• Aucun résultat trouvé

Optimal design of fractional order linear system with stochastic inputs/parametric uncertainties by hybrid spectral method

N/A
N/A
Protected

Academic year: 2021

Partager "Optimal design of fractional order linear system with stochastic inputs/parametric uncertainties by hybrid spectral method"

Copied!
7
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Journal of Process Control

jo u r n al h om ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / j p r o c o n t

Optimal design of fractional order linear system with stochastic inputs/parametric uncertainties by hybrid spectral method

Pham Luu Trung Duong, Moonyong Lee

SchoolofChemicalEngineering,YeungnamUniversity,Gyeongsan,RepublicofKorea

a r t i c l e i n f o

Articlehistory:

Received20November2013 Receivedinrevisedform14June2014 Accepted6August2014

Availableonline10September2014

Keywords:

Blockpulsefunction Fractionalcalculus Operationalmatrix Stochasticcollocation Polynomialchaos

a b s t r a c t

Thispaperreportsthedesignofafractionallinearsystemunderstochasticinputs/uncertainties.The designmethodswerebasedonthehybridspectralmethodforexpandingthesystemsignalsoverortho- gonalfunctions.Theuseofthehybridspectralmethodledtoalgebraicrelationshipsbetweenthefirstand secondorderstochasticmomentsoftheinputandoutputofasystem.Thespectralmethodcouldobtain ahighlyaccuratesolutionwithlesscomputationaldemandthanthetraditionalMonteCarlomethod.

Basedonthehybridspectralframework,theoptimaldesignwaselaboratedbyminimizingthesuitably definedconstrained-optimizationproblem.

©2014ElsevierLtd.Allrightsreserved.

1. Introduction

Inrecentyears,fractionalcalculushasattractedconsiderable attentionandisbecomingincreasinglypopularbecauseofitsprac- ticalapplicationsinarangeofscienceandengineeringfields[1–5].

Thisisbecausemathematicalmodelsbasedonfractionalderiva- tivescandescribeavarietyofnaturalphenomena,suchasflexible structures[6], anomaloussystem[7],and viscoelasticmaterials [8].Ontheotherhand,fractionalordersystemsareoftenstud- iedusingmodelswithfixeddeterministicparametersandinputs.

Moreover,theinput/parametersofthesemodelsareuncertaindue totheinherentvariabilityand/orincompleteknowledge.There- fore,thedevelopmentofmethodscapableofdesigningfractional ordersystemswithuncertaintiesisnecessary.

Thewell-knownMonteCarlo(MC)methodisatypicalapproach forsimulatingstochasticmodels[9,10].Thismethodinvolvesthe generationof independentrealizations ofrandom inputs based ontheirprescribedprobabilitydistribution.Foreachrealization, thedataisfixedandtheproblembecomesdeterministic.Solving the multiple deterministic realizations builds an ensemble of solutions, i.e. the realization of random solutions, from which

∗ Correspondingauthorat:SchoolofChemicalEngineering,YeungnamUniversity, Gyeongsan712-749,RepublicofKorea.Tel.:+82538103241;fax:+82538113262.

E-mailaddress:mynlee@yu.ac.kr(M.Lee).

statisticalinformationcanbeextracted,e.g.meanandvariance.

Thisapproachissimpletoapply,involvingonlyrepeateddetermi- nisticsimulations,buttheconvergenceisslowandlargenumbers ofcalculationsarerequired.Forexample,themeanvaluestypically convergeas1/√

M,whereMisthenumberofrealizations.

Generalizedpolynomialchaos(gPC)[11–13]isamorerecent approachforquantifyingtheuncertaintywithinsystemmodels.

Ontheotherhand,tosimulatestochasticsystemsusingthegPC method, the random inputs of many systems involve random processesapproximatedbytruncatedKarhunen–Loeve(KL)expan- sion,andthedimensionalityoftheinputdependsonthecorrelation lengths ofthese processes.For an inputwitha low correlation length(idealwhitenoise),thenumberofdimensionsrequiredfor anaccuraterepresentationcanbelarge,whichincreasesthecom- putationaldemandsubstantiallyusingthegPCmethod.

Arecent study[14]introduceda hybridspectralmethodfor quantifyingtheuncertaintiesinsingleinputsingleoutput(SISO) fractional order systems. Thispaper extends the framework in Ref.[14]fortheoptimaldesignofafractionalSISOsystemunder stochasticinput/parametricuncertainty.

Thispaperisorganizedasfollows:Section2brieflyintroducesa hybridspectralmethodforuncertaintyquantificationinfractional ordersystems.Section3definesthesuitableperformanceobjec- tivescoupledwiththespectralmethodforthedesignofastochastic linearfractionalsystem.Section4considersexamplesrangingfrom integertofractionalordertodemonstratetheproposedmethod.

http://dx.doi.org/10.1016/j.jprocont.2014.08.009 0959-1524/©2014ElsevierLtd.Allrightsreserved.

(2)

2. Fractionalordersystem

Thissection summarizesthe main concepts,definitions and basicresultsfromfractionalcalculus,whichareusefulforfurther developments.

2.1. Governingequationforsystemdynamics

Amongthe many formulationsof thegeneralized derivative withnon-integerorder,theRiemann–Liouvilledefinitionisused mostcommonly[15]

D˛0f(t)= 1

(m−˛)



d

dt



m



t

0

f() (t−)1−(m−˛)

d, (1)

where(x)denotesthegammafunction;mistheintegersatisfying m−1<˛<m.

TheRiemann–Liouvillefractionalintegral ofafunctionf(t) is definedas

I0˛f(t)= 1

(˛)



t 0

f()

(t−)1−˛d. (2)

TheLaplacetransformforafractionalorderderivativeunder zeroinitialconditionsisdefinedas

L{D˛0f(t)}=s˛F(s), (3)

whereF(s)istheLaplacetransformoff(t).

Therefore,afractionalordersingleinputsingleoutput(SISO) systemcanbedescribedbythefollowingfractionalorderdifferen- tialequation

a0D˛00y(t)+a1D˛01y(t)+···+alD˛0ly(t)=b0Dˇ00u(t)

+b1Dˇ01u(t)+···+bmDˇ0mu(t), (4) orbythetransferfunction,

G(s)= Y (s)

U(s)=bmsˇm+···+b0sˇ0

als˛l+···+a0s˛0 , (5) where˛iandˇiarethearbitraryrealpositivenumbers,andu(t) andy(t)arethesystem’sinputandoutput,respectively.

2.2. Operationalmatricesofblockpulsefunctionforanalysisof fractionalordersystem

Blockpulsefunctionsareacompletesetoforthogonalfunctions thataredefinedoverthetimeinterval,[0,],

i=

⎧ ⎨

1 i−1

N ≤t≤ i N 0 elsewhere

. (6)

whereNisthenumberofblockpulsefunctions.

Therefore,anyfunctionthatcanbeabsolutelyintegratedonthe timeinterval[0,]canbeexpandedintoaseriesfromtheblock pulsebasis:

f(t)=␺TN(t)Cf=



N i=1

cfi i(t), (7)

where ␺TN(t)=[ 1(t),..., N(t)]constitutes of theblockpulse basis.Fromhere,thesubscript,N,of␺TN(t)isdroppedoutforthe convenienceofnotation.

Theexpansioncoefficients(orspectralcharacteristics)canbe calculatedasfollows

cfi= N



(i/N)



[(i−1)/N]

f(t) i(t)dt. (8)

Furthermore,anyfunctiong(t1,t2)absolutelyintegrableover thetimeinterval,[0,]×[0,],canbeexpandedas

g(t1,t2)=



N i=1



N j=1

cij i(t1) j(t2)=␺T(t1)Cg␺(t2). (9) withexpansioncoefficients(orspectralcharacteristics)of

cij=



N





2 (i/N)



[(i−1)/N]

(i/N)



[(i−1)/N]

g(t1,t2) i(t1) j(t2)dt1dt2. (10)

Eq.(2)canbeexpressedintermsoftheoperationalmatrix[16],

I˛0f(t)=␺(t)TA˛Cf. (11)

wherethegeneralizedoperationalmatrixintegrationoftheblock pulsefunction,A˛,is

A˛=P˛T=





N



˛ 1

(˛+2)

⎜ ⎜

⎜ ⎜

f1 f2 f3 ··· fN

0 f1 f2 ··· fN−1

..

. . .. . .. . .. ... 0 ... ... ... f1

⎟ ⎟

⎟ ⎟

T

. (12)

Theelementsofthegeneralizedoperationalmatrixintegration canbeexpressedas

f1=1; fp=p˛+1−2(p−1)˛+1+(p−2)˛+1 for p=2,3... (13)

Thegeneralizedoperationalmatrixofaderivativeoforder˛is

B˛A˛=I, (14)

whereIistheidentitymatrix.

Thegeneralizedoperationalmatrixofthederivativecanbeused toapproximateEq.(1)asfollows:

D0˛f(t)=␺(t)TB˛Cf. (15)

Usingtheoperationalmatrixofthefractionalorderderivative, Eq.(4)canberewritteninthefollowingform:

AG=(alD˛l+···+a0D˛0)−1(bmDˇm+···+boDˇo). (16) Theinputandoutputofthesystemisthuslinkedby

CY=AGCU; Y (t)=(CY)T␺(t); U(t)=(CU)T␺(t). (17) Closed-loop control systems normally comprise severalele- ments,suchasthecontrollerandplantinFigs.1and2,interms ofthetransferfunctionandoperationalmatrix,respectively.The operationalmatrixofaclosed-loopsystemcanbefoundusingblock diagramalgebrasimilartotheblockalgebrausedforthetransfer function[10].

Moreondetailontheoperationalmatrixwithrespecttothe differentpolynomial functionscanbefound in[16,17] andthe referencestherein.

(3)

+ +

+ - C(s) G(s)

R(s) Y(s)

N(s)

U(s)

Fig.1.Closed-loopcontrolsystem.

+ - CR

CY

CU pi d

A AG

Fig.2. Closed-loopcontrolsystemintermsofoperationalmatrices.

2.3. Stochasticanalysisoffractionalordersystems

ConsiderthesystemdescribedbyEq.(4)withrandomindepen- dentcoefficients,a0,...,al,b0...,bm,withthegivendistributions.

ThespectralcharacteristicsofitsinputandoutputarelinkedbyEq.

(17).Assumethattherandomforcinginputwithagivenmeanand covariancefunctionisasfollows:

MU(t)=E[U(t)]=(CmU)T␺(t)

UU=E{[U(t1)−MU(t1)][U(t2)−MU(t2)]}=



N i=1



N j=1

i(t1) j(t2)cij=␺(t1)TCKUU␺(t2). (18)

Aftersomemanipulationoftheoperationalmatrix,thespectral characteristicsofthemeanandcovarianceofthesystem’soutput canbeexpressedas[14]

CmY =E[AG]CmU

CYY=E[AG{CUU+(CmU)(CmU)T}AG]T−CmY(CmY)T

, (19)

or,

mY(t)=␺(t)TE[AG]CmU

YY(t1,t2)=␺(t1)TE[AG{CUU+(CmU)(CmU)T}AGT␺(t2)]␺(t1)TCmY(CmY)T␺(t2) . (20)

Randomparameters, ai,bj, resultin therandomoperational matrix,AG,inEqs.(19)and(20),anditsmomentcanbeestimated usingastochasticcollocation[14].

Whenparametersai,bjaredeterministic,Eq.(20)becomes

mY(t)=␺(t)TAGCmU

YY(t1,t2)=␺(t1)TAG{CUU+(CmU)(CmU)T}AGT␺(t2)␺(t1)TCmY(CmY)T␺(t2) .

(21)

3. Optimaldesignoffractionalordersystemwith stochasticinput/parametricuncertainties (a)Shapingfilterdesignbyparametricoptimization

A shaping filteris normallyusedto shape thecovariance functionofagiveninputnoiseintotoadesirednoisewitha referencecovariance.

AssumethatthesystemisdescribedbyEq.(4),wherethe coefficientsai,bjklarethedeterministicdesignparame- ters.Theinputisarandomprocesswithazeromeanandgiven covariancefunction.Themeanandcovariancefunctionofthe inputcanbeexpandedtoaseriesofBFF,asexpressedinEq.

(18).Therefore,themeanandcovariancefunctionfortheout- putaregivenbyEq.(21).Thecovarianceofdesiredisgivenand expandedinspectralformasfollows:

YDYD(t1,t2)=E{[YD(t1)−MYD(t1)][YD(t2)−MYD(t2)]}

=



N i=1



N j=1

i(t1) j(t2)cijYDYD=␺(t1)TCKYDYD␺(t2).

(22)

FromEq.(21)itcanbeseenthattheoutputhasazeromean.

The design parametercanbeobtainedbyminimizing the objectivefunctionintermsofthespectralcharacteristicsofthe covariancefunctionoftheinputandoutput,

min

ai,bjkl



CE



2= min

ai,bjkl

 

CKYY−CK

YDYD

 

2

, (23)

where2denotetheEuclideannormofamatrix.

(b)Optimalcontrollerdesignbyparametricoptimization Assume that the system is described by Eq. (4), where coefficients ai,bj are independentrandom variables with a givendistribution.Thesetpointinputisarandomprocesswith agivenmeanandgivencovariancefunctionasfollows:

MR(t)=E[R(t)]=(CmR)T␺(t)

RR=E{[R(t1)−MR(t1)][R(t2)−MR(t2)]}=



N i=1



N j=1

i(t1) j(t2)cijR=␺(t1)TCKRR␺(t2).

(24)

Thesystemisintheclosed-loop,asshowninFig.1,witha fractionalorderPIDcontroller[18]:

C(s)=Kp+Ki

s+Kds. (25)

TheparametersofthePIDcontrollerareobtainedbyopti- mizingthecostfunctionasfollows:

min

Kp,Ki,Kd,,J= min

Kp,Ki,Kd,,E



T 0

(yd(t)−y(t))2dt

= min

Kp,Ki,Kd,,



T 0

{E[yD2(t)]+E[y(t)2]−2E[yd(t)]E[y(t)]}dt.

(26) whereE[y(t)2]andE [y(t)] areobtainedfromEq.(20).

Becausethevarianceisameasureofthevariabilityofaran- domprocess,alargevarianceofthesystemoutputimpliesa largedeviationfrom thenominalresponse understochastic input/parametricuncertainties.Anadditionalconstraintonthe variancecanbeusedincombinationwiththeobjectivefunction (26)

0≤t≤TmaxDy(t)=YY(t,t)≤Dmax. (27)

(4)

Fig.3.AbsoluteerrorsurfacefortheapproximatedcovariancefunctionwithEq.

(20)andtheexactdesiredcovariancefunctionforexample1.

Theupperbound,Dmax,ofthevarianceofthesystemoutput canbeconsideredthemaximumallowablesensitivityofthe systemresponsetothestochasticuncertainties.

4. Examples

4.1. Example1:shapingfilterdesign

Assumetheshapingfiltercanbedescribedas

D˛0y(t)+ay(t)=bu(t), (28)

whereu(t)is a zeromeanrandomprocess withthecovariance function,UU(t1,t2)=ı(t1−t2),andıistheDiracdeltafunction.

Thedesiredcovariancefunctionofoutputcanbeexpressedas anOrnstein–Ulenbeckprocess:

YDYD(t1,t2)=1

2(e|t1−t2| −e−(t1+t2)); t1,t2≥0. (29) Thedesignparameters˛,a,andbareobtainedbyminimizing Eq.(23).Theresultsare˛=1.001;a=0.996;b=0.998,whichare sufficientlyclosetotheexact(analytical)result,˛=1;a=1;b=1 [19].

Theoperationalmatrixforsystem(28)is

AG=(B˛+aI)−1bI, (30)

whereIisanidentitymatrix,andB˛isanoperationalmatrixofthe derivative.

1024blockpulsefunctionswereusedforthisexample.

Fig.3showstheerrorsurfaceofthecovariancefunctiongiven byEq.(20)fortheoptimalparameterswithrespecttotheexact desiredcovariancefunctionofEq.(29).Asshowninthefigure,the levelofrelativeerrorissmallenough,<0.5%.Thissimpleexample highlightstheeffectivenessoftheproposedmethodindesigning theshapingfilter.

4.2. Example2 4.2.1. Example2a

Considersystemdescribedbythedouble-fractionalorderdif- ferentialequation,

D3/40 y(t)+D10y(t)=u(t), (31)

whereu(t)israndomwhite noisewithazeromeancovariance function,UU(t1,t2)=0.1ı(t1−t2).

Fig.4.Varianceofthesystemoutputforexample2aandtheabsoluteerrorofthe proposedmethod.

Fig.5.Meanandvarianceofsystemoutputforexample2bwiththeproposed controller.

Theexactvarianceofthesystemoutputcanbeexpressedas[20]

Dy(t)=2(t)= 0.1 a22



t 0

u2(˛2−1)



ε˛2−˛12



−a1u2−˛1) a2



2

du,

(32) whereε˛2−˛12()isaMittag–Lefflerfunctionthatcanbecalculated usingMATLABfunctionmlf.m[21],a1=a2=1;˛1=3/4,and˛2=1.

1024BPFswereusedfortheapproximationinthisexample.The operationalmatrixforthissystemcanbeexpressedas

AG=(B3/4+B1)−1. (33)

Fig.4showsthevarianceofthesystemoutputbytheproposed methodandanalyticalvarianceinEq.(32).Thefigurealsoshows theabsoluteerrorofthevariancebytheproposedmethodwith respecttotheanalyticalresults.Theproposedmethodcanprovide accurateresultsforpredictingthevarianceofthesystemoutput.

4.2.2. Example2b

Considertheabovesysteminaclosedloopconfigurationwith aPIDcontroller.Thesetpointr(t)isarandomprocesswithunit meanandthesamecovariancefunctionasinthepreviousexam- ple.APIDcontrollerisdesignforthissystembyminimizingthe objectivefunction(26)withthedesiredoutput,yd(t)=1(determi- nisticunitstepresponse).Theobjectivefunctionisminimizedusing thepatternsearchfunctionoftheoptimizationtoolboxofMATLAB.

The result parameters of controller are Kp=0.8286; Ki=0.8137;=0.2660;Kd=0.0056;=0.9996. Fig. 5 shows themeanandvarianceofthesystemwiththedesignedcontroller.

Fig.6shows100MonteCarlosimulationsofthissystemwiththe proposedcontroller. By comparingthe variancesof the system outputs in Figs. 4 and 5, the designed controller can stabilize this stochastic fractionalorder system.The performance ofthe proposedcontrollerissatisfactory.

(5)

Fig.6. 100MCsimulationofexample2b.

4.3. Example3

TheproposedmethodwasusedtodesignaPIcontrollerfor afractionalordersystemthathasbeenstudiedinthenumerical referencesonafractionalordersystem[14,22–24]:

P(s)= k1

k2s0.5+1. (34)

where k1 and k2 are uniform random variables in the interval [0.5,1.5].ThisfractionalordermodelinEq.(34)isknownasthe Cole–Colemodel, which provides a parameterof thefractional orderthatinterpretstheunderlyingmechanismofdielectricrelax- ation[22–24].

Thesetpointinput,R(t),isaband-limitedGaussianwhitenoise processwithaunitmeanandacovariancefunctionof

RR(t1,t2)=WB sinc



(t

1−t2)WB



, (35)

withWB=0.02 ,andthesinc()functionisdefinedas

sinc(x)=



sin( x)/( x) elsewhere

1 for x=0 . (36)

ItcanbeseenfromFig.1thatthetransferfunctionfrommea- surement noise n(t) to output y(t) is the same as the transfer functionfromr(t)toy(t),i.e.,Y(s)=T(s)R(s)−T(s)N(s).

Letusdefineanewsignalz(t)=r(t)−n(t).Itcanthenbeshown that:

Theexpectation ¯z(t)=mz(t)ofz(t)isequaltor(t).Thecovari- anceofz(t)is

E{(z− ¯z)2}=E{z2−2z ¯z+ ¯z2}=E(z2)− ¯z2=E{(r−n)2}−r2

=E{r2+n2−2rn}−r2=E{n2} . In the above equation, the dependentof signals ontime is dropped;r(t)andn(t)areindependent.Thecovarianceofnewsig- nalisthesameasthecorrelationfunctionofmeasurementnoise.

Notethatthecovarianceandcorrelationofthemeasurementnoise isthesamebecausethemeasurementnoiseiszeromean.Thus, incombination,thedeterministicsetpointandrandommeasure- mentnoisecanbeviewedasarandomsetpointwiththemeanas adeterministicinputandthecovarianceasameasurementnoise.

A PI␭ controller was obtained by minimizing the objective function (26) with the desired output is yd(t)=1. The search space for optimal parameter of the controller was limited to 0≤Kp≤1;0≤Ki≤40;0.9≤≤1.5 for the sake of simplicity, as inotherstudiesontheprobabilisticapproach[25,26].Theinitial controller,C0(s)=0.1817+(36.3528/s1.216),wasobtainedfrom[24].

Theresultingcontrollerparametersare

C1(s)=1+(40/s0.9). (37)

Fig.7. Meanandvarianceofthesystemoutputforexample3withtheproposed andinitialcontrollers.

Fig.7showsthemeanandvarianceofthesystemoutputwith theinitialandproposedcontrollers.Fig.8showsaboundedregion for 2000 possible responses of the uncertain system with the proposedandinitialcontrollers.Thesefiguresshowthatthepro- posedcontrolleroutperformstheinitialoneundertheinfluenceof stochasticuncertainties.

4.4. Example4:systemswithinfiniteH2norm

4.4.1. Example4a

Integratorisanelementaryblockonmanycontrolsystems.Itis adequateforpresentingabasicinventorysysteminprocesscontrol suchasaliquidlevelcontrolsystem[27,28].Consideranintegral system:

G(s)= 1

s, (38)

subjecttotheinputwithazeromeanfirstorderGaussMarkov processwithacovariancefunctionof:

KUU(t1,t2)=2e−ˇ|t1−t2|. (39) Thevarianceofthesystemoutputcanbecalculatedanalyticallyas [29]:

DYY(t)=22

ˇ2 (ˇt−(1−e−ˇt)). (40)

TheanalyticalresultisshowninFig.9.Theresultsandtheabso- luteerrorswithrespecttotheexactvariancebythehybridspectral (proposed)andQuasiMonteCarlo(QMC)methodsarealsoshown inFig.9.TheerrorsbyboththeQMCandproposedmethodsgrow withtimesincetheoutputvarianceincreaseswithoutboundast goestoinfinity.TheQMCmethodused5000samplesofrandom processandthecomputationaltimeneededwas117sonanIntel corei3laptopwith2GBRAM.Ontheotherhand,thecomputational

Fig.8. Boundedregionsfor2000MCsimulationsofthestochasticsystemwiththe proposedandinitialcontrollers.

(6)

Fig.9.Varianceofsystemoutputforexample4a.

Fig.10.Varianceofsystemoutputforexample4bforK=1,=1.7,=1.

timeoftheproposedmethodwith2048BPFswasonly0.73s.Since theconvergencerateoftheQMCmethodisproportional tothe magnitudeofvariance,theQMCmethodcangivebetteraccuracy atthebeginningofthetransienttimeduetothesmallvariance atthebeginning.Itcanbeseenthattheproposedmethodgives betterperformanceincomputationalload.Hence,itismoresuit- ableforthedirectdesignviaoptimizationthantheQMCmethod.

Ingeneral,theanalyticaloutputvariancecanbecalculatedonly fora few particularcases, especiallywhen a fractionalorder is involved.

4.4.2. Example4b

Considerafractionalordersystem:

G(s)= K

s+, (41)

subject toa zero mean ideal white noise witha covariance of ı(t1−t2).Fromthefrequency method,thesteadystatevariance oftheoutputisthesameassystemH2norm[30]

Dyss=



G



2

2= 1 2



−∞



G(jω)



2dω=

⎧ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎨

⎪ ⎪

⎪ ⎪

⎪ ⎪

∞ if 0<≤1/2

−K2



1 −2



cot



2



sin





if 1/2<≤2and /=1 K2

2 if v=1

. (42)

Fig.10showstheexactsteadystatevarianceofsystemoutputby thefrequencymethodforK=1,=1.7,=1.Fig.10alsoshowsthe varianceofsystemoutputbytheproposedmethod.Itcanbeseen thatwhentheH2normofsystemisfinite,theproposedmethod givesaconsistentresultwiththefrequencymethodforasteady statevariance.

Fig.11showsthevarianceoftheoutputcalculatedbythepro- posemethodwithdifferentnumberofblockpulsefunctionsfor K=1,=0.4,=1.Thefrequency methodgives thesteadystate variance



G



2

2=∞byEq.(42).Itseemsthattheproposedmethod stillhasalimitationforobtainingtheaccurateresultforthiscase.

Totheauthors’knowledge,thereisnogeneralmethodavailablefor thecasewherethesystemhasafastresponseandinfiniteH2norm.

Fig.11. Varianceofsystemoutputforexample4bforK=1,=0.4,=1.

5. Conclusions

Fractionalcalculus hasalready been acceptedas a powerful toolformodelingandcontrolofcomplicatedprocess[24,30–33].

Inthiswork,anapproachfortheoptimaldesignforlinearfrac- tionalorderprocesseswithstochasticuncertaintieswasproposed.

Theuseofthehybridspectralmethodleadstoalgebraicrelation- shipsbetweenthefirstandsecondorderstochasticmomentsof asystem’sinputandoutput.Therefore,thespectralmethodcan obtainahighlyaccuratesolutionwithlesscomputationaldemand thanthetraditionalMonteCarlomethod.Hence,itismoresuit- ablefortheoptimaldesign.Theproposedmethodcanbeusedfor thesynthesiscolorednoisefromthearbitrarygivennoise.More- over, thestability of uncertainsystems can beinferred from a statisticalevolutionofthesystemoutput,androbustPID con- trollerscanbedesignedefficientlywithrespecttothestochastic uncertainties.Dependingonwhethertherobustnessornominal performanceisofprimaryconcern,differentparameterdistribu- tionsand stochastic forcing can be assumed for the stochastic uncertainties.Basedonthedifferentassumptionsofthestochastic uncertainties,theoptimalparameterswerecalculatedusingasim- plenonlinearoptimization.Integerordersystemscanbetreated asa particular case of fractionalorder systems.The simulation examplesconfirmedthattheproposeddesignmethodgivesrobust closed-loopresponsesforarangeofstochasticsystems.Extension oftheproposedtothenonlinearcaseisaninterestingissuefor futureworks.

Acknowledgement

ThisstudywassupportedbytheBasicScienceResearchPro- gramthroughtheNationalResearchFoundationof Korea(NRF) funded by the Ministry of Education, Science and Technology (2012012532).

References

[1]W.Chen,Aspeculativestudyof2/3-orderfractionalLaplacianmodellingof turbulence;somethoughandconjectures,Chaos16(2006)023126.

(7)

[2]K.Weron,M.Kotulski,Onthecole–colerelaxation functionsandrelated Mittag–Lefflerdistribution,PhysicaA232(1996)180–188.

[3]D.Baleanu,Z.B.Guvenc,T.J.A.Machado(Eds.),NewTrendinNanotechnology andFractionalCalculusApplications,Springer,Dordrecht,2010.

[4]R.L.Magin,B.S.Akpa,T.Neuberger,A.G.Webb,Fractionalorderanalysisof sephadexgelstructure:NMRmeasurementreflectinganomalousdiffusion, Commun.NonlinearSci.Numer.Simul.16(12)(2010)4581–4587(SI:Complex SystemsandChaoswithFractionality,DiscontinuityNonlinearity).

[5]M.K.Bouafoura,N.B.Braiek,PIDcontrollerdesignforintegerandfractional plantsusingpiecewiseorthogonalfunctions,Commun.NonlinearSci.Numer.

Simul.15(5)(2010)1267–1278.

[6]B.M.Vinagre,V.Feliu,J.J.Feliu,Frequencydomainidentificationofaflexible structurewithpiezoelectricactuatorusingirrationaltransferfunctions,in:

Proc.37thIEEEConf.DecisionandControl,Tampa,FL,1998.

[7]R.Kalges,G.Radons,M.Sokolov(Eds.),AnomalousTransport:Foundationsand Applications,WileyVCH,Weinheim,2008.

[8]F.Mainardi,FractionalCalculusandWavesinLinearViscoelasticity,Imperial CollegePress,London,2010.

[9]L.Dunn,J.K.Shultis,ExploringMonteCarloMethods,Elsevier,SanDiego,2011.

[10]K.A.Pupkov,N.D.Egupov(Eds.),ClassicalandModernTheoryofControlSys- temsV2,BMSTUPress,Moscow,2003.

[11]D. Xiu,NumericalMethodforStochasticComputation:SpectralApproach, PrincetonUniversityPress,NewJersey,2011.

[12]D.Xiu,G.Karniadakis,TheWiener–Askeypolynomialchaosforstochasticdif- ferentialequation,SIAMJ.Sci.Comput.24(2)(2003)619–644.

[13]K.A.Pupkov,N.D.Egupov,A.M.Makarenkov,A.I.Trofimov,TheoryandNumer- icalMethodsforStudyingStochasticSystems,Fizmatlits,Moscow,2003.

[14]P.L.T.Duong,M.Lee,Uncertaintypropagationinstochasticfractionalorderpro- cessesusingspectralmethods:ahybridapproach,Commun.NonlinearSci.

Numer.Simul.17(11)(2012)4262–4273.

[15]A.C.Monje,Y.Chen,M.B.Vingare,D.Xue,V.Feliu,Fractional-orderSystemsand Controls,Springer,London,2010.

[16]C.H.Wang,Onthegeneralizationofblockpulseoperationalmatrixforfrac- tionalcalculus,J.FranklinInst.315(2)(1983)91–102.

[17]A.Lofti,S.A.Yousefi,M.Dehghan,Numericalsolutionofaclassoffractional optimalcontrolproblemsviaLegendreorthonormalbasiscombinedwiththe operationalmatrixandtheGaussquadrature,J.Comput.Appl.Math.250(2013) 143–160.

[18]I.Podlubny,Fractional-ordersystemandPIDcontrollers,IEEETrans.Autom.

Control44(1)(1999)208–214.

[19]L.Garcia,Probability,StatisticsandRandomProcessesforElectricalEngineer- ing,3rdPearsonEducation,Inc.,UpperSaddleRiver,NJ07458,2008.

[20]C.H.Eab,S.C.Lim,FractionalLangevinequationsofdistributedorder,Phys.Rev.

E83(2011)031136.

[21]I. Podlubny, M. Kacenak, http://www.mathworks.com/matlabcentral/

fileexchange/8738-mittag-leffler-function

[22]I.Gochyuk,P.Hangi,Fractionaldiffusionmodelingofionchannelgating,Phys.

Rev.E70(2004)051915.

[23]L.Margin,FractionalCalculusinBioengineering,BegellHousePublisherInc., Redding,2006.

[24]Y.Luo,Y.Chen,C.Wang,G.Pi,Tuningfractionalorderproportionalintegral controllers,J.ProcessControl20(2010)823–883.

[25]R.Tempo,G.Caliafore,F.Dabbene,RandomizedAlgorithmforAnalysisand ControlofUncertainSystems,2nded.,Springer-Verlag,London,2013.

[26]P.L.T. Duong, M. Lee, Robust PID controller design for processes with stochastic parametric uncertainties, J. Process Control 22 (2012) 1559–1566.

[27]V.H.Nguyen,Y.Yamashita,M.Lee,Optimizationbasedapproachforindus- trialPIcontrollerdesignforoptimalservocontrolofintegratingprocesswith constraints,J.Chem.Eng.Jpn.44(2011)345–354.

[28]D.E.Seborg,T.F.Edgar,ProcessDynamicandControl,2nded.,JohnWileyand Sons,NewYork,2004.

[29]R.G.Brown,P.Y.C.Hwang,IntroductionRandomSignalsandAppliedKalman Filtering:WithMATLABExercises,4thed.,JohnWiley&Sons,Hoboken,2012.

[30]R.Malti,M.Aoun,F.Levron,A.Oustaloop,AnalyticalcomputationofH2- normoffractionalcommensuratetransferfunction,Automatica47(2011) 2425–2432.

[31]M.Tavakoli-Kakhi,M.S.Tavazoei,Proportionalstabilizationandclosedloop identificationofanunstablefractionalorderprocess,J.Processcontrol24 (2014)542–549.

[32]V.Feliu-Batlle,R.R.Perez,F.J.CastilloGarcia,L.SanchezRodriguez,Smithpre- dictorbasedrobustfractionalordercontrol:applicationtowaterdistribution inamainirrigationcanalpool,J.Processcontrol19(2009)506–519.

[33]F.J.CastilloGarcia,V.Feliu-Batlle,R.R.Perez,Frequencyspecificationregionsof fractional-orderPIcontrollerforfirstorderplustimedelayprocesses,J.Process control23(2013)598–612.

Références

Documents relatifs

1) Induce and control a helical arrangement in the tris(2-pyridylmethyl)amine (TPA) ligand by its covalent capping with a CTV unit: synthesis and applications of a small

The proposed identi?cation method is based on the recursive least squares algorithm applied to an ARX structure derived from the linear fractional order differential equation

This work proposes a novel hybrid algorithm that combines operational matrices and polynomial chaos to quantify uncertainties in linear fractional order systems with random

A hybrid spectral method was proposed for analysis of stochastic SISO linear dead-time systems with both stochastic parameter uncertainties and additive input for the first

A hybrid spectral method was proposed to analyze DO systems in a stochastic setting with arbitrary random forcing and parametric uncertainties. To analyze the system with

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Chorin et al ont montré dans leur étude portant sur 84 patients recevant le même traitement que l'intervalle QTc s’était sévèrement allongé à plus de 500 ms chez neuf (11%) de

‫اﻟﻔﺼﻞ اﻟﺘﻤﮭﯿﺪي ‪ :‬اﻟﻨﻈﺮﯾﺔ اﻟﻌﺎﻣﺔ ﻟﻨﻈﺎم اﻹﻓﻼس و ﺟﺮاﺋﻤﮫ‬ ‫‪ - 5‬ﻓﻲ ﻧﻈﺎم اﻹﻓﻼس ﺗﺤﻞ اﻹﺟﺮاءات اﻟﺠﻤﺎﻋﯿﺔ ﻣﺤﻞ اﻹﺟﺮاءات اﻟﻔﺮدﯾﺔ ﻓﻮر ﺻﺪور اﻟﺤﻜﻢ ﺑﺸﮭﺮ‬ ‫اﻹﻓﻼس ‪ ،‬أﻣﺎ