• Aucun résultat trouvé

VIOLENT COLLISIONS BETWEEN IONS AS HEAVY AS KRYPTON AT GANIL AND GSI

N/A
N/A
Protected

Academic year: 2021

Partager "VIOLENT COLLISIONS BETWEEN IONS AS HEAVY AS KRYPTON AT GANIL AND GSI"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: jpa-00225804

https://hal.archives-ouvertes.fr/jpa-00225804

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

VIOLENT COLLISIONS BETWEEN IONS AS HEAVY

AS KRYPTON AT GANIL AND GSI

G. Rudolf

To cite this version:

(2)

JOURNAL DE PHYSIQUE

Colloque C4, supplément au n° 8, Tome 47, août 1986 C4-351

VIOLENT COLLISIONS BETWEEN IONS ftS HEAVY AS KRYPTON AT GANIL AND GSI

G. RUDOLF

Centre de

Recherches Nucléaires, BP 20 CR, F-67037 Strasbourg

Cedex, France

Résumé - Des résultats récents obtenus pour des collisions violentes entre un faisceau de masse élevée (A ^ 100) et des cibles de masse comparable sont exposés. Jusqu'à 20 MeV/u, le mécanisme est essentiellement celui des colli-sions profondément inélastiques, bien que certaines déviations apparaissent. Au-dessus de 20 MeV/u, certaines données sont interprétées dans le cadre d'un modèle participant-spectateur, mais en tenant compte des effets de champ moyen qui restent très importants. A 35 et 44 MeV/u, ces mécanismes permet-tent d'atteindre des températures telles que la multifragmentation devient possible.

Abstract - Data from violent collisions between heavy (A ^ 100) beams and targets of comparable mass are reviewed. The deep-inelastic mechanism domi-nates up to 20 MeV/u, although some departures are already noticed. Above 20 MeV/u, some data have been interpreted in the frame of a participant-spectator model, but taking in account mean field effects which are still important. At 35 and 44 MeV/u, such mechanisms allow to reach temperatures where the multifragmentation becomes possible.

I - INTRODUCTION

Since heavy ion beams have become available, two bombarding energy regions have mainly been explored:below E/A = 10 MeV/u where one observes collective phenomena, and above E/A = 100 MeV/u where nucleon-nucleon interactions dominate. The inter-mediate energy region has only recently begun to be investigated. Projectiles with mass A > 100 can be accelerated at GSI (E/A < 20 MeV/u) and at Ganil (E/A < 50 MeV/u for such heavy beams).

The very first results obtained at Ganil with a Kr beam showed events indicati-ve of a tremendous relaxation (1) : indeed only fragments with small Z values and low velocities had been observed in the Kr + Au reaction at 35.5 MeV/u (Figs. 1 and 2). These data had been measured at angles larger than the grazing angle.

They appeared completely different from the first results which had been obtai-ned previously with an Ar beam (2) : in the Ar + Ni and Au reactions at 44 MeV/u, fragments with Z values equal to or smaller than the beam one and velocities close to that of the projectile dominated the energy spectra measured at 3°.

Since than, data measured over a broad angular range showed that the difference is much less dramatic. For example, Fig.3 illustrates that, in the Kr + Au reaction at 44 MeV/u, fragmentation-type events as well as fragments relaxed in Z and velo-city are emitted (3).

If no difference between Kr and Au induced reactions existed, the Ar beam would be, at Ganil, more attractive than the Kr one : indeed, Ar can be accelerated up to 60 MeV/u, while Kr only up to 44 MeV/u. Moreover, the Kr beam was not, until recen-tly, of the "push button" type, although of good quality.

The aim of this paper is to explain why experimentalists prefer occasionally Kr or other mass 100 beams : the best way to do this is to present some results obtained with these beams. The aim of my introduction - emphasizing the difference between the very first data gained with Ar and Kr projectiles - was to indicate you which is the main philosophy of the paper: mass 100 ions induced reactions are

(3)

JOURNAL

DE-PHYSIQUE

F i g .

l

-

KLneLic eneagy

pm

nucleon

06

dl

F i g .

2 -

Atomic n m b m dinixiblLtivn

Ahe p&odu& Utith

€ / A > 10

MeVlu

06

t h e evevv3 i n F i g . 1 .

I6hom

Re6.7).

t h e b e s t t o o l t o f o l l o w t h e e v o l u t i o n of t h e mechanism when s t a r t i n g from t h e low- energy p o i n t of vue.

The reason why t h i s is s o i s e a s y t o understand. A t low bombarding energy, two main mechanisms a r e observed i n heavy i o n

L t L I I , ,

Kr (

44MeV/u

1

+Au

r e a c t i o n s : f u s i o n and deep i n e l a s t i c c o l l i s i o n s . Fusion i s n o t s e e n f o r systems of t o t a l mass l a r g e r t h a n 300 a.m.u. ( 4 ) .

On t h e o t h e r hand, mass 100 i o n s a r e very s t a b l e a g a i n s t f i s s i o n when compared t o much h e a v i e r ones. They a r e t h e r e f o r e good p r o j e c t i l e s t o s t u d y deep i n e l a s t i c reac- t i o n s , and c e r t a i n l y a l s o t o f o l l o w t h e e v o l u t i o n of t h i s mechanism i n t h e t r a n s i - t i o n r e g i o n opened by Ganil.

F i g .

3

-Rtomic n m b m dinixiblltiom integh-

ated v v m f i e angdak haMge hepoht-

ed i n

t h e

digme

I

@om Re6 . 3

1

.

I I I I I I I

(4)

I1 a

-

DEEP INELASTIC COLLISIONS AT LOW BOMBARDING ENERGIES

D e e p - i n e l a s t i c c o l l i s i o n s a r e q u i t e f a s c i n a t i n g . We have l e a r n e d through them t h a t two heavy n u c l e i can s t i c k t o g e t h e r f o r a r a t h e r long time : s e c o r so. During t h i s time, they exchange many nucleons, t r a n s f o r m a s much k i n e t i c energy a s p o s s i b l e i n t o e x c i t a t i o n energy, e q u i l i b r a t e t h e i r t e m p e r a t u r e s and deform conside- r a b l y b e f o r e r e s e p a r a t i n g ; t h e s e a r e t h e f e a t u r e s , among a l l t h o s e which have been s t u d i e d , which w i l l r e t a i n o u r a t t e n t i o n i n t h e following.

I1 b

-

THE NUCLEON EXCHANGE PROCESS UP TO 20 MeV/u

The e v o l u t i o n of t h e nucleon exchange p r o c e s s h a s been s t u d i e d by G r a l l a e t a l . (5). These a u t h o r s have measured t h e 9 2 ~ 0 + 9 2 ~ 0 and ~ ~ O M O

+

~ O ~ M O r e a c t i o n s between 12 and 18.8 MeV/u. The f a c t t h a t t h e two ions a r e i d e n t i c a l a l l o w s t o t e s t i f t h e r e a c t i o n i s s t i l l of two-body n a t u r e ( s e e s e c t i o n I1 e ) . It i s t h e n p o s s i b l e , by measuring t h e time of f l i g h t of both r e a c t i o n p a r t n e r s , t o o b t a i n primary charge and mass d i s t r i b u t i o n s , and hence moments f o r them which a r e l i t t l e d i s t u r b e d by t h e l i g h t p a r t i c l e s e v a p o r a t i o n .

Charge and mass v a r i a n c e s i n c r e a s e w i t h i n c r e a s i n g energy l o s s : t h i s proves t h a t , when t h e two n u c l e i come t o c o n t a c t , t h e p o t e n t i a l b a r r i e r between them va- n i s h e s , a window opens and t h e nucleons, through t h e Fermi motion, p a s s t h i s window i n b o t h d i r e c t i o n s ( F i g . 4 ) . I t has be shown (6) t h a t

02

i s approximatively e q u a l t o

Fig.4

-

Nucteon mo.tion bedone

t h e

deep

i n a b 5 f i c

n e a d o n la)

and duhing Lt

(61

.

t h e t o t a l number of nucleons which have passed t h e window.

(5)

C4-354

JOURNAL DE PHYSIQUE

The i n c r e a s e of maximum

ax

w i t h t h e bombarding e n e r g y may i n d i c a t e a n i n c r e a s e of t h e i n t e r a c t i o n t i m e . I n Ref.5) i t i s .suggested t h a t i t i s d u e , r a t h e r , t o t h e i n c r e a s e o f t h e t e m p e r a t u r e of t h e d i n u c l e a r system. T h i s assumption i s based on a u n i v e r s a l l a w which h a s been shown t o be f o l l o w e d by a l l systems a t low bombarding e n e r g y ( 7 ) . When e x t r a p o l a t e d t o 18.8 ~ e V / u , i t i s s t i l l f o l l o w e d by t h e Mo + Mo systems ( F i g . 5 ) : t h i s p r o v e s t h a t t h e mechanism h a s n o t changed i n i t s n a t u r e .

The consequence of t h i s l a r g e number o f n u c l e o n exchanges i s shown i n F i g . 6 :

F i g ,

Di66uiiion-pLot

06

binmy

pmdu&

omed i n t h e

nwrotion B2Mo

9 2 ~ o

at

18.2

MeV/u; danhed contouh

finen denote m e a whme

fie y i d d

LA

ai6ec;ted by

geome.&Lcd

C&

(Fnom

Re6.81.

0 20 40 60 80 UIO no vo 1611 180

Fragment

Mass

A

[am1

v e r y broad mass d i s t r i b u t i o n s a r e o b s e r v e d i n t h e f u l l y damped r e g i o n . They e x t e n d t o v a n i s h i n g v a l u e s o f t h e mass : t h i s can be i n t e r p r e t e d a s a k i n d of "slow f u s i o n " which i s a c h i e v e d t h r o u g h t h e s e q u e n t i a l t r a n s f e r o f a l l n u c l e o n s from one n u c l e u s t o t h e o t h e r . T h i s mechanism a p p e a r s , however a t t e m p e r a t u r e s where t h e system may n o more b e s t a b l e a g a i n s t m u l t i f r a g m e n t a t i o n ( s e e s e c t i o n I1 e ) . But f i r s t , we s h a l l examin some d e v i a t i o n s from t h e c l a s s i c a l deep i n e l a s t i c p r o c e s s which a r e a l r e a d y s e e n a t E / A < 20 MeV/u.

I1 c

- THE ONSET OF THREE-BODY MECHANISMS

Three f r a g m e n t s - e v e n t s can be observed i n a heavy i o n r e a c t i o n e i t h e r a f t e r a s e q u e n t i a l f i s s i o n o r a f t e r t h e f a s t break-up o f one o f t h e p a r t n e r s . I n t h e f i r s t c a s e , t h e mechanism i s s t i l l o f two body n a t u r e , l i k e a deep i n e l a s t i c c o l l i s i o n ( F i g . 7 ) . I n t h e second c a s e , t h e p r o c e s s i s a f a s t three'body mechanism, l i k e t h o s e which a r e o b s e r v e d a t h i g h bombarding e n e r g i e s .

Fig.?

-

Schemdtic pi-e

06

a deep

ineRanLic co&Uion

dofiowed bby Rhe &&bion

ad

one patLtnm.

(6)

Second,deformations modify t h e p o t e n t i a l energy and can induce thereby s t r o n g mass d r i f t s (9) s o t h a t f i n a l masses do n o t a l l o w t o i d e n t i f y unambiguously t h e p a r t n e r s of t h e f i r s t o r second s c i s s i o n . L a s t , s t r o n g f i n a l - s t a t e coulomb i n t e r a c t i o n s modi- f y t h e energy and a n g u l a r c o r r e l a t i o n s between t h e fragments.

n

The f i r s t i n d i c a t i o n f o r a three-body break-up was observed i n t h e 8 6 ~ r

+

1 6 6 ~ r r e a c t i o n a t 12.1 MeV/u (10 This phenomenon was i n v e s t i g a t e d i n g r e a t d e t a i l i n t h e

s4Kr

+

16%r and 129he

+

liiSn r e a c t i o n s a t n e a r l y t h e same energy ( 1 1 ) . A s t r o n g y i e l d of three-body e v e n t s was observed. It was shown t h a t t h e y a r e produced i n a mechanism i n t e r m e d i a t e between t h e s e q u e n t i a l f i s s i o n and t h e f a s t break-up : i n d e e 4 a time s c a l e of 1. s e c between t h e c o n s e c u t i v e s c i s s i o n s was e s t a b l i s h e d . This time i s l a r g e enough t o c o n s i d e r t h e mechanism t o b e a s e q u e n t i a l one, and s m a l l enough t o a l l o w a Coulomb f i n a l - s t a t e i n t e r a c t i o n t o show up.

The e f f e c t s of t h i s i n t e r a c t i o n were s t u d i e d i n Ref.11) a s a f u n c t i o n of t h e azimuthal a n g l e

Gf

: t h e r e l a t i v e v e l o c i t y , t h e y i e l d and t h e mean v a l u e of t h e f i s s i o n fragment-mass d i s t r i b u t i o n f l u c t u a t e .

These f e a t u r e s show t h a t we a r e no more d e a l i n g w i t h an e q u i l i b r a t e d , s e q u e n t i a l f i s s i o n f o l l o w i n g a damped c o l l i s i o n . It i s a l s o n o t a f a s t break-up of t h e p a r t i - " c i p a n t - s p e c t a t o r type seen a t much h i g h e r e n e r g i e s . Indeed, Fig.9 shows t h a t t h r e e -

2-BODY TOTAL KINETIC ENERGY (MeV)

0 200 LOO 600 0 200 LOO 600 800

lo7

I.

.,

I . I .

.,

I . ,, I . ,I '. '. ' I

'.

'U '.

F i g . 9

-

Maha- and angle-integhccted

Z o M &n&c

enmgy

,,

1

U K ~

.

' ~ i

1

1

lzsxe

+ l 2 2 s n

I

]

d h a X b L L t i o ~ doh ex&u&ve

binany and tetrnany eventn

i n t h & Xkue h d a t i v e

tratio.

To

dacihX&e com-

pahinon, t h e e n a g y o c & e ~

6 0 ~

Zhe t a n a n y e v e d m e

nki6Zed ~

~

.to Rhobe

v

e

doh t h e binatLy oneA by

-&the

additional coulomb enengy

~ d e a n e d

i n

a Rhrree-pd-

i d e decay.

(

FAom Red. 1 1

.

(7)

C4-356

JOURNAL

DE

PHYSIQUE

body e v e n t s a r e a s s o c i a t e d w i t h t h e l a r g e s t energy l o s s e s , i . e . w i t h t h e l a r g e s t deformations. From t h i s , we may conclude t h a t d e f o r m a b i l i t y can " a c c e l e r a t e " t h e second s c i s s i o n .

Recently, a long time s c a l e between t h e two s c i s s i o n s has been found i n t h e 3 5 ~ 1

+

Ta r e a c t i o n a t 20 MeV/u ( 1 2 ) . The low d e f o r m a b i l i t y of 3 3 ~ 1 , when compared t o 129xe, may e x p l a i n i t .

I1 d - PARTICIPANTS AND SPECTATORS

It i s well-known, a t low bombarding energy, t h a t two p a r t n e r s of a damping c o l l i s i o n tend t o s h a r e t h e i r e x c i t a t i o n energy so a s t o e q u i l i b r a t e t h e i r tempera- t u r e s . A t high energy, on t h e c o n t r a r y , zones of low temperature ( t h e s p e c t a t o r s ) c o e x i s t w i t h zones of high one ( t h e p a r t i c i p a n t s ) .

Ternary r e a c t i o n s , l i k e t h o s e we have seen i n t h e preceeding s e c t i o n , may be a good t o o l t o observe d i f f e r e n c e s of t e m p e r a t u r e s between t h e t h r e e fragments : indeed, d u r i n g t h e f i r s t d i s s i p a t i v e s t e p of t h e r e a c t i o n , one f i s s i o n fragment i s c l o s e r t o t h e c o n t a c t zone t h a n t h e o t h e r . The t h r e e c a s e s of Fig.8 correspond t h e n t o t h e c r e a t i o n of an independant f i r e - b a l l ( a ) , p a r t i a l f u s i o n of t h e h o t zone on t h e t a r g e t (b) o r on t h e p r o j e c t i l e ( c ) . Because mean f i e l d e f f e c t s a r e s t i l l impor- t a n t a t Ganil e n e r g i e s , t h e two l a s t p i c t u r e s a r e q u i t e l i k e l y t o be observed.

F i g . 10

CdccLeated c o m e l a t i o n i n t h e

pLane

( E , A )

6o.t The Xe

+

Ag

nyntem, mnoeiated uLth Rhe

necvnd mod&. Cornpaninon

~ L t h

t h e

. t a u t &

&

done.

(

faom

Red. 1 3 ) .

Etab

(MeV)

Various d a t a confirm such i d e a s . However, t h e models which have been used t o ana- l y z e them p r e s e n t some d e c i n i t e d i f f e r e n c e s w i t h t h o s e of Fig.8. F i r s t , complete energy damping i s no more reached (12) ( s e e a l s o s e c t i o n I1 e )

.

Second, deforma- tdons a r e n o t c o n s i d e r e d , but t h e e x i s t e n c e of a l o c a l i z e d zone of p a r t i c i p a n t nucleons i s a c r u c i a l i n g r e d i e n t of t h e models.

(8)

Model 1 i s found t o b e t t e r d e s c r i b e t h e 8 4 ~ r + 9 8 ~ 0 and 8 4 ~ r

+

lg78u d a t a (15) (Fig.12). To e x p l a i n t h i s o b s e r v a t i o n , i t was s p e c u l a t e d t h a t c a l e f a c t i o n , a con- c e p t w e l l known i n condensed m a t t e r p h y s i c s , can b e a p p l i e d a l s o t o n u c l e a r p h y s i c s

(15). 2.0

,

,

,

,

,

, , , ,

I I I 1 1 UODEL

0

-

after 1.5

-

I

-

0

-

24 N

-

20

-

16 TS 0.0 0.5 1.0 E / E p

F i g . 1 1

-

Schematic hephu enta;tiom

F i g .

1 2

-

A

compatLinon batmen f i e

06

t h e t h e e i v t t e ~ c t h n

exp&entd

data and t h e

nceMahion d u d b e d i n t h e

c d c d a t e d comeedtion doh

t e x t . (Fhom Re6.13).

ncenattio

7

06

6igiswre

1 1

( c d e 6 a ~ o n

i n i h e PS

+

PZ

n

yb-tem)

.

(

Fkom Red.

1 5 )

.

11 e

- HIGH

TEMPERATURES AND MULTIFRAGMENTATION

C o l l i s i o n s between i d e n t i c a l i o n s a l l o w t o t e s t i f t h e mechanism i s of two-body n a t u r e : i n t h i s c a s e , indeed, primary charge o r mass d i s t r i b u t i o n s must remain cent- e r e d a t p r o j e c t i l e v a l u e . Fig.6 shows t h a t , even f o r t h e l a r g e s t energy l o s s e s , t h i s i s f a i r l y checked i n t h e 9 2 ~ 0 + 9 2 ~ 0 a t 18.2 MeV/u when c o i n c i d e n c e s a r e s e l e c t e d by c o n d i t i o n s of c o p l a n a r i t y and center-of-mass c o l i n e a r i t y . This e n s u r e s t h a t , dur- i n g t h e s e l e c t e d c o l l i s i o n s , t h e observed k i n e t i c energy l o s s of o v e r 650 MeV i s transformed i n t o e x c i t c t i o n energy. The d i n u c l e a r system r e a c h e s thereby tempera- t u r e s of more than 5 MeV. This is confirmed i n Fig.13 by t h e good agreement between temperatures c a l c u l a t e d from t h e k i n e t i c energy l o s s and t h o s e measured through t h e s l o p e of evaporated p r o t o n energy s p e c t r a ( 8 ) .

Mass 100 n u c l e i d e e x c i t e p r e f e r e n t i a l l y by l i g h t p a r t i c l e e v a p o r a t i o n . When t h e bombarding energy a t t a i n s 20 MeV/u, one can e s t i m a t e t h a t up t o 30% of t h e t o t a l mass is evaporated i n f u l l y damped r e a c t i o n s . This r a c e would of c o u r s e i n c r e a s e w i t h t h e bombarding energy i f f u l l damping can s t i l l b e reached.

(9)

JOURNAL

DE

PHYSIQUE

Another mechanism may p u t a n end t o t h e i n c r e a s e o f e n e r g y d e p o s i t d u r i n g a heavy i o n r e a c t i o n . I n d e e d , m u l t i f r a g m e n t , a t i o n h a s r e c e n t l y been p r e d i c t e d t o o c c u r when t h e t e m p e r a t u r e o f a n u c l e u s a t t a i n s a b o u t 6 MeV ( 1 6 ) .

E x p e r i m e n t a l h i n t s f o r t h i s mechanism a r e based on t h e o b s e r v a t i o n o f intermed- i a t e m H s s f r a g m e n t s i n v a r i o u s e x p e r i m e n t s . Almost a l l d a t a i n t h i s f i e l d a r e i n c l - u s i v e : q u i t e few c o i n c i d e n c e measurements h a v e been r e p o r t e d and o n l y a t

E / A C 20 MeV/u ( 1 2 ) . At G a n i l , i n c l u s i v e fragment-measurements have been performed f o r s e v e r a l 35 MeV/u Kr-induced r e a c t i o n s : on 2 7 ~ 1 (17)

,

9 3 ~ b (18) and Au ( 3 , 19)

.

While, i n t h e f i r s t r e a c t i o n , a n e q u i l i b r a t e d cornposit system seems t o have been formed ( 1 7 ) , t h e two o t h e r s r e v e a l t h e c o e x i s t e n c e of d i f f e r e n t mechanisms. T h i s i s i l l u s t r a t e d i n F i g . 1 4 where two g r o u p s o f f r a g m e n t s a r e observed a t a n g l e s s m a l l e r o r l a r g e r t h a n t h e g r a z i n g a n g l e ( s e e a l s o F i g . 3 ) .

100 200 300 LOO 500 600 700 800 0 . 7 ~ ~ t ~ ~ ~ t ~ o ~ t ~ ~ t * ~

Totai Kinetic Energy:

TKE [MeV1

12 16 20 2~ 28 32 36

z

F i g .

7 3

-

"SLape panameZe,t"

T

ten&-

Fig.

14

-

Mean

v a c i t i e n

od dtragmena%

ing &am .the

t o t h e

compahed

20

pno jectiee

dinMblLtiom

06

f i e meah-

v e l o c i t y

V p

wed photon evapokafian n p e h a .

[Faom Red.

181.

More r e c e n t l y , c o i n c i d e n c e s between Z = 8

-

36 f r a g m e n t s e m i t t e d i n forward d i r e c t i o n ( 9 = 3' t o 30") have been measured f o r t h e K r

+

Au r e a c t i o n a t 35 and 44 MeV/u ( 3 ) . I n F i g . 15 i s shown t h e ECep spectrum. E : ~ ~ is t h e d i f f e r e n c e between t h e r e l a t i v e e n e r g y of t h e two f r a g m e n t s and t h e i r Coulomb r e p u l s i o n . The a b s e n c e of c o u n t s below Egel = 0 shows t h a t t h e f r a g m e n t s a r e n o t e m i t t e d s e q u e n t i a l l y by a s i n g l e n u c l e u s . R a t h e r , i t a p p e a r s t h a t t h e y a r e e i t h e r e m i t t e d i n c l o s e c o n t a c t (E:,1

'

0) by t h e same s o u r c e , o r t h a t t h e y o r i g i n a t e from two s o u r c e s (E:,~ >> 01, t h e r e l a t i v e v e l o c i t y of which i n c r e a s e s w i t h t h e bombarding e n e r g y .

The fragment v e l o c i t y s p e c t r a c o r r e s p o n d i n g t o t h e s e two k i n d s o f c o i n c i d e n c e s a r e shown i n Fig.16. Three components a p p e a r : f a s t f r a g m e n t s (V/Vp % 0.9) a r e i n

c o i n c i d e n c e w i t h slow o n e s (V/Vp < 0 . 7 ) , w h i l e t h e f r a g m e n t s w i t h

"

0 have a broad v e l o c i t y s p e c t r u m w i t h a maximum around V/Vp = 0.6.

The f a s t - s l o w c o i n c i d e n c e s (Fig.16a) can b e i n t e r p r e t e d i n t h e framework o f t h e a b l a t i o n - a b r a s i o n model (20) : p r o j e c t i l e s p e c t a t o r s , whose v e l o c i t y h a s been slowed down t o 0 . 9 V by t h e s e p a r a t i o n of t h e p a r t i c i p a n t n u c l e o n s , a r e d e t e c t e d i n c o i n c i d e n c e w i t h f r a g m e n t s e m i t t e d by t h e p a r t i c i p a n t zone. The v e l o c i t y of t h i s l a t e r s o u r c e i s p r e d i c t e d t o b e e q u a l t o 0.35 Vp, due t o t h e f a c t t h a t p r o j e c t i l e and t a r g e t do n o t c o n t r i b u t e e q u a l l y t o i t .

(10)

shared over a l l t h e n u c l e u s (model 2 o r 3), i t s temperature a t t a i n s 8.5 MeV. I f t h i s h o t n u c l e u s undergoes m u l t i f r a g m e n t a t i o n , i t w i l l emit fragments which may be d e t e c - t e d i n t h e

" 0

coincidences. I n v e r s e l y , one can imagine t h a t t h e nucleons a r e t r a n s f e r e d on t h e t a r g e t . More than 30 nucleons have t o be t r a n s f e r e d t h i s way t o a c c e l e r a t e t h e target-composite s u f f i c i e n t l y t o a l l o w fragments emitted by i t t o be d e t e c t e d i n t h e set-up. It happens t h a t , a t t h e same t i m e , i t s temperature becomes l a r g e r than 6 MeV : i t may t h e r e f o r e emit fragments which we d e t e c t a s slow o n e s , i n coincidence w i t h t h e remainder of t h e p r o j e c t i l e (Fig.16a).

r . t t 1 . 1 1 P

Kr

+

Au

400

-

-

E,,

=

44MeVIu

----

EKr=

35

MeVIu

-

2

300-

- Z 3 0

"

200

-

100-

0-

0

50

100

150

200

E;,

,

(MeV1

Fig.

75

-

Codom6

cohtleoted ndcLtive

enmgy

Eid

npecaXm

a4 0.6 0.8 1.0 '47.2 /"P

Fig.

16

-

V e l o c i t y

n p e d 0 4

4tragmevLtb

detect-

ed

in

n

elected coincidencu

.

Linear momentum t r a n s f e r , a s we s e e , i s a c r u c i a l q u a n t i t y t o e x p l a i n t h e s e d a t a . The u n d e r l y i n g mechanism may be t h e i n t e r a c t i o n between t h e p a r t i c i p a n t zone and one of t h e two s p e c t a t o r s zones l i k e i n Fig.11, but a l s o multinucleon t r a n s f e r o r perhaps even a d i s s i p a t i v e c o l l i s i o n l i k e i n Fig.8. While kinematics a r e i n s e n s i t i v e on t h e choice of t h e model, temperatures and t h e r e f o r e t h e r a t e of evaporated par-

t i c l e s depend s t r o a g l y on i t . This f a c t was used i n Refs.13 and 15 t o d i s t i n g u i s h between t h e models i n Fig.11. A t bombarding e n e r g i e s a s h i g h a s 44 MeV/u, t h i s i s no more p o s s i b l e . Coincidences between heavy fragments have t h e g r e a t m e r i t t o

(11)

JOURNAL

DE

PHYSIQUE

111

-

CONCLUSION

Deep i n e l a s t i c r e a c t i o n s have been o b s e r v e d between mass 100 i o n s up t o 20 MeV/u. Deformations, however, i n c r e a s e t h e f i s s i o n p r o b a b i l i t y o f t h e p a r t n e r s and s h o r t e n t h e i r l i f e - t i m e , g i v i n g r i s e t o a c r o s s s e c t i o n f o r a n o n - e q u i l i b r a t e d t h r e e body mechanism. T h i s mechanism, which h a s a 10-21 s e c c h a r a c t e r i s t i c t i m e s c a l e a t 12 MeV/u, i s n e t h e r t h e l e s s q u i t e d i f f e r e n t from f a s t break-up.

Above 20 MeV/u, m u l t i f r a g m e n t a t i o n s e t s p r o b a b l y i n b e c a u s e t h e t e m p e r a t u r e of t h e p a r t n e r s can exceed 6 MeV. D i r e c t measurement of t e m p e r a t u r e s c l o s e t o 6 MeV i n a deep i n e l a s t i c r e a c t i o n h a s been r e a l i s e d s l i g h t l y below 20 MeV/u by s e l e c t i n g two body e v e n t s i n c o l l i s i o n s between i d e n t i c a l i o n s . Such a n experiment is S f i l l p o s s i - b l e a t a somewhat h i g h e r e n e r g y , and may a l l o w a measure o f t h e l i m i t i n g t e m p e r a t u r e f o r m u l t i f r a g m e n t a t i o n .

Around 25 MeV/u, p a r t i c i p a n t - s p e c t a t o r models i n c l u d i n g c o l l e c t i v e n u c l e a r mean- f i e l d e f f e c t s have been used t o i n t e r p r e t e s i n g l e s d a t a . They showed t h a t c o n c e p t s , borrowed from condensed m a t t e r p h y s i c s , may b e a p p l i e d t o n u c l e i . E x c l u s i v e e x p e r i - ments a r e now needed t o c o n f i r m t h e s e i d e a s .

Below 35 M e ~ / u , Coulomb f i n a l s t a t e i n t e r a c t i o n s may jumble somewhat t h e c o r r e - l a t i o n s measured i n f r a g m e n t - c o i n c i d e n c e s . A t 44 MeV/u, on t h e c o n t r a r y , i t h a s been p o s s i b l e t o s e p a r a t e components c o r r e s p o n d i n g t o d i f f e r e n t s o u r c e s . Only two of them can p o s s i b l y b e u n d e r s t o o d i n t h e frame of a p a r t i c i p a n t - s p e c t a t o r model. A l l t h r e e can b e e x p l a i n e d by mechanisms i n v o l v i n g a l a r g e energy damping. More i n v e s t i g a t i o n s a r e needed t o e l u c i d a t e t h e n a t u r e of t h i s mechanism.

ACKNOWLEDGEMENTS

Thanks a r e due t o a l l my c o l l e a g u e s a t S t r a s b o u r g , Caen, S a c l a y and Darmstadt f o r h e l p f u l l d i s c u s s i o n s . I n p a r t i c u l a r , A. Gobbi, K.D. H i l d e n b r a n d t and Ch. Ngo have p r o v i d e d m e w i t h d a t a p r i o r t o p u b l i c a t i o n .

REFERENCES

1 ) D. D a l i l i e t a l . , 2. Phys.

A316

(1984) 371. 2) V. Bore1 e t a l . , 2. Phys.

A134

(1983) 191.

3) A. K a m i l i , Ph.D. T h e s i s , CRN S t r a s b o u r g and U n i v e r s i t y L o u i s P a s t e u r (1986). 4) M. L e f o r t , C. Ngo, J . P e t e r and B. Tamin, Nucl. Phys.

A216

(1973) 166. 5) S. G r a l l a e t a l . , Phys.Rev.Lett.

54

(1985) 1898.

6) G. Rudolf, Z. Phys.

A320

(1985) 375.

7) H . J . Wollersheim e t a l . , Phys. Rev.

C25

(1982) 338. 8) N. Herrmann, Diplom, U n i v e r s i t y of Miinster,(l984) 9) G. Guarino e t a l . , Nucl. Phys.

A424

(1984) 157. 10) A. Olmi e t a l . , Phys. Rev. L e t t .

44

(1980) 383.

11) P. G l E s s e l , D. von H a r r a c h , H.J. Specht and L. G r o d z i n s , Z. Phys. (1983) 189.

12) M . J . Murphy e t a l . , Phys. Rev. L e t t .

53

(1984) 1543.

13) 0. G r a n i e r et a l . , C o n t r i b u t i o n t o t h e XXIV t h I n t e r n a t i o n a l W i n t e r Meeting on Nucl. Phys., Bormio (1986).

14) C. Ngo, p r i v a t e communication.

15) D. D a l i l i e t a l . , 2. Phys.

A320

(1985) 349. 16) J . Bondorf e t a l . , Nucl. Phys.

A444

(1985) 460. 17) W. M i t t i g e t a l . , Phys. L e t t . (1985) 259. 18) J.L. Charvet e t a l . , 2. Phys.

A321

(1985) 701.

Références

Documents relatifs

By this means, the production target is heated by the primary beam power, allowing the diffusion of the He atoms produced by the fragmentation of the carbon atoms of the target,

A patogenicidade dos isolados foi confirmada via inoculação por imersão de raízes em suspensão de esporos (106 conídios/mL), em um conjunto de cultivares diferenciadoras para

15 2017 270 لىإ تاساردلا نم ديدعلا يرشت أ نيدقعلا ن الأ ادهش نييرخ اعافترا طلا مجح في تقولا في طفنلا ىلع يلماعلا بل يذلا رقتسا هيف يطايتحلاا ،يلماعلا ا لأ

Initiés par des autorités organisatrices des transports urbains, expérimentés par un département dans un contexte transfrontalier, portés plus récemment par des

Le temps familial traverse les différents registres d'activités des personnes (domestique, transport, travail) mais de manière indirecte et parfois cachée. Le temps familial

ق.. قحللما 84 قحلملا : ق ص يد ءاسملا ة ايليلإ يضام يبأ بحرلا ءاضفلا في ضكرت بحسلا ينفئالخا ضكر سمشلاو ةبصاع ءارفص اهفلخ ودبت ينبلجا

Operation near resonant frequency is especially critical for large machines [5] The value of the amplitude of the force at resonance is limited by the occurrence of dissipation in

101 - 54602 Villers lès Nancy Cedex France Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex France Unité de recherche INRIA Rhône-Alpes