• Aucun résultat trouvé

THEORETICAL ANALYSIS OF 16-µm CO2GASDYNAMIC LASER

N/A
N/A
Protected

Academic year: 2021

Partager "THEORETICAL ANALYSIS OF 16-µm CO2GASDYNAMIC LASER"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00220576

https://hal.archives-ouvertes.fr/jpa-00220576

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

THEORETICAL ANALYSIS OF 16-µm

CO2GASDYNAMIC LASER

S. Saito, K. Suzuki, M. Obara, T. Fujioka

To cite this version:

(2)

JOURNAL DE PHYSIQUE CoZZoque C9, suppZ6ment au nOZ1, Tome 41, novembre 1980, page C9-167

THEORETICAL ANALYSIS OF

16-Pm

C02 GASDYNAMI

C LASER

S. Saito, K. Suzuki, M. Obara and T. Fujioka

Department o f ElectricaZ Engineering, Keio U n i v e r s i t y , 3-14-1, Hiyoshi, ~ o h o k u - k ~ , Yokohama-ski, 223, Japan.

Abstract.- The possibility of obtaining high-power 16-um radiation from a conventional C02 gasdyna- mic laser (GDL) has been evaluated theoretically by means of a modified ~nderson's time-dependent method. In this simulation, the rate equations with the energy of the vibrational mode or the PoPu-

lation of the each vibrational level are used. The analysis showed that the 16-pm pulse of 25~J/pul- se/cm3 extractable energy and 4.2 kW maximum power can be achieved on the P(15) line of the (0200)-

(010) transition by injecting a fast 9.4-vm pulse at a position 15 cm dotmstream oof the nozzle thro- at to populate the upper laser level. For a gas miiture of CO : N2 : H2

-

20 : 13 :

7

(%) and a nozzle area ratio of 100, the optimum reservoir temperature an3 pressure were calculrited to be

1200 K and 15 atm, respectively. Because of its high repetition rate and high aveikge-pbwer capabi- lities, such a conventional GDL can easily provide the power levels required fot- ifitidstrial applica- tion of 16-urn laser radiation.

I. INTRODUCTION

Recently, 16-pm l a s e r ~ ' - ~ h a v e become of i n t e r e s t a s p o t e n t i a l l i g h t s o u r c e s f o r uranium i s o t o p e s e p a r a t i o n 6 - 8 . The high e f

-

f i c i e n c y , powerful performance and well-de- veloped technology of t h e C 0 2 l a s e r make it an a t t r a c t i v e c a n d i d a t e f o r t h e 1 6 - p m l i g h t source. For o b t a i n i n g a 16-pm l a s e r emis- s i o n , t h e v i b r a t i o n a l t r a n s i t i o n between

0

t h e (02 0) and (010) l e v e l s o f C02 i s used and t h e c o o l i n g of C02 gas f o r g r e a t l y r e - ducind

kk

lower l e v e i l s p o p u l a t i o n

is

i n - &.spendable. I n t h i s tk$atd, the most proper

melifis

t 6

d gisaynamic i a s ~ r iifiifig adiabatic-

isxpansiun

whibh can pkaduck

h i g h

power be-

cistiks

o t

..if.$

..

.,

+.

high

.

%.

veio+ty

,..,.. A

$id

~ i $ ~ r a t i r j r i parameter. I n a d d i t i o n , o p e r a t i o n a t a high r e p e t i t i o n r a t e i s p o s s i b l e .

Recently, Wexler e t a l . have performed a C02 16-pm l a s e r experiment w i t h an a f t e r - mixing-type e l e c t r i c d i s c h a r g e gasdynamic l a s e r (EDGDL) 5. However, e x t r a c t a b l e l a s e r

i s l i m i t e d mainly by t h e capabbey of t h e e l e c t r i c a l d i s c h a r g e power. A

CDL

o p e r a t i n g a t high r e s e r v o i r p r e s s u r e and temperature which i s r e a l i z a b l e by combugtion must be a more a t t r a c t i v e c a n d i d a t e t h a n t h e EDGDL i n terms of s p e c i f i c e x t r a c t a b l e l a s e r power. Therefore, we have t h e o r e t i c a l l y s i m u l a t e d 16-pm l a s e r performance i n o r d e r toes-* 16-pm l a s e r emissioA with ii cbnventional GDL having a n o z z l e of

large

area

r a t % o .

I n o u r s i i n u l a t i o n ; $dr t h e ~ o n d i t i o n

b e f o r e i n j e c t i o n o f 9.4-pni

beain,

we

solved

a set of conventional r a t e e q u a t i o n s

w i t h

energy of each mode. For t h e conditictk aft&? i n j e c t i o n of 9.4-pm pumping beam, we

an&-

iykea it

ior

t w b

cases

thak

(11

6'9

.i-vm

p u l s e i s very i n t e n s e , ( 2 ) i n t e n s i t y of t h e ~ u m p i n g p u l s e i s v a r i a b l e . I n c a s e o f (21, we e s t i m a t e d g a i n o f t h e 16-prn and t h e 16- IIm o u t p u t power by s o l v i n g a s e t of r a t e e q u a t i o n s w i t h p o p u l a t i o n of each v i b r a - t i o n a l l e v e l . 12

(3)

C9-168 JOURNAL DE PHYSIQUE

II

.

SIMULATION MODEL [A]

To produce t h e p o p u l a t i o n i n v e r s i o n f o r t h e 16-ym t r a n s i t i o n , an i n t e n s e s a t u r a t i n g l a s e r p u l s e o f 9.4-pm r a d i a t i o n must be i n - j e c t e d t o depopulate t h e ( 0 0 1 ) l e v e l and t o 0 p o p u l a t e t h e (02 0). l e v e l a s shown i n Figs.1 and 2. Therefore, we considered how t o pop- u l a t e t h e (001) l e v e l a s a f i r s t s t e p and

0

how t o populate t h e (02 0) l e v e l by depopu- l a t i n g t h e (001) l e v e l a s a second s t e p . The f i r s t s t e p can be d e s c r i b e d by Anderson's time dependent method9 u s i n g r a t e e q u a t i o n s with t h e v i b r a t i o n a l energy of C02 mlecules. The second s t e p depends t o a c o n s i d e r a b l e degree on both t h e i n t e n s i t y and t h e tempral width of t h e s t i m u l a t i n g 9.4-pm p u l s e t o 0 pump t h e (02 0) l e v e l v i a t h e induced t r a n - 0 s i t i o n from (001; t o (02 0 ) . Therefore, i f t h e 9.4-pm l a s e r p u l s e i s i n t e n s e and s h o r t 0

enough t o pump the (02 0 ) l e v e l w i t h i n i t s d e - e x c i t a t i o n time, t h e t r a n s i t i o n between

0

t h e (001) and (02 0 ) l e v e l s i s s a t u r a t e d completely and t h e i n f l u e n c e of de-excita- t i o n r e a c t i o n s i s p r a c t i c a l l y a v o i d a b l e . Under t h e s e c o n d i t i o n s , t h e p o p u l a t i o n of 0 t h e (02 0) l e v e l can become e q u a l t o t h a t of t h e (001) l e v e l , and i s a v a i l a b l e a s upper l e v e l p o p u l a t i o n f o r 16-pm t r a n s i t i o n . Then we analyzed t h e small s i g n a l g a i n o f 16-pm on t h i s assumption.

The v i b r a t i o n a l energy model u s e d i n our s i m u l a t i o n i s shown i n Fig. 2. I t i s a s - sumed t h a t t h e i n d i v i d u a l i n t r a v i b r a t i o n a l c o l l i s i o n p r o c e s s e s a r e s o f a s t t h a t e a c h

i

o f them forms a Boltzmann d i s t r i b u t i o n d e f i n e d by t h e r e s p e c t i v e v i b r a t i o n a l t e m -

p e r a t u r e . I n Fig. 2, t h e v1 and t h e v2 m&s,

d e f i n e d a s Mode I , afre a s s u m e d ~ b e c o u p l e d

s t r o n g l y by t h e Fermi resonance so that their v i b r a t i o n a l temperature may be defined by TI. The important r e a c t i o n p r o c e s s e s u s e d i n t h e p r e s e n t a n a l y s i s and their rate constants compiled by Tylor e t a l . are sham i n Table I.

III. RESULTS AND DISCUSSIONS [MODEL[A]] To reduce t h e v i b r a t i o n a l temperature of Mode I a s w e l l a s t o maintain t h e h i g h v i b r a t i o n a l temperature of Mode I1 i s indis- pensable f o r 16-pm l a s i n g . Therefore a nozzle w i t h a l a r g e a r e a r a t i o i s d e s i r a b l e t o meet t h e above requfrments. However, it i s d i f - f i c u l t t o d e s i g n and c o n s t r u c t a nozzle w i t h l a r g e a r e a r a t i o , and it may cause f l o w s e p a r a t i o n a t t h e nozzle e x i t . Therefore, i n t h i s s i m u l a t i o n , an a r e a r a t i o of 100 .,.was chosen a s a s t a n d a r d v a l u e which i s

(4)

t h e g a i n a t t a i n e d a t t h e p l a c e where t h e r e a c t i o n of t h e ( 0 2 0 0 ) l e v e l i s very f a s t , 9.4-ym p u l s e i s i n j e c t e d . Therefore 16-pm and parameters of 9.4-urn beam meeting such g a i n can n o t be o b t a i n e d simultaneously over

every p o i n t along t h e downstream shown i n Fig. 3. A s can e a s i l y be seen from Fig. 3, 16-ym g a i n i n c r e a s e s s h a r p l y and i s maxi- mized, t h e n g a i n c l o s e t o t h e maximum v a l u e remains a l o n g t h e downstream d i r e c t i o n . T h i s means t h a t one can p u t a c a v i t y n o t o n l y

a t

t h e p o i n t g i v i n g maximum g a i n b u t a l s o i t s downstream. Figure 4 shows t h e e f f e c t o f r e s e r v o i r p r e s s u r e Po on both 10.6-pm and 16-pm g a i n s a t a p o i n t 12 cm downstream from t h e t h r o a t . The 16-pm g a i n , as w e l l a s t h e 10.6-ym g a i n , i n c r e a s e s a s Po d e c r e a s e s u n t i l around Po = 15 atm, a t which t h e maximum g a i n i s given.

I t i s b e i l v e d t h a t t h e p r e s s u r e of t h @ cavity i n c r e a s e s w i t h Po, r e s u l t i n g i n t h e de-pop- u l a t i o n of t h e (001) l e v e l . I n t h i s way, t h e a n a l y s i s showed t h a t a maximum 16-pm g a i n of 2.5 % cm'l can be o b t a i n e d f o r parameters o f r e s e r v o i r tem- p e r a t u r e To of 1200 K , r e s e r v o i r p r e s s u r e Po o f 15 a h , gas mol f r a c t i o n o f C02: N2: H 2 = 20 : 73 : 7 ( % ) and with a nozzle a r e a

r a t i o of 100. A l l o f t h e s e parameters can e a s i l y be r e a l i z e d by experiment.

IV

.

SIMULATION MODEL [BJ

F u r t h e r t h e o r e t i c a l i n v e s t i g a t i o n of performance of 16-pm r a d i a t i o n by

a

conven- t i o n a l C02 GDL h a s been made based upon the r e s u l t s o b t a i n e d by Model [A]. For t h e

s i m -

0

u l a t i o n o f p o p u l a t i n g t h e (02 0) l e v e l ,

a

s t r o n g and s h o r t 9.4-pm p u l s e enough t o i n - s t a n t a n e o u s l y s a t u r a t e 9.4-ym t r a n s i t i o n

is

assumed i n Model [A]

.

However, &-tation

. . . . . ~ . an assumption a r e n o t c l e a r . Therefore, f o r understanding t h e s t a t e a f t e r i n j e c t i o n o f 9.4-pm r a d i a t i o n , a s e t of r a t e e q u a t i o n s w i t h p o p u l a t i o n of each v i b r a t i o n a l l e v e l i s newly i n t r o d u c e d h e r e t o examine t h e time and s p a t i a l b e h a i v i o r s of v i b r a t i o n a l e x c i t a t i o n by 9.4-ym p u l s e . I n t r o d u c t i o n of t h e new r a t e e q u a t i o n model a l s o e n a b l e s us t o e s t i m a t e . a d e t a i l e d s p e c i f i c 16-pm output power, an e x t r a c t a b l e energy and p u l s e pro- f i l e a g a i n s t t h e parameters of t h e 9.4-pm s t i m u l a t i n g beam.

I n t h i s model c a l l e d Model [Bl

,

6 levels of C02 up t o and i n c l u d i n g t h e (001) l e v e l w i t h o u t t h e (110) and t h e (030) l e v e l s , and N 2 ( v = l ) l e v e l a r e taken i n t o account. a s

showninFig.5. The r a t e e q u a t i o n w i t h 16-pm~ photon f l u x is added t o a s e t of rate equations with v i b r a t i o n a l p o p u l a t i o n s . Since t h e pop- u l a t i o n o f t h e (110) and t h a (030) l e v e l s

i s n e g l i g i b l e

a t

about 200 K , t h e s e two l e v e l s a r e n o t taken i n t o consideration he=. Then, we solved t h e s e e q u a t i o n s on t h e as-

sumption t h a t t h e r o t a t i o n a l p o p u l a t i o n s always form Boltzmann d i s t r i b u t i o n d e f i n e d by a g i v e n t r a n s l a t i o n a l temperature, 9.4- pm beam w i t h r e c t a n g u l a r p u l s e p r o f i l e aria

Gaussian i n t e n s i t y d i s t r i b u t i o n i s i n j e c t e a i n t o t h e s t r e a m t r a n s v e r s e l y 15 down- s t r e a m from t h e n o z z l e t h r o a t a s shown

in

Fig. 1. The r e a c t i o n s c o n s i d e r e d and t h e i r r a t e c o n s t a n t s a r e l i s t e d i n Table

II. I n

t h e a n a l y s i s Of 16-pm t r a n s i t i o n , most

in-

p o r t a n t r e a c t i o n s a r e r e a c t i o n s w i t h t h e

0

(02 0) l e v e l , e s p e c i a l l y t h e e f f e c t $ of r e a c t i o n ( 5 )

-

(10 i n Table I1 , a,re cxmsidergd

(5)

JOURNAL DE PHYSIQUE

t o be? l a r g e .

I n

r e a c t i o n s

( 8 ) ,

( 9 ) and

( l o ) ,

t h e ]:ate c o n s t a n t s f d r helium a r e tenl:ative- l y uhed i n s t e a d o f t f i e s e f o r H 2 , becauise t h e r a t e c o n s t a n t s f o r H Z ake nbC c l e a r . A s mol f r a c i t i o n o f H2 i s

$ m a l l ,

a l a r g e e r r o r seems t o bb a v o i d a b l e .

. ,

A s t h e i n i t i a l v a l u e QE t h e popu3,ation o f ehch v i b r a t i o n a l l e v e l , t h e v a l u e s c a l - c u l a k e d by Using t h e Model [ A ] aye usetd: a gak m i x t u r e

of

C02

r

N2 : H2 = 20 : 7 3

i

7 ($1, a . r e ! s e r v o i r t e n p e r a t a r e o f i200

K,

a a:eser- v o i r p r e s s u t e o f 1 5 & t m , and a n o z z l e a r e a r a t i b of 100, These p a r a m e t e r s a r e tui:ned o u t 'to be optimum v a l u e s £02 s m a l l s i g n a l g a i n a t 16-urn.

V. F&SULTS

AND

DISCUSSIDNS [MODEL [B]

1

F i g u r e 6 shows h e ~ n a x i n u n 16-yin s m a l l s i g n h l g a i n a g a i n s t t h e 9.4-pm i n p u t power. Wten a 9.4-pm i n p u t bower i n e x c e s s of' h u t 1 m l ( s p o t s i z e = 8 mtn d i a . , w i d t h = 100 h s e c )

i s

i n j e c t e d , a g a i n o f 16-1~mf~(15)) i s maximized, d n d i c a t i n g t h a t t h e 9.4j-vm 0 t r a n s i t i o n bettieen t h e (001) and t h e (02 0 ) l e v e l s i s s a t u r a t e d ~ o m p l e t e l y . The te'lnporal b e h a v i o r o f t h e e a c h l e v e l p b p u l a t i o n w i t h - o u t 16-um o s c i l l a t i o n i s s h o r n i n F i g . 7. The 9.4-ym Snput power i s

L RW,

s p o t s i z e i s 8 nun d i a . , and w i d t h i s 100 hsec. A f t e r i n j e c t i o n of 9.4-vm X a d i a t i o n , t h e 0 p o p d l a t i o n s ,of t h e (001) a s d t h e (02

D )

l e v e l s become e q u a l w i t h i n 10 n s e c . ~ n d ' a f t e r s t o p p i n g t h e i n j e c t i o n o f 9.4-pm r a - d i a t i o n , t h e p o p u l a t i o n o f t h e (001) l e v e l t e n d s t o r e c o v e r . Although t h e i n i t i a l pop- u l a t i o n d e n s i t y o f t h e (001) l e v e l i s 2.26 x PO 21 m-3, i t becomes 1 . 1 3 x 10 21 m-3 o f 9.4-urn r a d i a t i o n . On t h e c o n t r a r y , t h e (010) l e v e l p o p u l a t i o n h a r d l y i n c r e a s e s . I n t h i s way, i f 9.4-um p u l s e i s i n t e n s e a n d s h o r t , h a l f t h e p o p u l a t i o n o f t h e (001) lev- e l i s a v a i l a b l e a s upper l a s e r l e v e l popu- l a t i o n folt 16-ym t r a n s i t i o n . And. such 9.4-pm & s e l a s e r i s e a s i l y o b t a i n a b l b . Therefore, i t i s b e l i e v e d t h a t t h e assumption i n o u r p r e v i o u s d i m u l a t i o n i s r e a s o n a b l e . F i g u f e 8 shows a t y p i c a l 16-pm p u l s e p L o f i l e o b t a i n e d . F o r an i n j e c t i o n p u l s e o f

l d

MW 9.4-vm i n p u t power, 8 mm d i a . s p o t s i z e , 100 ' n s e c p u l s e w i d t h and a rectangular' p r o f i l e ,

a

16-ym p u l s e o f 25 pJ/pulse/cm 3 e x t r a c t a b l e energy and 4.2 klnl maximum power i s o b t a i n e d w i t h an a c t i v e l e n g t h of 0.1 m.

F i g u r e 8 dhows t h a t t h e second peak a p p e a r 6 & c u t 140 n s e c l a t e r . Because 9.4-vm beam A

forrt!s Gaussian d i s t r i b u t i o n t h e f i k s t peak

t

o f t h e 16-um p u l s e c a n be produced by t h e c a n t e r of t h e beam, and t h e . s e c o n d peak i s

produced by t h e f r i n g e o f t h e beam. B$ i n - j e c t i n g 9r4-um beam wikh uniform i n t e n s i t y

( s u c h a s mulki tfansve2se-mode beam), o n l y t h e s i n g l e peak w i l l a p p e a r . And t h e gas- f l o w v e l o C i t y is 1550

m

sec-'

,

i n d i c a k i l i g t h a t t h e l a s e r i?s t h e o t e t i c a l l y ' a b l e t o op- e r a t e a t &bout 2b0 kHz, ~ h e r e f d r e , t h e av- e r a g e o;tput power o f 4 w/cm3 i s obtdctnabla

(6)
(7)
(8)

9.4 pm INPUT POWER ( KW)

FIG.5. Schematic of t h e energy l e v e l s and t h e

r e a c t i o n s used i n Model [BI

.

FIG.6. The maximum 16-!~m small s i g n a l gain a g a i n s t the 9.4-pm input power.

ihput power pulse wi=dth 1 MW > $ ,

t.

J I 01

0

n ;

W n I

I

no

16 pm Lasing I I 100

200

TIME (

nsec)

FIG.7. Temporal behavior of number d e n s i t y of each v i b r a t i o n a l l e v e l without 16-um o s c i l l a t i o n .

100 200

TIME

(nsec)

Références

Documents relatifs

In addition, Hamamatsu Photonics has developed capabilities for high repetition rate laser experiments and for target delivery (with repetition rates in the Hz regime) and

The increase of output power has allowed the achievement of fiber lasers operating either in high power continuous wave (cw) regime, or in Q-switch or mode-locked regimes

Non-B viruses (30%) less frequently carried resistance mutations than did subtype B viruses (4.8% vs. Drug-resistant variants are frequently present in both recently and

The influence of gasdynamic disturbances crea- ted in a closed gas channel of a high-repetition-rate pulsed gas laser upon output laser performan- ces was studied.

The rise in saturation intensity as a function of pulse repetition rate is the result of electron quenching due to increasing discharge loading as a function

Other codes are also available : graphic representation of lines of equal intensity, three-dimensional representation by perspective effects, plotting of curves representing, as a

A new method to characterize high power piezo- ceramics is pmposed : the samples are tested under high levels of mechanical strain : elastical losses are depending on the

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des