans. on Magn. MAG-18 (1982) 833.

/16/ RIES G., JUNGST K-P., FORSTER S., LEHMANN W. and UNKELBACH K-H., West German P a t e n t No'. 2650540 (1978).

Références

Documents relatifs

We were using Forest Inventory and Analysis (FIA) data to validate the diameter engine of the Forest Vegetation Simulator (FVS) by species. We’d love to have used the paired

Permanentmagnets with a high energy density (rare earth, cobalt) have lower power losses with regard to supporting force and magnet weight and are therefore comparable with electro-

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

[2]. For a given coil package the effective magnetic length of all coils are the same by design. Compared to the ILC ATF2 has much lower beam energy and larger emittance. So ATF2

This generalization follows if, cross- linguistically, lexemes are or can be verbal (that is, underpecified, and giving rise to verb words and a mixed category like English gerunds

perceptions became reasonably accurate (although as noted, S-P attract [body] was not the 371.. self-perceived attractiveness measure that best predicted female anger usage). The

In Chapter 5, we use the adap- tively damped Picard iterations and a restricted unigrid method to solve nonlinear diffusion problems and ensure the positivity of approximate

This property implies in turn that the homogeneous chromomagnetic field is also unsta- ble towards forming an inhomogeneous state of separate parallel flux tubes carrying