• Aucun résultat trouvé

THE ROLE OF SUPERCONDUCTING MAGNETS IN NMR MEDICAL IMAGING

N/A
N/A
Protected

Academic year: 2021

Partager "THE ROLE OF SUPERCONDUCTING MAGNETS IN NMR MEDICAL IMAGING"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00223610

https://hal.archives-ouvertes.fr/jpa-00223610

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE ROLE OF SUPERCONDUCTING MAGNETS IN NMR MEDICAL IMAGING

M. Green, J. Singer

To cite this version:

M. Green, J. Singer. THE ROLE OF SUPERCONDUCTING MAGNETS IN NMR MEDICAL IMAGING. Journal de Physique Colloques, 1984, 45 (C1), pp.C1-685-C1-690.

�10.1051/jphyscol:19841139�. �jpa-00223610�

(2)

JOURNAL D E PHYSIQUE

Colloque C l , supplkment au n o 1, Tome 45, janvier 1984 page C1-685

THE ROLE OF SUPERCONDUCTING MAGNETS I N NMR M E D I C A L I M A G I N G

M.A. Green and J.R. s i n g e r r

Lawrence BerkeZey Laboratory, 1 Cyclotron Road, BerkeZey, CA 94720, U.S.A.

l ~ e ~ a r t m e n t of E l e c t r i c a l Engineering and Computer Science, U n i v e r s i t y o f C a l i f o r n i a , Berkeley, CA 94720, U.S.A.

Resume

-

La medecine moderne e s t devenue de p l u s en p l u s dependante des rayons

-

x a i n s i que de diverses techniques d ' i m a g e r i e pour l e d i a g n o s t i c de maladies.

Au cours des c i n q dernieres annees, une technique d ' i m a g e r i e u t i l i s a n t l a RE!W (Rksonance Magnetique Nucl e a i r e ) a & t e devel oppee. L ' imagerie par RMN produi

-

r a des images p r 6 c i s e s de t i s s u s mous sans a v o i r recours aux dangereuses ra- d i a t i o n s i o n i s a n t e s . L ' i m a g e r i e R M N peut &re p a r t i c u l i e r e m e n t u t i l e pour l a d e t e c t i o n de cancers e t de c e r t a i n e s maladies c a r d i o - v a s c u l a i r e s . I 1 se peut que l ' i m a g e r i e RMN c o n s t i t u e l a premiere u t i l i s a t i o n a grande 6 c h e l l e de l a technologie de bobines supraconductrices. Cet a r t i c l e d e c r i t l e r61e des bo- bines supraconductrices dans l ' i m a g e r i e RMII. Les c r i t e r e s de d e f i n i t i o n pour l e s bobines supraconductrices u t i l i s a b l e s pour l ' i m a g e r i e 8 corps e n t i e r s sont presentes. Quelques approches de conception de bobines sont Ggalement discutees.

A b s t r a c t - Modern medicine has become dependent on x-rays and v a r i o u s imaging techniques f o r t h e diagnosis o f diseases. W i t h i n the l a s t f i v e years, an imagi ng technique which uses NMR (Nuclear Magnetic Resonance) has been

developed. NMR imaging w i l l produce d e t a i l e d p i c t u r e s o f s o f t t i s s u e s w i t h o u t the use o f dangerous i o n i z i n g r a d i a t i o n . NMR imaging can be p a r t i c u l a r l y u s e f u l f o r t h e d e t e c t i o n o f cancer and c e r t a i n cardiovascular diseases. NMR imaging may w e l l p r o v i d e the f i r s t l a r g e - s c a l e use o f superconducting magnet technology by s o c i e t y as a whole. This paper describes the r o l e o f

superconducting magnets i n NMR imaging. The design c r i t e r i a f o r super- conducting magnets s u i t a b l e f o r whole-body imaging o f humans are presented.

A couple o f magnet design approaches are discussed.

1) I n t r o d u c t i o n

Medical imaging using Nuclear Magnetic Resonance (NMR) has become a l a r g e s c a l e user of superconducting magnets. To some NMR imaging w i l l r e p l a c e a whole h o s t o f medical d i a g n o s t i c techniques; t o o t h e r s NMR imaging i s o n l y somewhat b e t t e r than CT scanning (computerized tomography using x-rays). Whether o r n o t NMR imaging becomes important t o t h e f i e l d o f s u p e r c o n d u c t i v i t y depends on a number o f f a c t o r s , t e c h n i c a l p o l i t i c a l and economic.

There are many i n the medical community who b e l i e v e t h e NMR imaging w i l l replace, f o r many p a t i e n t s , x - r a y CT scans, P o s i t r o n Emission Tomography (PET) scans, Angigrams, Mylograms, many types of nuclear scans and d i g i t a l s u b s t r a c t i o n radiography. I t has become c l e a r t h a t NMR imaging i s p a r t i c u l a r l y good f o r

studying s o f t t i s s u e s such as the brain, l i v e r , and kidneys.l,2 (Some researchers f e e l t h a t NMR scanning w i l l be good i n t h e heart, lungs and o t h e r organs as we1 1 . ) NMR scanning a l s o shows g r e a t promise i n areas such as t h e spine and limb

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19841139

(3)

JOURNAL DE PHYSIQUE

j o i n t s .

Besides good s o f t t i s s u e r e s o l u t i o n , NMR scanning i s non-invasive i n t h a t

c a t h e t e r s and c o n t r a s t media (dyes i n t h e b l o o d stream o r a i r i n t h e s p i n a l cord) a r e n o t needed. Repeated scans o f a p a t i e n t can be taken d u r i n g treatment because t h e r e i s no i o n i z i n g r a d i a t i o n involved i n t h e process. (The e f f e c t s o f d.c. magnetic f i e l d and t h e r.f. a r e expected t o be minimal.) At h i g h magnetic f i e l d s chemical b i o p s i e s can be taken. The d e t e c t i o n o f some diseases, such as m u l t i p l e s c l o r o s i s , has been g r e a t l y improved w i t h NMR. NMR has been used t o measure blood f l o w which can be important i n d e t e c t i n g strokes.3 The

proponents o f NMR expect t h a t NMR imaging w i l l r e v o l u t i o n i z e d i a g n o s t i c medicine.4,5 F i g u r e 1 shows an NMR scan o f one o f t h e a u t h o r ' s head. The nose, eyes, ears and lower b r a i n are c l e a r l y v i s i b l e .

NMR i s n o t w i t h o u t i t s disadvantages. I t can n o t be used on p a t i e n t s w i t h pacemakers o r ferromagnetic body p a r t s (i.e., a magnetic s t a i n l e s s s t e e l p l a t e i n t h e head). NMR imaging i s expensive. To those who see NMR

imaging as s c a r c e l y b e t t e r than CT scanning, t h e c o s t o f NMR scanning i s n o t j u s t i f i e d . The e x t r a cost o f t h e NMR scanners i s n o t o n l y i n the magnet b u t i t a l s o i n v o l v e s t h e space ( f r e e o f o r shielded from ferromagnetic o b j e c t s ) which must be provided f o r the system.

2) Superconducting NMR Magnets vs Conventional and Permanent Magnets

NMR imaging systems are c u r r e n t l y being designed o r b u i l t by approximately 15 f i r m s . The magnets being used o r proposed i n c l u d e 1 ) room temperature r e s i s t i v e magnets w i t h o u t i r o n , 2) room temperature r e s i s t i v e magnet w i t h an i r o n r e t u r n path, 3) permanent magnets which use r a r e e a r t h c o b a l t m a t e r i a l s and/or other ferromagnetic m a t e r i a l s , 4) superconducting solenoids w i t h o u t iron, 5) v a r i o u s superconducting c o i l designs w i t h e i t h e r i r o n r e t u r n paths o r s h i e l d s .

Each o f t h e v a r i o u s types of NMR magnets has i t s proponents and d e t r a c t o r s . The authors b e l i e v e t h a t t h e superconducting magnets can p l a y a dominant r o l e i n the NMR imaging f i e l d . We see t h e f o l l o w i n g advantages f o r superconducting magnets i n NMR imaging: 1 ) Superconducting magnets are t h e o n l y economical way t o go t o f i e l d s above 0.5 t e s l a ; 2) superconducting magnets w i t h f i e l d s above 0.3 t e s l a w i l l be more economical t o operate (The proponents of permanent magnets c l a i m t h e r e i s no o p e r a t i n g cost b u t none o f them c l a i m t o produce much more than 0.3 t e s l a . ) ; 3) superconducting magnets a r e p o t e n t i a l l y l i g h t e r and smaller than e i t h e r permanent o r conventional magnets; and 4) superconducting magnets have good time s t a b i l i t y . (The r e s i s t a n c e o f the superconducting magnet system does n o t change w i t h time. Changes i n i r o n p r o p e r t i e s are o f t e n n o t a f a c t o r i n superconducting systems. Operation i n p e r s i s t a n t mode i s possible, b u t n o t necessary f o r good q u a l i t y imaging.

3) I s A Higher Magnetic F i e l d B e t t e r ?

The l e v e l o f magnetic f i e l d chosen f o r NMR imaging i s dependent on who you t a l k t o and what c o r p o r a t e axe t h e y have t o g r i n d . Most of the imager manufacturers see t h a t i n c r e a s i n g t h e magnetic f i e l d can r e s u l t i n sharper images. Opinion becomes d i v i d e d as soon as one t a l k s about f i e l d s above 0.5 t e s l a . For example Technicare, Dyasonics, P i c k e r and others are marketing a magnetic f i e l d o f 0.5 t e s l a o r l e s s whereas General E l e c t r i c i n t h e United States has been marketing a f i e l d o f 1.5 t e s l a . There are o t h e r groups who have been l o o k i n g a t whole body imagers w i t h f i e l d s as high as 3.0 t e s l a .

The arguments i n f a v o r o f h i g h magnetic f i e l d s can be summarized as f o l l o w s : 1) higher magnetic f i e l d s produce b e t t e r q u a l i t y images, o r 2 ) one can produce images f a s t e r . There i s a t r a d e o f f between image q u a l i t y and p a t i e n t through put. (see F i g u r e 2)6 3) Higher magnetic f i e l d s are necessary f o r doing images

(4)

F i g . 1 An NMR image o f t h e human head taken a t t h e l e v e l o f t h e eyes. The upper p a r t o f the b r a i n stem and t h e cerebellem can be c l e a r l y seen.

The photo i s from t h e U n i v e r s i t y o f C a l i f o r n i a a t San Francisco and was made a t a f i e l d o f 0.35T.

Fig. 2

Integration t i m e constant rsvs

( seconds )

Obtainable s p a t i a l r e s o l u t i o n d i s t a n c e d (cube edge f o r an image a s i g n a l t o noise r a t i o o f 100 versus t h e image i n t e g r a t i o n time ( p r o p o r t i o n a l t o imaging t i m e ) curve A f o = 4MHZ, Bo = 0.094T;

curve B fo = 10MHZ, Bo = 0.235T; curve C fo = 20MHz, B, = 0.470T; and curve D f o = 40MHZ, B0 = 0.939T (note: f o i s t h e r.f. frequency which appl i e s f o r Hydrogen)

w i t h constant

(5)

Cl-688 JOURNAL DE PHYSIQUE

and chemistry i n v o l v i n g elements such as phosphorous 31, sodium 23, potassium 39, calcium 43, and n i t r o g e n 14. ( I t should be noted t h a t a l l o f d i a g n o s t i c NMR imaging being done today uses t h e common i s o t o p e o f hydrogen. )

There are a number o f t e c h n i c a l arguments i n f a v o r o f h i g h f i e l d imaging, b u t t h e r e are a l s o arguments against going t o t o o h i g h a magnetic f i e l d . These arguments are: 1 ) Higher magnetic f i e l d s mean h i g h e r r.f. frequencies which means a s m a l l e r s k i n depth f o r p e n e t r a t i o n o f t h e r.f. waves. Imaging o f t h e trunk may be b e t t e r a t lower f i e l d s than f i e l d s used f o r imaging t h e head. There i s c o n t i n u i n g study on ways t o avoid t h e s k i n depth problem. 2) Higher magnetic f i e l d s mean t h a t t h e f a c i l i t y which houses t h e magnet must be l a r g e r , o r considerable i r o n s h i e l d i n g must be used. The c o s t o f housing a h i g h f i e l d NMR magnet may n o t be worth t h e gain. 3) The c o s t purchasing and c o o l i n g a h i g h f i e l d superconducting magnet i s g r e a t e r than f o r a low f i e l d magnet.

The optimum f i e l d l e v e l f o r NMR imaging magnets has n o t been set. It i s q u i t e probable t h a t t h e f i e l d l e v e l w i l l go up from t h e present 0.35 t o 0.5T used by super-conducting NMR imagers today. The a b i l i t y t o image a t more than one magnetic f i e l d c o u l d e a s i l y change t h e philosophy c u r r e n t l y being employed by t h e

imager manufacturers. This c o u l d r e s u l t i n higher magnetic f i e l d requirements f o r a t l e a s t some kinds o f images.

4) Superconducting Whole Body NMR Imaging Magnet S p e c i f i c a t i o n s

The general s p e c i f i c a t i o n s f o r whole body superconducting NMR imaging magnets are as f o l l o w s :

1 ) The warm diameter r e q u i r e d i s between 1.0 and 1.2 meters. The g r a d i e n t c o i l s and r.f. c o i l s must be housed w i t h i n t h e bore as w e l l as t h e p a t i e n t . 2) Magnet o u t s i d e dimensions and weight are n o t important a t t h i s time. T h i s i s expected t o change as t h e c o s t o f i n s t a l l a t i o n i s f a c t o r e d i n t o t h e c o s t equation.

3) The f i e l d a t t h e center o f t h e magnet should be a t l e a s t 0.3 t e s l a . A number o f NMR imaging magnets w i t h c e n t r a l f i e l d s o f 1.5 t e s l a have been b u i l t . There are other NMR imaging magnets being proposed w i t h f i e l d s as h i g h as 3.OT.

4) The d e s i r e d f i e l d u n i f o r m i t y f o r whole body imaging i s 10 t o 20 p a r t s per m i l l i o n over a sphere which has a diameter of 50 centimeters. For head imaging b e t t e r u n i f o r m i t y i s wanted, b u t over a smaller diameter.

The manufacturers o f NMR imagers are asking f o r higher f i e l d u n i f o r m i t y than they are now g e t t i n g . F i e l d u n i f o r m i t y and f i e l d s t a b i l i t y seem t o be t h e most important requirements demanded by t h e producers o f NMR imaging equipment. I f t h e magnet i s being used f o r NMR spectroscopy and chemistry t h e f i e l d u n i f o r m i t y requirements may be even g r e a t e r .

5) The Design Approaches Employed i n Superconducting Whole Body NMR Imaging Magnets Many of t h e superconducting NMR magnets being b u i l t today use t h e so c a l l e d t h r e e c o i l design where f i e l d u n i f o r m i t y i s g o t t e n by making a t h i n c e n t r a l r e g i o n w i t h t h i c k e r lumped c o i l s a t t h e ends. (There are a number o f f o u r c o i l designs as w e l l b u t these designs u s u a l l y d o n ' t e l i m i n a t e f i e l d e r r o r s as w e l l as t h e t h r e e c o i l designs.) I n a d d i t i o n , superconducting c o i l s are provided f o r f i e l d c o r r e c t i o n by some manufacturers. The method o f winding and assembly o f t h e magnet c o i l s i s considered a t r a d e s e c r e t by those who are i n the magnet business.

F i e l d u n f o r m i t y i s considered t o be v e r y important a t t h i s time (There i s work being done on computer software which can compensate i n p a r t f o r f i e l d i n

(6)

homogeni t y problems.) The issues o f f i e l d c o r r e c t i o n and f i e l d s h i e l d i n g go together. Measures taken t o s h i e l d t h e o u t s i d e environment from t h e e f f e c t s o f t h e magnetic f i e l d w i l l c o n t r i b u t e t o f i e l d imhomogenity w i t h i n t h e magnet bore. Shimming o f the c o i l s i s done using pieces o f i r o n or by using a c t i v e c o i l s . The a c t i v e c o i l s can be superconducting o r conventional o r both.

The f i e l d c o r r e c t i o n and s h i e l d i n g i s v e r y much s i t e dependent. On r u r a l s i t e s , one can b u i l d t h e i d e a l magnetic imaging area where space i s t h e s h i e l d i n g ( l i t t l e shimming i s r e q u i r e d on such s i t e s ) . Large h o s p i t a l s i n urban centers such as New York d o n ' t have t h e l u x u r y o f having an i d e a l s i t e . One i s o f t e n faced w i t h s h i e l d i n g p a r t s o f the environment from t h e NMR magnet. (The general p u b l i c can n o t be allowed i n an area w i t h a f i e l d above 0.0005 T because of c a r d i a c pace makers. There are r e s t r i c t i o n s on t h e l o c a t i o n o f CRT screens and computers as w e l l . ) I n an area where s h i e l d i n g i s a problem, t h e magnets must be h e a v i l y shimmed i n order t o meet f i e l d s p e c i f i c a t i o n s i n t h e imaging region.

Most o f t h e whole body superconducting imaging magnets being b u i l t today employ a conventional bath c o o l i n g system. The magnet c o i l o r c o i l s are i n a tank o f l i q u i d helium. The tank i s surrounded by gas cooled s h i e l d s which use b o i l o f f helium from t h e tank. The gas cooled s h i e l d s are surrounded by l i q u i d n i t r o g e n cooled s h i e l d s . The magnets are operated i n a p e r s i s t a n t mode w i t h the e l e c t r i c a l lead r e t r a c t e d i n order t o minimize t h e helium b o i l o f f . The r a t e d helium b o i l o f f r a t e o f these magnets i s around 0.5 l i t e r s per hour ( w i t h t h e leads

r e t r a c t e d ) , and t h e r a t e d l i q u i d n i t r o g e n consumption i s around 2 l i t e r s per hour.

The magnets being b u i l t today use d e l i v e r e d l i q u i d helium and l i q u i d n i t r o g e n a t an estimated annual cost Q - t h e h o s p i t a l or imaging c l i n i c o f 40,000-60,000 U.S. D o l l a r s (these p r i c e s apply i n urban areas o f t h e United S t a t e s ) . The estimated c o s t s do not i n c l u d e c o o l i n g t h e magnet down o r o p e r a t i n g t h e magnet w i t h i t s e l e c t r i c a l leads i n . Operation o f these magnets on a r e f r i g e r a t o r appears t o be economically j u s t i f i e d , p a r t i c u l a r l y o u t s i d e t h e United States.

Several types o f r e f r i g e r a t i o n systems a r e now under study. They range from a r e f r i g e r a t o r which w i l l supply l i q u i d helium and r e f r i g e r a t i o n f o r a l l o f t h e s h i e l d s ( a cooldown c a p a b i l i t y c o u l d be supplied by such a r e f r i g e r a t o r ) t o a small r e f r i g e r a t o r which w i l l j u s t cool t h e gas cooled s h i e l d s between t h e helium p o t and t h e l i q u i d n i t r o g e n pot. ( T h i s would g r e a t l y reduce t h e consumption o f l i q u i d helium.)

A number o f design approaches are being proposed by a number o f magnet companies.

At l e a s t one group proposes a conventional bath cooled magnet i n v e r y low heat leak c r y o s t a t t h a t has t o be f i l l e d w i t h l i q u i d helium o n l y once a year. A t t h e o t h e r end o f t h e scale t h e r e i s a proposed magnet which i s cooled w i t h s u p e r c r i t i c a l helium c i r c u l a t e d through t h e magnet d i r e c t l y from a helium r e f r i g e r a t o r . The NMR imaging magnet o f the f u t u r e probably h a s n ' t been b u i l t y e t . One can expect t h e magnet t o come w i l l be d i f f e r e n t from t h e dominant types o f today. Whether o r n o t superconducting NMR imaging magnets dominate t h e market place i n t h e f u t u r e depends on t h e cryogenic design decisions made today and t h e r e d u c t i o n o f c o s t o f these magnets.

ACKNOWLEDGEMENTS

The authors have had i n f o r m a l discussions w i t h numberous NMR imager manufacturers,

N M R imaging e x p e r i m e n t a l i s t s , and magnet designers. We thank a l l o f these people f o r t h e i r comments.

(7)

JOURNAL DE PHYSIQUE

REFERENCES

1. S c i e n t i f i c Program f o r t h e S o c i e t y o f Magnetic Resonance i n Medicine, 1 s t Annual Meeting, Boston, Mass, August 1982.

2. S c i e n t i f i c Program f o r t h e S o c i e t y o f Magnetic Resonance i n Medicine, 2nd Annual Meeting, San Francisco, CA, August 1983.

3. J. R. Singer and L. E. Crooks, "Nuclear Magnetic Resonance Blood Flow Measure- ments i n t h e Human Brain" Science, Vol. 221, No. 4611, (August 12, 1983), p. 654.

4. E d i t o r i a l i n t h e Annuals o f I n t e r n a l Medicine, Vol. 98, Number 4, A p r i l 1983.

5. P. A. Bottomley, "Nuclear Magnetic Resonance Beyond Physical Imaging", IEEE Spectrum, February 1983, p. 32.

6. J. M. Libove and J. R. Singer, "Resolution and Signal t o Noise R e l a t i o n s h i p s i n NMR Imaging i n t h e Human Body", J. Phys. E; Sci Instrum, 13 (1980) p. 38.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to