• Aucun résultat trouvé

MICROWAVE EXPERIMENTS INCLUDING AVALANCHE

N/A
N/A
Protected

Academic year: 2021

Partager "MICROWAVE EXPERIMENTS INCLUDING AVALANCHE"

Copied!
18
0
0

Texte intégral

(1)

HAL Id: jpa-00221640

https://hal.archives-ouvertes.fr/jpa-00221640

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

AVALANCHE

V. Dienys, A. Dargys

To cite this version:

V. Dienys, A. Dargys. MICROWAVE EXPERIMENTS INCLUDING AVALANCHE. Journal de Physique Colloques, 1981, 42 (C7), pp.C7-33-C7-49. �10.1051/jphyscol:1981704�. �jpa-00221640�

(2)

JOURNAL DE PHYSIQUE

Colloque C7, supplément au n°10, Tome 42, octobre 1981 page C7-33

MICROWAVE EXPERIMENTS INCLUDING AVALANCHE

V. Dienys and A. Dargys

Semiconductor Physics Institute, Lithuanian SSR, Academy of Sciences, Vilnius, USSR

Résumé. - Dans cet exposé sommaire, on décrit les principes des techniques le plus souvent utilisées des micro-ondes des- tinées à l'étude des^électrons cnauas dans les semiconducteurs;

on présente aussi l'état actuel des recherches dans le domaine des électrons chauds effectuées dans le champ électrique des micro-ondes. On souligne surtout les expériences ou l'on uti- lise la spécifité d'échauffement par le champ des micro-ondes aussi bien que celles qui ont permis de compléter l'informa- tion concernant le champ électrique continu.

Abstract. - The principles of the most popular microwave tech- niques for hot electron investigations in semiconductors are briefly described and the current status of hot electron inves- tigations with microwaves is reviewed. The emphasis is put on the experiments which make use of the specific features of mic- rowave heating or give an extra information in addition to that obtained from d.c. measurements.

1. Introduction. - The first microwave (mw) experiment on hot elect- rons was reported by Arthur et al. in 1956 /l/. It triggered a se- ries of works devoted to the application of mw's for hot electron investigations. During a subsequent decade a lot of different mw techniques were proposed. At first they were intended for measuring the hot electron mobility /2-7/, but soon it was realized that mw ex- periments can give a valuable information on the hot carrier energy relaxation /8-11/.

The main subject of the report will be concerned with the hot electron studies during the last decade. During this period no es- sentially new ideas have appeared in the field of mw techniques. The known methods were further developed or have undergone some modifi- cations and were applied to more refined physical problems. Therefo- re, at the begining of the paper the principles of the most popular mw techniques will be briefly described. The rest of the paper will be devoted to the recent hot carrier experimental results obtained with mw's. Only the bulk properties of semiconductors will be con- cerned.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981704

(3)

2. P r i n c i p l e s of mw techniques f o r hot e l e c t r o n i n v e s t i g a t i o n .

( i ) . D i f f e r e n t i a l mobility technique. This technique was proposed by Arthur e t a l . / 1 / and f u r t h e r developed by Gibson e t al. / 9 / . A sam- p l e i s mounted i n a waveguide, Fig. l a , which propagates a weak mw s i g n a l . Reflection

r

and transmission 7 c o e f f i c i e n t s a r e measured.

0 1 2 3 4 5

E, k v c m

a > b

F i 1: a ) . The p r i n c i p l e of t h e d i f f e r e n t i a l mobility technique.

'*. Experimental values of s t a t i c p,= vd/E , d i f f e r e n t i a l p d = d q / d E and high frequency (r(w) m o b i l i t i e s a s a function of dc e l e c t r i c f i e l d f o r n-type germanium, P =4.68 Qcm, T =300 K, w / 2 ~ = 34975 GHz /9/.

The a p p l i c a t i o n of strong pulsed dc e l e c t r i c f i e l d across t h e sample h e a t s t h e c a r r i e r s and a s a consequence modulates f and T which can be used t o f i n d t h e s m a l l s i g n a l conductivity Gtw) and t h e die- l e c t r i c constant &(w) a s a f u n c t i o n of t h e dc e l e c t r i c f i e l d . Typi- c a l experimental r e s u l t s f o r t h e high frequency mobilit y(t,,(w>.q(w)/en a r e shown i n Fig. l b i n t h e case of p a r a l l e l dc and mw f i e l d s . It i s c l e a r t h a t i n t h e zero frequency l i m i t

f i

(0-0) corresponds t o t h e d i f f e r e n t i a l mobility fzd=d% / d E , where Q i s t h e d r i f t v e l o c i t y and

E i s t h e e l e c t r i c f i e l d i n t e n s i t y . Inspection of Fig. l b shows t h a t

p(a)

exceeds

pd .

The observed d i f f e r e n c e can be explained by t h e delay e f f e c t s due t o t h e f i n i t e r a t e of energy r e l a x a t i o n .

( i i ) . I n t e g r a l mobility technique. With t h e sample mounted s i m i l a r l y , t h e c a r r i e r s a r e heated by t h e strong mw e l e c t r i c f i e l d E,cosot while sensing is made by t h e weak dc f i e l d E,

,

Fig. 2a. The measured quan- t i t y i s an average c u r r e n t <j> flowing; through t h e sample

where T = ~ T / ~

.

A t y p i c a l dependence of <j> on E, i s i l l u s t r a t e d i n Fig. 2b. To o b t a i n t h e c u r r e n t - f i e l d c h a r a c t e r i s t i c from t h e obser- ved <'> d v s E, E q . ( l ) must be inverted. Phis is p o s s i b l e t o do only

(4)

SAMPLE E, ilNES

8 10

E,, k V c m

Fig. 2: a ) . The p r i n c i p l e of t h e i n t e g r a l mobility technique. 4 , G

and a r e t h e i n c i d e n t , r e f l e c t e d and t r a n s m i t t e d power, respec- t i v e l y .

b). Ratio of average c u r r e n t s with, <j>

,

and without, j o

,

exci- t a t i o n vs peak value of t h e mw f i e l d f o r n-type germanium, 9 = 5 ~2 cm, T =300 K , w/& =2.85 GHz 161.

i n t h e low frequency l i m i t when t b e r e l a x a t i o n e f f e c t s a r e negligib- l e , f o r example, by numerical techniques o r , as a common p r a c t i c e is, by r e s o r t i n g t o S c h l ~ m i l c h y s i n t e g r a l equation.

The main d i f f i c u l t y of t h i s $echnique i s t o determine E, i n s i d e t h e sample. Depending on the sample Upedance Z, two d i f f e r e n t ap- proaches a r e u s u a l l y used. If Z3 i s of t h e order of a waveguide im- pedance Zg t h e value of E, i s deduced from t h e amount of t h e absor- bed mw power by t h e sample / 4 / . On t h e o t h e r hand, i f Zs,b Z3 t h e mw

f i e l d i n t h e sample i s assumed t o be uniform and equal t o t h a t i n t h e empty guide /6/.

( i i i ) . Harmonic mixing technique. A s f a r back a s 1949 it was shown t h a t r a c t i f i c a t i o n can occur i n a symmetric nonlinear element i f ap- p l i e d s i g n a l c o n s i s t s of s e v e r a l sinusoids with frequencies i n a cen- t a i n r a t i o / 1 2 / . Experimentally t h i s was v e r i f i e d with magnetic c i r - c u i t s containing ferromagnetic m a t e r i a l . A s i m i l a r e f f e c t was obser- ved i n hot e l e c t r o n mw experiment by C a r l i n and Pozhela / 1 3 / i n 1965,

and a year l a t e r Schweitzer and Seeger proposed t o use it f o r t h e measurement of energy r e l a x a t i o n %ime /14/. I n t h e simplest case of homogeneous sample, having t h e s t a t i c c u r r e n t d e n s i t y - f i e l d cha- r a c t e r i s t i c

j =

c 0 ( l + p ~ ' ) E , t h e e l e c t r i c f i e l d

E = E, cos (at+ cp) + E, cos 2wt ( 3 )

(5)

produces a dc open-circuit f i e l d

3 2-7/2 2

E,=+p(l+4ok) E, E2ms2cy+p. ( 4 )

Here % i s t h e zero-field conductivity and

p

i s t h e w a r m e l e c t r o n c o e f f i c i e n t . Because of t h e energy r e l a x a t i o n an a d d i t i o n a l phase s h i f t $h appears which i s r e l a t e d t o '7-, by

The schematic diagram of an experimental setup i s given i n Fig.

3a. TO f i n d Te it i s most convenient t o measure t h e phase s h i f t 7fr

hzi@

WAVEGUIDE

: a ) . Sample holder f o r harmonic mixing experiments.

.

Energy r e l a x a t i o n time vs l a t t i c e temperature i n n-type ger- manium, o

-

5SLcm, a

-

12SLcm, x

-

30Qcm /15/.

with r e s p e c t t o t h e reference sample i n which t h e condition wl,<<l i s s a t i s f i e d o r C1-, i s known beforehand, and t h e n t o use ( 5 ) . Fig. 3b i l l u s t r a t e s t h e dependence of Te on l a t t i c e temperature obtained i n t h i s w a y .

( i v ) . Harmonic generation technique. F i r s t experiments on t h e har- monic generation by h o t e l e c t r o n s were concerned with t h e problem of constructing an e f f i c i e n t frequency m u l t i p l i e r /16,17/. However, t h e conversion e f f i c i e n c y of such m u l t i p l i e r s has been found t o be r a t - h e r low, e s p e c i a l l y , f o r high frequencies where t h e i n e r t i a of car- r i e r heating becomes t h e main l i m i t i n g f a c t o r / 1 8 / . A s a r e s u l t t h e frequency m u l t i p l i c a t i o n has not found a widespread a p p l i c a t i o n i n mw engineering. On t h e o t h e r hand, i n semiconductor physics it was s u c c e s s f u l l y applied f o r hot e l e c t r o n energy r e l a x a t i o n investiga- t i o n /18-20/. Fig. 4a i l l u s t r a t e s t h e i d e a of t h e experiment. A rod- shaped semiconductor s a p l e i s mounted in t h e middle of t h e window of a rectangular waveguide. If mw and dc f i e l d s a r e impressed i n t h e sample simultaneously i t i r r a d i a t e s t h e higher harmonics which could

(6)

: a ) . The p r i n c i p l e of %he harmonic generation technique.

.

Energy r e l a x a t i o n time v s e l e c t r i c f i e l d f o r n-type germa- nium a t 77 K, p = 4 0 Q cm /20/.

be separated out, f o r example, by t h e guide tapered t o t h e smaller dimensions o r by a harmonic f i l t e r . !The amplitude and phase of t h e harmonic of i n t e r e s t depend on t h e c a r r i e r heating i n e r t i a , and t h i s property may be used t o obtain t h e energy r e l a x a t i o n time. For exam- p l e , t h e harmonic generation technique was used f o r t h e investiga- t i o n of t h e dependence of 3 on e l e c t r i c f i e l d i n n-Ge and n-Si /20/.

Some r e s u l t s of t h a t paper a r e p l o t t e d i n Fig. 4b.

( v ) . Cyclotron resonance technique. The cyclotron resonance experi- ments on semiconductors a r e u s u a l l y employed t o study t h e i r band

s t r u c t u r e . In a d d i t i o n t h e width of t h e resonance l i n e contains in- formation on t h e c o l l i s i o n frequency of c a r r i e r s with l a t t i c e imper- f e c t i o n s . This property can be used t o study t h e c a r r i e r heating i n t h e cyclotron resonance experiments by measuring t h e dependence of t h e l i n e shape on t h e absorbed mv power, Fig. 5.

PC?% 1

Pin. - - 5 : C ~ c l o t r o n l i n e shapes

" for v k i o u s power l e v e l s

/21/. The absorbed mw power i n c r e a s e s with t h e number

'0

\- .

I

of curves.

(7)

The described m techniques, i n some sense, may be considered a s fundamental ones. A few words should be mentioned of o t h e r r e l a - t e d techniques. In /22/ t h e method employing a c a v i t y with t h e s a p - l e p a r t i a l l y replacing t h e c a v i t y w a l l s was used t o measure t h e h o t c a r r i e r small s i g n a l complex conductivity. I n /23/ it was shown t h a t t h e observation of t h e complex conductivity a t t h e fundamental f r e - quency of high mup s i g n a l may be used t o f i n d t h e v e l o c i t y - f i e l d cha- r a c t e r i s t i c . I n /24/ a hybrid of mw and conventional time-of-flight techniques was proposed t o measure d r i f t v e l o c i t y i n t h i n low r e s i s - t i v i t y samples, and e t c .

3. Relaxation e f f e c t s .

-

High e l e c t r i c f i e l d causes a departure Of t h e energy and momentum d i s t r i b u t i o n of c a r r i e r s from equilibrium s t a t e . Usually t h e response times c h a r a c t e r i z i n g t h e energy and mo- mentum l o s s t o t h e l a t t i c e a r e i n t h e range from 10'~ s t o 10-l3 s.

!&us t h e mw frequency i s high enough f o r strong r e l a x a t i o n e f f e c t s t o appear, and d i r e c t observation of t h e i n e r t i a of physical proces- s e s under hot e l e c t r o n conditions i s possible. This i s of considera- b l e i n t e r e s t f o r semiconductor physics. The progress i n t h e relaxa- t i o n e f f e c t study during t h e l a s t decade was achieved mainly i n t h r e e aspects. F i r s t , apart from t h e t r a d i t i o n a l m a t e r i a l s Ge and S i a l s o o t h e r m a t e r i a l s , e s p e c i a l l y t h e group A B semiconductors, have

3 5

been extensively s t u d i e d , see e.g. /25-28/. Second, t h e experiments have become more s o p h i s t i c a t e d and comprehensive. A s a r e s u l t t h e

Pia. 6 : a ) . Energy r e l a x a t i o n time vs c a r r i e r concentration f o r n-ty- pe nermanium a t 77 K /29/.

b ) .'-The dependence of conductivity r e l a x a t i o n time 'i-, measured by t h e harmonic mixing technique on t h e p i a x i a l compressive s t r e s s

F i n n ype ermanium. T =80 K, E IIFll<177), ~ 4 2 % - ~9.41 GHz, -n =

= 2 . 4 x l d cm-5, 0 - n =5x1@2 cm-3 / 32,.

dependencies of t h e energy d i s s i p a t i o n r a t e on t h e e l e c t r i c f i e l d

(8)

i n t e n s i t y /20,25,27/

,

f r e e c a r r i e r concentration / 29/, u n i a x i a l s t r e e s /30-33/ have been measured. For i l l u s t r a t i o n Figs. 4b, 6 and 7 show some of t h e r e s u l t s . Valuable information on t h e c a r r i e r sca-

Fig. 7: Energy r e l a x a t i o n time v s u n i a x i a l s t r e s s i n p- type germanium a t d i f f e - r e n t temperatures. S t r e s s applied i n t h e <700> d i r e c - t i o n , T denotes t h e en- ergy reloaxation time a t zero s t r e s s /33/.

t t e r i n g mechanisms may be deduced from t h e s e and s i m i l a r data. For example, from t h e r e s u l t s displayed on Fig. 6 it can be concluded t h a t i n n-Ge t h e s t r e p g t h s of t h e i n t e r v a l l e y electron-electron

(e-e) s c a t t e r i n g and t h e i n t r a v a l l e y e-e s c a t t e r i n g a r e of t h e same order.

F i n a l l y , t h e i n v e s t i g a t i o n s of r e l a x a t i o n e f f e c t s i n t h e wide frequency range was r e c e n t l y undertaken /34-36/. I n c o n t r a s t t o t h e s i n g l e frequency r e l a x a t i o n e f f e c t measurements such i n v e s t i g a t i o n s can y i e l d more information, e s p e c i a l l y on t h e importance of various r e l a x a t i o n channels. We s h a l l dwell on t h e s e experiments i n more de- t a i l . T i l l now they have been performed i n t h e warm e l e c t r o n region where with t h e help of Eq. ( 1 ) one can show t h a t

Here (3* denotes t h e frequency dependent e f f e c t i v e w a r m e l e c t r o n co- e f f i c i e n t . I n p r i n c i p l e t h e a n a l y s i s of

/SX

as a function of t h e f r e - quency allows t o f i n d t h e energy r e l a x a t i o n time /8/. However a s is seen from Eq. ( 6 ) t h e amplitude of t h e e l e c t r i c f i e l d E, i n t h e sam- p l e must be known what i s r a t h e r d i f f i c u l t t o do, i n a wide frequen- cy range. For t h i s reason i t i s advantageous t o r e d e f i n e Eq. ( 6 ) through q u a n t i t i e s which can be measured d i r e c t l y , namely:

where P i s t h e mw power absorbed i n a u n i t volume of t h e sample.

(9)

Eq.(7) may be considered as a new d e f i n i t i o n of t h e e f f e c t i v e warm e l e c t r o n c o e f f i c i e n t 4*

.

This modification allows t o simplify t h e experimental procedure e s s e n t i a l l y . The absorbed power can be measured by t h e conventional bridge c i r c u i t method /37/ i n which t h e sample under i n v e s t i g a t i o n simultaneously serves a s a bolometer. The mw s i g n a l is square-wave modulated, t h e modulation frequency beeir!g s u f f i c i e n t l y high t o suppress t h e ac component of l a t t i c e heating.

To i l l u s t r a t e t h e p o s s i b i l i t i e s of t h e method t h e dependence of

2 on t h e frequency f o r n-Si and p-Ge i s shown i n Fig. 8. In case of n-Si, Fig. 8a, t h e experimental r e s u l t s f i t w e l l t h e phenomenolo- g i c a l r e l a t i o n

where T, i s t h e momentum r e l a x a t i o n time. For p-Ge t h e dependence

8: The frequency pend n c g of t h e c o e f f i c i e n t d*

.

-%j. n-Si, n =2x10@ cm-?, E l<171), 0 - 1 =80 K , 0 - 7.290 I(. S o l i d curves represent t h e b e s t f i t of Eq.(8) with t h e experimental

d a t a /34,35/. -

b )

.

p-Ge, p 3 5 . 4 ~ 1 0 ~ 3

TII(IOD),

T =80 K. Points a r e experi- mental data. The dashed l i n e r e p r e s e n t s t h e b e s t f i t of Eq. ( 8 ) with t h e experimental d a t a ( Q =90 p s , Tm =5.5 s ) . The d o t t e d l i n e shows t h e dependence predicted by t h e Eq.(8? f o r -T, -30 ps /15/. The s o l i d curve r e p r e s e n t s t h e b e s t f i t of t h e eqerimen- t a l d a t a with t h e phenomenological expression corrected f o r t h e interband repopulation of holes ( '1- =I10 p s , '1,=5.5 p s , i n t e r - band repopulation time Ci;: =8ps) / 3 g / .

i s more complicated, Fig. 8b. The a n a l y s i s of experimental d a t a of P-Ge have shown t h a t i n t h i s case t h e conductivity r e l a x a t i o n i s de- termined not only by t h e energy d i s s i p a t i o n process but a l s o by t h e h o l e interband r e d i s t r i b u t i o n a s well a s by t h e accumulation of holes

(10)

i n the f i e l d d i r e c t i o n / 36/.

4. Impact i o n i z a t i o n .

-

In high e l e c t r i c f i e l d s t h e avalanche break- down s e t s i n with t h e consequence t h a t c a r r i e r concentration changes with t h e e l e c t r i c f i e l d . In mw experiments due t o t h e breakdown of

a i r t h e e l e c t r i c f i e l d i n t e n s i t y i n a sample u s u a l l y does not exceed -3.10 4 V/cm. Such f i e l d s a r e too small t o i n i t i a t e t h e band-band impact i o n i z a t i o n i n many t r a d i t i o n a l semiconductors. Therefore, t h e mw induced c a r r i e r m u l t i p l i c a t i o n was observed mainly a s a r e s u l t O f

impurity breakdown a t l o w temperatures / 3 8 / , o r i n narrow-gap semi- conductors, s e e e.g. /39-441. In first experiments t h e onset of bre-

akdown was deduced from t h e transmitted m power l e v e l through a t h i n semiconductor p l a t e c o m p l e t e l y f i l l i n g the waveguide cross-sec- t i o n . Typical experimental r e s u l t s a r e shown i n Fig. 9. The break of

Fig. 9: & transmission

through InSb p l a t e a t 80 K /391

t h e curve i s i d e n t i f i e d with t h e onset of t h e c a r r i e r multiplica- t i o n . However, such measurements a r e used seldom s i n c e only a very crude estimation of t h e e l e c t r i c f i e l d i n t e n s i t y i n t h e p l a t e i s possible.

The i n t e g r a l mobility technique has been found a s a more s u i t a - b l e method f o r t h e i n v e s t i g a t i o n of avalanche p r o p e r t i e s i n semicon- ductors due t o t h e following reasons. F i r s t , t h e e l e c t r i c f i e l d i n t h e rod-shaped sample can be made uniform and found from t h e absor- bed ( Z s - Z 9 ) o r t h e transmitted (ZS>>Z3) power. Also, t h e i d e n t i f i - c a t i o n of t h e breakdown i s e a s i e r . Fig. 1 0 shows t h e dependence of t h e threshold f i e l d of impact i o n i z a t i o n ET on t h e l a t t i c e tempera- t u r e f o r p-InSb a t 10 GHz and 37 GEz a s found by t h i s method. 'Phe d i f f e r e n c e i n ET v s frequency i s a manifestation of t h e delay of t h e impact i o n i z a t i o n Drocess.

(11)

5.0 Fig. 10: !J%reshold f i e l d of irn- pact i o n i z a t i o n v s l a t t i c e temperature i n p-InSb a t

0

0 d i f f e r e n t mw frequencies.

0 -10 GHz, -37 GHz / 4 2 / .

0.3 Oo 0

Recently it was demonstrated t h a t mw technique can be success- f u l l y employed f o r t h e study of t h e impact i o n i z a t i o n and magneto- t r a n s p o r t i n crossed e l e c t r i c and magnetic f i e l d s /41,43,44 /. At mw frequencies t h e e l e c t r i c f i e l d i s applied c o n t a c t l e s s l y , t h e r e f o r e , a premature breakdown a s observed i n dc e l e c t r i c and magnetic f i e l d s due t o s h o r t i n g of t h e H a l l f i e l d by c u r r e n t c o n t a c t s can be avoided.

Also,because of a f i n i t e charge r e d i s t r i b u t i o n time it i s p o s s i b l e t o c o n t r o l t h e magnitude of t h e mw H a l l f i e l d i n t h e samples with t h e H a l l geometry. For example, by choosing small enough c a r r i e r concentration o r by placing t h e sample in a high magnetic f i e l d B

((26>>11 one can reduce t h e now H a l l f i e l d nearly t o zero. I n Fig. 11

E,vs B is shown f o r n - W b a t 80 K. A t t h e frequency of measure- ment, 9.4 GHz, t h e mw H a l l f i e l d was n e g l i g i b l e and samples beha- ved a s i f being of t h e Corbino geometry. A s expected i n t h e high magnetic f i e l d region ET i n c r e a s e s n e a r l y l i n e a r l y with 6

.

E 3 -

Y

s

Lu;2

0 1 2 B,T

/ @

-

1 -

/ P

'%%

i I

Fig. 11: Threshold f i e l d of lmpact i o n i z a t i o n vs mag- n e t i c f i e l d f o r n-InSb samples with r e s i s t i v i t i e s a t 77 K,O.l7Qcmto) ,22Scm

( x)

,

54 &cm ( A ) /43/. The s o l i d l i n e shows t h e pre- d i c t i o n of theory / 4 5 / as- suming t h e impact i o n i z i n g c o l l i s i o n time 3, =10 ps.

(12)

!Phe nonlinear mw magnetoplasma resonance i n s m a l l samples was demonstrated t o be u s e f u l t o study t h e impact i o n i z a t i o n /44/. With samples i n t h e form of s m a l l d i s c s placed in a r e c t ~ u l a r guide, a dependence s i m i l a r t o t h a t presented i n Fig. 11 was obtained.

The avalanche breakdown i s associated with t h e p a i r production s c a t t e r i n g which may be described by introducing t h e i o n i z i n g c o l l i - s i o n time

T;:, .

I f ionizing c o l l i s i o n s predominate and wqc>,7 one ex- p e c t s t h e r e l a x a t i o n e f f e c t s due t o t h e avalanche t o be observable i n t h e t r a n s p o r t c o e f f i c i e n t s . For example, t h e i o n i z i n g c o l l i s i o n s a r e e q e c t e d t o reduce o r even suppress %he negative d i f f e r e n t i a l mobility /46/. I n search of t h i s e f f e c t t h e d r i f t v e l o c i t y in n-InSb was measured deep i n t o t h e avalanche region /47/. To f a c t o r i z e t h e c u r r e n t i n t o t h e d r i f t v e l o c i t y vd and c a r r i e r concentration n t h e double mw p u l s e was used. I f s e p a r a t i o n between t h e p u l s e s A t i s smaller than t h e p a i r l i f e t i m e t h e nonequilibrium c a r r i e r concentra- t i o n w i l l not change ~ p r e c i a b l y during t h i s time. Therefore n can be deduced from t h e conductivity measured during t h e i n t e r v a l bet- ween pulses when t h e excess c a r r i e r s a r e i n the thermal equilibrium with t h e l a t t i c e . A s seen from Fig. 1 2 t h e c a r r i e r concentration

Fig. 12: The dependence of d r i f t v e l o c i t y and nonequi, l i b r i u m c a r r i e r concentra- t i o n on e l e c t r i c f i e l d i n n-InSb obtained with doub- l e p u l s e mw technique /47/.

The d o t s are experimental r e s u l t s obtained by t h e ti- me-of-flight method /48/.

s t e e p l y increases a t f i e l d s higher than 250 V/cm. Tbe d r i f t v e l o c i t y reaches t h e maximum value a t 500 V/cm and then drops down. NO t r a n s i - t i o n from t h e negative t o t h e p o s i t i v e d i f f e r e n t i a l mobility i s ob- served a s predicted by t h e Monte Carlo c a l c u l a t i o n s / 4 6 / i f ioniza- t i o n frequency is assumed t o be l a r g e r than phonon s c a t t e r i n g f r e - quenc y

.

5. Ilegative d i f f e r e n t i a l mobility (ndm)

. -

I n connection with t r a n s - f e r r e d e l e c t r o n devices t h e measurement of v e l o c i t y - f i e l d (v-E) cha- r a c t e r i s t i c s i n m a t e r i a l s with ndm is of fundamental importance. The

(13)

i n t e g r a l mobility technique has been widely applied i n t h e i n v e s t i - g a t i o n s of GaAs and r e l a t e d compounds t o supplement t h e r e s u l t s ob- t a i n e d with o t h e r techniques. A t present p r a c t i c a l l y i t i s t h e only method t o obtaine a v-E curve possesing ndm i n high e l e c t r o n d e n s i t y

semiconductors because t h e most d i r e c t method, t h e time-of-flight method, unfortunately needs l o w c a r r i e r d e n s i t y material. A review of t y p i c a l experimental r e s u l t s and problems connected with mw mea- surements i n t h e ndm region may be found, e .g. in/49/

.

Theref ore on- l y two experiments which i l l u s t r a t e t h e s p e c i f i c p o s s i b i l i t i e s of mw technique w i l l be mentioned.

Most of t h e i n v e s t i g a t o r s dealing with t h e ndm have been i n t e - r e s t e d i n finding v-E c h a r a c t e r i s t i c . On t h e o t h e r hand, t h e depen- dence of t h e small s i g n a l complex conductivity on dc heating f i e l d

Fig. 13: Small s i g n a l conductivity ( a ) and d i e l e c t r i c constant ( b ) v s heating f i e l d f o r t h e cases of p a r a l l e l ( I1 ) and perpendicu- l a r (1 ) 50 GHz sensing f i e l d i n n-GaAs. The curves a r e normali- zed t o t h e zero heating f i e l d values. T 1300 K , =218cm 1501.

i n t h e ndm region i s of a considerable i n t e r e s t . It has been demons- t r a t e d t h a t t h e raw technique i s s u i t a b l e i n such s i t u a t i o n s / 5 0 / . To suppress t h e high f i e l d domain formation t h e b i a s high e l e c t r i c f i e l d has been c r e a t e d by applying 1 0 GHz mw's. A 50 GHz weak sen- s i n g f i e l d was applied simultaneously t o f i n d t h e complex small s i g -

~ a l conductivity a s a function of t h e b i a s f i e l d . Fig. 1 3 shows t h e r e a l and imaginary p a r t s of t h e small s i g n a l conductivity of n-GaAs a t 300 I( f o r p a r a l l e l and perpendicular d i r e c t i o n s of t h e heating f i e l d vector with respect t o the sensing one. The obtained r e s u l t s a r e valuable i n understanding hot e l e c t r o n dynamics.

I n 1511 t h e i n v e s t i g a t i o n of ndm i n t h e graded gap mixed crys- t a l s A 1 X Gal

-

=As (x=O-0.17) were performed. The r e s u l t s give an evi- dence t h a t i n graded gap m a t e r i a l s t h e l a t e r a l t r a n s p o r t can be im-

(14)

portant. The problem of t h e l a t e r a l t r a n s p o r t w i l l be t r e a t e d i n de- t a i l i n t h e paper by Hess a t t h i s conference.

6. Nonuniform s t r u c t u r e s .

-

The mw technique allows e f f e c t i v e de- coupling of t h e l a r g e heating and small dc measured f i e l d s . Thus t h e d i f f i c u l t i e s encountered by first i n v e s t i g a t o r s i n thermoelectric power s t u d i e s by dc f i e l d s have been overcome by mw' s / 52,53/. We- v e r t h e l e s s , t h e i n t e r p r e t a t i o n of thermoemf a r i s i n g between semicon- ductor and metal due t o mw f i e l d was d i f f i c u l t

,

mainly, because t h e e l e c t r i c f i e l d d i s t r i b u t i o n near t h e contact was s t r o n g l y inhomoge- neous and t h e c o n t r i b u t i o n of contact was found t o depend on t h e na- t u r e of t h e t r a n s i t i o n region between t h e semiconductor and t h e me- tal. Various spurious voltages were d i f f i c u l t t o eliminate a s well.

L a t e r it was proposed t o use high r e s i s t i v i t y samples with gra- ded a+-n ( o r pt-p) junction /54/

.

To eliminate f i e l d d i s t o r t i o n s due t o conduction e l e c t r o n s t h e junction length aad r e s i s t i v y must meet t h e conditions L >> ~ 1 % and 07p,

,

where TM i s t h e Maxwellian r e l a x a t i o n time. With uniform mw f i e l d d i s t r i b u t i o n i n t h e junction t h e i n t e r p r e t a t i o n of t h e experimental r e s u l t s i s much simpler. In p a r t i c u l a r , i t can be shown t h a t under t h e a c t i o n of mw f i e l d over t h e junction a hot c a r r i e r emf VT appears which can be used t o de- duce t h e hot c a r r i e r d i f f u s i o n c o e f f i c i e n t . With t h e mw f i e l d p a r a l - l e l and perpendicular t o t h e concentration gradient t h e technique allows t o f i n d t h e l o n g i t u d i n a l o r t r a n s v e r s e hot c a r r i e r d i f f u s i o n c o e f f i c i e n t .

A schematic arrangement f o r t h e l o n g i t u d i n a l thermopower measu- rement i s represented i n Fig. L4a, while Fig. 1 4 b shows t h e longi- t u d i n a l d i f f u s i o n c o e f f i c i e n t i n n-Si a t 300 K obtained with lit- hium d i f f u s e d n'-n junction. Later t h e same technique was extended t o Schottky b a r r i e r s f a b r i c a t e d on high r e s i s t i v i t y semiconductors /55/.

7. I n t e r a c t i o n between d i f f e r e n t R r O U P S of c a r r i e r s .

-

In semicon- ductors with d i f f e r e n t groups of c a r r i e r s , e.g. many-valley, i n t r i n - s i c , degenerate-band semiconductors, t h e amount of energy e x t r a c t e d from t h e f i e l d and delivered t o t h e l a t k i c e i s governed both by t h e i n t e r a c t i o n of c a r r i e r s with t h e l a t t i c e and by t h e i n t e r a c t i o n bet- ween groups. The l a t t e r has been observed i n t h e h o t c a r r i e r cyclot-

ron resonance experiments i n p-Ge through t h e dependence of l i n e - -width on t h e rn power /57,58/. A more d i r e c t observation of t h e in- t e r a c t i o n between groups would be possible i f s e l e c t i v e heating and

(15)

SAMPLE 4-i WAVEGUIDE

E, LINES.

I , 1

JUNCTION

14: a ) . The p r i n c i p l e of t h e mw technique f o r t h e l o n g i t u d i n a l

1 fusion c o e f f i c i e n t measurement. Typical junction l e n g t h s a r e

%T from 0.1 t o 2 mm and concentration r a t i o nt/n i s from 2 t o 4.

b ) . Hot e l e c t r o n l o n g i t u d i n a l d i f f u s i o n c o e f f i c i e n t vs E i n a high r e s i s t i v i t y n-Si a t 300 K. The s o l i d l i n e represents t h e values of Dl/ obtained by mw's 1551 and c r o s s e s a r e measured by t h e time-of-flight technique /56/. The d a t a a r e normalized t o t h e zero f i e l d value of d i f f u s i o n c o e f f i c i e n t Do

.

sensing of t h e various groups of c a r r i e r s were performed a t d i f f e - r e n t frequencies. Such cross-modulation type experiments were demons- t r a t e d i n / 591. The modulation a t t h e sensing frequency was caused by t h e change of c a r r i e r d e n s i t y due t o t h e dependence of recombina- t i o n r a t e on t h e c a r r i e r energy. However it would be very i n t e r e s - t i n g t o c a r r y out s i m i l a r experiments a t constant c a r r i e r concentra- t i o n , with t h e modulation being caused by t h e energy exchange bet- ween d i f f e r e n t groups.

8. Conclusions.

-

During t h e l a s t decade a b e t t e r understanding of l i m i t a t i o n s and advantages O f mw technique was gained and modifica- t i o n s of t h e e x i s t i n g methods were introduced. The m technique has proved t o be a powerful .t;ool f o r h o t e l e c t r o n i n v e s t i g a t i o n s i n va- r i o u s aspects. Especially wide a p p l i c a t i o n t h e mw's have found i n t h e study of v-E c h a r a c t e r i s t i c s of semiconductors e x h i b i t i n g ndm and i n i n v e s t i g a t i o n s of h o t e l e c t r o n r e l a x a t i o n e f f e c t s . Pew new trends should be mentioned also: t h e i n v e s t i g a t i o n of breakdown by mw's, h o t e l e c t r o n t r a n s p o r t i n nonuniform s t r u c t u r e s , t h e extension of f r e - quency range t o submillimeter waves.

I n conclusion it should be noted t h a t t h i s review i s t o o b r i e f t o do j u s t i c e t o a g r e a t d e a l of e x c e l l e n t work on m hot e l e c t r o n s t u d i e s . The authors apologize f o r an9 omission and must confess t o t h e normal s u b j e c t i v e view of t h e subject.

(16)

Acknowledments. The a u t h o r s a r e g r a t e f u l t o A.Matu1ioni.s f o r h i s c r i t i c a l reading of t h e manuscript.

References

/1/ Arthur, G.B., Gibson, A.F., G r a n v i l l e , J.Y., J.Electronics 2

(1956) 145

/2/ Gibson, A.F., G r a n v i l l e , J.\V., J . l l e c t r o n i c s 1 (1956) 259 /3/ Morgan, I . N . , Bu1l.Amer.Phys.Soc. S e r 11, 2 (1957) /4/ Seeger, K., Phys. Rev.

114

(1959) 476

/5/ Vbbra, A , , PoZela, J., Trudy Akademii Nauk L i t . SSR S e r . 13, ~ ( 2 5 ) (1961) 99

/6/ Zucker, G., Fowler, V.J., Conwell, E.M., J. Appl. Phys. 32

(1961) 2606

/7/ I n u i s h i , Y., Hamaguchi, C., J. Phys. Soc. Jpn. (1962) 1813 /8/ Morgan, T.N., Kelly, C.E., Proc. I n t e r n . Conf. Phys. Semicond.,

Prague (1960), (Publ. Hause Czech. Acad. S c i . , 1961) 70

/9/ Gibson, A.F., G r a n v i l l e , J . W . , Paige, E.G.S., J.Phys. Chem. SO- l i d s 19 (1961) 118

/lo/ Brown, M.A.C.S., J.Phys. Chem. S o l i d s 19 (1961) 218 /11/ B a y s , I., P o I e l a , J., L i t . Fiz. Sbornik 2 (1963) 419 /12/ Rozenblat, M.A., Doklady Akademii Nauk SSSR

68

(1949) 497 /13/ C a r l i n , H.J., Pozhela, J.K., Proc. IEEE 2 (1965) 1788 /14/ Schneider, W . , Seeger K., Appl. Phys. L e t t . 8 (1966) 133 /15/ Hess, K., Seeger, K., 2. Phys. 218 (1969) 431

/16/ Kobayashi, S., Yabuki, S., Aoki, M., Jpn. J. Appl. Phys. 2

(1962) 127

/17/ Seeger, K., J. Appl. Phys.

2

(1962) 1608

/18/ Banys, T., Dargys, A., Pozhela, J., Phys. S t a t . Sol. (1969) 755

/19/ Dargys, A , , Banys, T., P o i e l a , J., L i t . Fiz. Sbornik 11(1971) 61 5

/20/ Dargys, A , , Banys, T., Phys. S t a t . Sol. 2 (1972) 699 /21/ Kawamura, H., Fukai, M., Hayashi, Y., J. Phys. SOC. Jpn.

(1962) 970

/22/ R i c h t e r , K., Bonek, E., Phys. S t a t . S o l . 31 (1969) 579

/23/ Davydov, A.B., Nomerovany O.M., Prib. Techn. Exper. N r . 4 (1966) 118

/24/ Evans, A.G.R., aobson, P.N., Sol. S t . E l e c t r o n i c s

a

(1974) 805 /25/ Bonek, E., J. Appl. Phys. Q (1972) 5101

(17)

/26/ Heinrich, H., Hess, K., J a n t s c h , W., P f e i l e r , w., J. Phys*

Chem. S o l i d s 2 (1972) 425

/27/ Glover, G.H., J. Appl. Phys. 44 (1973) 1295

/28/ Kagan, M.S., Landsberg, E.G., Elenkrig, B.B., Fiz. Techn.

Polupr.

10

(1978) 1861

/29/ Dienys, V., K a n c l e r i s , i., Phys. S t a t . s o l . ( b )

67

(1975) 317 /30/ Hess, K., J. Phys. Chem. S o l i d s 2 (1972) 139

/31/ Dienys, V., K a n c l e r i s , i., Phys. S t a t . S o l . ( b ) 71 (1975) K209 /32/ Dienys, V., K a n c l e r i s , i., Phys. S t a t . Sol. ( b ) 78 (1976) 757 /33/ Sweid, M., Hess, K., Seeger, K., J.Phys. Chem. S o l i d s

2

(1978)

3 93

/34/ Dienys, V., Martiinas, Z., Fiz. Techn. Polupr.

12

(1978) 1219 /35/ Dienys, V., K a n c l e r i s , Z., Martanas, Z., Fiz. Techn. Polupr.

11

(1979) 1706

/36/ Dienys, V., K a n c l e r i s , 2 . , Marttinas, Z., Phys. S t a t . Sol. ( b ) 1 0 1 (1980) 145

-

/37/ Wind, Bd., Rapoport, H., Handbook of Microwave Measurements (Polytechn. I n s t . Brooklyn, N.Y.) 1965

/38/ Dresselhaus, C., Kip, A.F., K i t t e l , C., Phys. Rev. 92 (1953) 82 7

/39/ Rose, K., J. Appl. Phys. 22 (1962) 761

/40/ Borodovsky, P.A., Zimenkov, V.A., Rozentsveig, V.A., Generat- s i y a SVCh k o l e b a n i j s i s ~ o l z o v a n i ~ e m e f f e k t a Gunn'a, All-Union Symp., Eovosibirsk (1974) ( I n s t . Sem. Phys., b o v o s i b i r s k , 1974) 46

/41/ Agmontas, S.P., Dargys, A.J., Gmelyanovski, E.N., Sedrakyan, R.

G,, Fiz. Techn. Polupr. 2 (1975) 2009

/42/ Agmontas, S.P., SubaEius, L.E., Fiz. Tecbn. Polupr.

12

(1979) 1722

/43/ Agmontas, S., Dargys, A., SubaEius, L., Phys. S t a t . S o l . ( b ) 100

(1980) 691

/44/ Brazis, H., Mironas, A., F i l i p a v i E i u s , A., Piz. Techn. Polupr.

(1980) 1420

/45/ Bruhns, H., Hiibner, K., 2. Phys. B (1978) 1 5

/46/ Curby, R.C., Ferry, D.K., Phys. S t a t . S o l . ( a ) 20 (1973) 569 /47/ Dargys, A., Sedrakyan, li., PoZela, J., Phys. S t a t . Sol. ( a )

(1978) 387

/48/ Neukermans, A . , Kino, G.S., Phys. Rev. (1973) 2703

/49/ I n u i s h i , Y., Proc. I n t e r n . Symp. on Microwave Diagnostics of Se- miconductors, Parvoo, Finland (1977) ( H e l s i n g s f o r s , H e l s i n k i

19771, 324

(18)

/50/ Abe, M., Kaneda, S., Jpn. J. Appl. Phys.

11

(1972) 1675

/51/ Dargys, A., i i l i o n i s , S., M a t u l i o n i s , A., P a r l j e l i a n a s , J . , Page-

l a , J., Pogkus, A., Simulyte, E., L i t . Fiz. Sbornik

17

(1977) 493

/ 5 2 / Pozhela, J.K., Kepshas, K.K., S h i l a l n i k a s , V.J., Proc. I n t . Conf. Phys. Semicond. E x e t e r (1962), ( I n s t . Phys. and Phys.

Soc., London, 1962) 149

/53/ Conwell, E.M., Zucker, J., J . Appl. Phys.

36

(1965) 2192 /54/ Agmontas, S.P., PoBela, J.K., SubaEius, L.E., Fix. Techn. Po-

l u p r .

11

(1977) 357

/54/ Aljmontas, S.P., Olekas, A., F i z . Techn. Polupr.

14

(1980) 2196 /56/ C a n a l i , C., Jacoboni, C

. ,

O t t a v i a n i , G., Alberigi-Quaranta, A . ,

Appl. Phys. L e t t . 27 (1975)

/57/ Imai, I., Kawamura, H., Fukai, M., J. Phys. Sot. Jpn. 21 (1966) 1081

/58/ Gershenson, E.M., G u s i n s k i i , E.N., Phys. S t a t . S o l . ( b )

64

(1974) 367

/59/ iiauch, C . J . , Zeiger, H.J., cited i n Lax, B., Mavroides, J.G.

S o l i d S t a t e P h y s i c s (1960) 261

Références

Documents relatifs

In this case some portion of the electrons from the dangling bands will transfer to the acceptor levels formed by these local defects, and the holes appear i n the

(c) a reversible I-V characteristic with a hysteresis effect; (d) linear F-N plots in the low- field region; (e) the emission image is characterised by random distribution

The stability properties of the stationary state are examined and it is found that there exists a critical (unstable) radius of the initial breakdown plasma region such that

Provided that there are deep energy levels the Deep Level Transient Spectro- scopy (DLTS), originally proposed by Lang /10/, is applicable advan- tageouslyj besides the detection

In this paper we propose a different approach based on real space Airy functions, which greatly simplifies the scattering vertex in high fields. The theory predicts strong

The calculations apply to conditions of continuous monochromatic photoexcitation and take account of the following effects: injection of electrons into the conduction band

It is known that the noise power spectral density and thus the small signal diffusion co- efficient and velocity auto-correlation are related to the small signal micro-

Ultrahigh Electron Mobility and Velocity-Field Characteristic.- Modulation-doped GaAs/AlGaAs heterostructures, as shown in Fig.l, were grown on semi-insulating GaAs substrate