• Aucun résultat trouvé

Generalised substitutions and stepped surfaces

N/A
N/A
Protected

Academic year: 2021

Partager "Generalised substitutions and stepped surfaces"

Copied!
10
0
0

Texte intégral

(1)

PierreArnoux

1

,ValérieBerthé

2

,andDamien Jamet

2

1

InstitutdeMathématiquedeLuminy,CNRSUMR6206,163avenuedeLuminy,

13288MarseilleCedex9-FRANCE.

arnouximl.univ-mrs.fr

2

LIRMM-UMR5506,UniversitéMontpellierII,161rueAda,34392Montpellier

Cedex5-FRANCE.

{berthe,jamet}lirmm.fr

Abstra t Asubstitutionisanon-erasingmorphismofthefreemonoid.

Thenotionofmultidimensionalsubstitutionofnon- onstantlength

a t-ingonmultidimensionalwordsintrodu edin[AI01,ABS04 ℄isprovedto

bewell-denedontheset oftwo-dimensionalwords related todis rete

approximationsof irrational planes. Su h amultidimensional

substitu-tion anbeasso iatedtoanyusualPisotunimodularsubstitution.The

aim of this paperis to try to extend the domainof denition of su h

multidimensional substitutions. Inparti ular, we study an exampleof

amultidimensionalsubstitution whi ha tsonasteppedsurfa einthe

senseof[Jam04 ,JP04℄.

1 Introdu tion

Sturmianwordsareknowntobe odingsofdigitizationsofanirrationalstraight

line[KR04,LOTH02℄.One ouldexpe tfromageneralizationofSturmianwords

that they orrespond to a digitization of ahyperplane with irrational normal

ve tor. It is thus natural to onsider the following digitization s heme

orre-sponding to thenotionof arithmeti planes introdu edin [Rev91℄: this notion

onsists in approximatingaplanein

R

3

by sele tingpointswith integral

oor-dinatesaboveandwithinaboundeddistan eoftheplane;morepre isely,given

v

∈ R

3

,

µ, ω ∈ R

,thelower(resp.upper) dis retehyperplane

P(v, µ, ω)

isthe

set of points

x

∈ Z

d

satisfying

0 ≤ hx, vi + µ < ω

(resp.

0 < hx, vi + µ ≤ ω

).

Moreover,if

ω =

P |v

i

| = |v|

1

,then

P(v, µ, ω)

issaidtobestandard. Inthislatter ase,oneapproximates aplanewith normalve tor

v

∈ R

3

by

square fa es orientedalong the three oordinatesplanes; for ea h of the three

kinds of fa es, one denes a distinguished vertex; the standard dis rete plane

P(v, µ, |v|

1

)

is then equalto theset of distinguishedverti es;after proje tion

ontheplane

x + y + z = 0

,along

(1, 1, 1)

,oneobtainsatilingoftheplanewith

threekindsofdiamonds,namelytheproje tionsofthethreepossiblefa es.One

an odethisproje tionover

Z

2

byasso iatingtoea hdiamondthenameofthe

(2)

Ageneralizationofthenotionofsteppedplane,theso- alleddis retesurfa es,

is introdu ed in [Jam04℄. Roughly speaking, a dis rete surfa e is a union of

pointed fa es su h that theorthogonal proje tionon the plane

x + y + z = 0

indu es an homeomorphism from the dis rete surfa e to the plane. As done

for stepped planes, one provides any dis rete surfa e with a oding as a

two-dimensional word over a three-letter alphabet. In the present paper, we all

dis rete surfa es stepped surfa es, sin e su h obje ts are not dis rete, in the

sense,thattheyarenotsubsetsof

Z

3

.

Letusre allthatasubstitutionisanon-erasingmorphismofthefreemonoid.

Anotionofmultidimensionalsubstitutionofnon- onstantlengtha tingon

mul-tidimensional words is studied in [AI01,AIS01,ABI02,ABS04℄, inspired by the

geometri alformalismof[IO93,IO94℄.Thesemultidimensionalsubstitutionsare

provedtobewell-denedonmultidimensionalSturmianwords.Su h a

multidi-mensionalsubstitution anbeasso iatedtoanyusualPisotunimodular

substi-tution. The aim of the presentpaperis to explore thedomain of denition of

su h generalizedsubstitutions. Forthe sakeof larity, wehave hosento work

outinfulldetailstheexampleof[ABS04℄.Weprovethattheimageofastepped

surfa e under the a tion of this multidimensional substitution is well-dened.

Our proofswill bebased ona geometri alapproa h.We then usethe

fun tio-nalityandtheproje tionontheplane

x + y + z = 0

along

(1, 1, 1)

tore overthe

orrespondingresultsformultidimensionalwords.

We work here in the three-dimensional spa e for larity issues but all the

resultsandmethodspresentedextendin anaturalwayto

R

n

.

2 Basi notions

2.1 One-dimensionalsubstitutions

Let

A

beanitealphabetandlet

A

bethesetofnitewordsover

A

.Theempty

wordisdenotedby

ε

.Asubstitution isanendomorphismofthefree-monoid

A

su hthattheimageofeveryletterof

A

isnon-empty.Su hadenitionnaturally

extendstoinniteorbiinnitewordsin

A

N

and

A

Z

.

Weassume

A = {1, . . . , d}

. Let

σ

bea substitution over

A

. The in iden e

matrix of

σ

,denoted

M

σ

= (m

i,j

)

(i,j)∈{1,...,d}

2

,isdened by:

M

σ

= (|σ(j)|

i

)

(i,j)∈{1,...,d}

2

,

where

|σ(j)|

i

isthenumberof o urren esof

i

in

σ(j)

.

Let

ψ : A

→ N

d

,

w 7→ (|w|

i

)

i∈{1,··· ,d}

betheParikhmapping,that is,the

homomorphismobtainedbyabelianizationofthefreemonoid.Onehasforevery

w ∈ A

,

ψ(σ(w)) = M

σ

ψ(w)

.

Example 1. Let

σ : {1, 2, 3} −→ {1, 2, 3}

bethesubstitutiondenedby

σ : 1 7→

13, 2 7→ 1, 3 7→ 2

.Then,

M

σ

=

1 1 0

0 0 1

1 0 0

.

(3)

Asubstitution

σ

is saidto beaPisot substitution ifthe hara teristi

poly-nomial of its in iden e matrix

M

σ

admits a dominant eigenvalue

λ > 1

su h that all its onjugates

α

satisfy

0 < |α| < 1

. The in iden e matrix of aPisot

substitutionisprimitive[CS01℄,thatis,itadmitsapowerwithpositiveentries.

Finally,asubstitutionissaidtobeunimodular if

det M

σ

= ±1

.

From now on, let

σ

denote a unimodular Pisot substitution over

the three-letteralphabet

A = {1, 2, 3}

.

2.2 Stepped planes

Thereareseveralwaystoapproximateplanesbyintegerpoints[BCK04℄.Usually,

thesemethods onsistinsele tingintegerpointswithinaboundeddistan efrom

the onsideredplane.Su hobje tsare alleddis reteplanes.

Let

{e

1

, e

2

, e

3

}

bethe anoni albasisof

R

3

.We allunit ube anytranslate

ofthefundamental unit ube withintegralverti es,thatis,anyset

x

+ C

where

x

∈ Z

3

and

C

isthefundamentalunit ube:

C =

1

e

1

+ λ

3

e

3

+ λ

3

e

3

| (λ

1

, λ

2

, λ

3

) ∈ [0, 1]

3

.

Let

P : hv, xi + µ = 0

, with

v

∈ R

3

+

and

µ ∈ R

. The stepped plane

P

P

asso iatedto

P

,also alleddis reteplanein[ABS04℄, isdenedastheunionof

thefa es of theintegral ubesthat onne tthe set

{x ∈ Z

3

| 0 ≤ hv, xi + µ <

kvk

1

=

P v

i

}

.Morepre isely:

Denition1. [IO93,IO94 ℄ We onsider the plane

P : hv, xi + µ = 0

, with

v

∈ R

3

+

and

µ ∈ R

. Let

C

P

be the unionof the unit ubesinterse tingthe open

half-spa eof equation

hv, xi + µ < 0

.The steppedplane

P

P

asso iatedto

P

is denedby:

P

P

= C

P

\

C

P

,

where

C

P

(resp.

C

P

)

isthe losure(resp.theinterior) of the set

C

P

in

R

3

, providedwith its usualtopology. The ve tor

v

(resp.

µ

) is

alled the normalve tor(resp. the translation parameter)of the stepped plane

P

P

.

Itis lear,by onstru tion,thatasteppedplaneis onne tedandisaunion

of fa es ofunit ubes. Infa t,by introdu inga suitabledenition of fa es, we

andes ribethesteppedplaneasapartitionofsu hfa es,asdetailedbelow.

Let

E

1

,

E

2

and

E

3

bethethreefollowingfundamental fa es (seeFigure1):

E

1

=

λe

2

+ µe

3

| (λ, µ) ∈ [0, 1[

2

,

E

2

=

−λe

1

+ µe

3

| (λ, µ) ∈ [0, 1[

2

,

E

3

=

−λe

1

− µe

2

| (λ, µ) ∈ [0, 1[

2

.

For

x

∈ Z

3

and

i ∈ {1, 2, 3}

,thefa e of type

i

pointed on

x

∈ Z

3

isthe set

x

+ E

i

.Letusnoti ethat ea hpointedfa ein ludes exa tlyoneintegerpoint, namely,itsdistinguishedvertex.Asmentionedaboveweobtain:

(4)

PSfragrepla ements

e

1

e

2

e

3

(a)

E

1

. PSfrag repla ements

e

1

e

2

e

3

(b)

E

2

. PSfragrepla ements

e

1

e

2

e

3

( )

E

3

.

Fig.1.Thethreefundamentalfa es.

Finally,aneasywayto hara terizethetypeofapointedfa ein ludedina

steppedplaneisgivenby:

Theorem2. Let

v

= (v

1

, v

2

, v

3

) ∈ R

3

+

and

µ ∈ R

. Let

P

= P(v, µ)

be the

steppedplanewithnormalve tor

v

andtranslationparameter

µ

.Let

I

1

= [0, v

1

[

,

I

2

= [v

1

, v

1

+ v

2

[

and

I

3

= [v

1

+ v

2

, v

1

+ v

2

+ v

3

[

.Then,

∀k ∈ {1, 2, 3}, ∀x ∈ P, x + E

k

⊂ P ⇐⇒ hx, vi + µ ∈ I

k

.

Let

P

0

bethediagonalplaneofequation

x+y +z = 0

andlet

π

betheproje tion on

P

0

along

(1, 1, 1)

.

Theorem3. [ABI02℄Let

P

beasteppedplane.Therestri tion

π

P

of

π

from

P

onto

P

0

isabije tion.Furthermore,thesetofpointsof

P

withinteger oordinates isin one-to-one orrespondan ewith the latti e

Z

π(e

1

) + Zπ(e

2

)

.

This theorem allows us to ode a stepped plane

P

asatwo-dimensional word

u ∈ {ψ, 2, 3}

Z

2

asfollows:forall

(m, n) ∈ Z

2

, for

i = 1, 2, 3

,then

u(m, n) = i ⇐⇒ π

−1

P

(mπ(e

1

) + nπ(e

2

)) + E

i

⊂ P.

2.3 Stepped surfa es

It is thus naturalto tryto extendthepreviousdenitions and resultstomore

generalobje ts:

Denition2. [Jam04 ℄A onne tedunion

S

ofpointedfa es

x+ E

k

,where

x

Z

3

and

i ∈ {1, 2, 3}

,is alleda steppedsurfa eif the restri tion

π

S

: S −→ P

0

of

π

isabije tion.

Atwo-dimensional word

u ∈ {1, 2, 3}

Z

2

issaid tobea oding ofthe stepped

surfa e

S

iffor all

(m, n) ∈ Z

2

,for

i = 1, 2, 3

,then

u(m, n) = i ⇐⇒ π

−1

S

(mπ(e

1

) + nπ(e

2

)) + E

i

⊂ S.

(5)

pre-3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

Fig.2.Apie eofasteppedsurfa eanditstwo-dimensional oding.

3 Generalized substitutions a ting on fa es of a stepped

plane

Theaimof thisse tionis tore allthenotionofgeneralizedsubstitution a ting

onfa esofasteppedplane[AI01,AIS01,Pyt02℄.

Let

σ

denote aunimodularPisot substitutionoverthethree-letteralphabet

A = {1, 2, 3}

.Let

M

σ

beitsin iden ematrix,andlet

α, λ

1

, λ

2

denoteits

eigen-valueswith

α > 1 > |λ

1

| ≥ |λ

2

| > 0

.Let

P

bethe ontra ting plane of

M

σ

,that is,therealplanegeneratedbytheeigenve torsasso iatedto

λ

1

, λ

2

.

Sin ethein iden ematrixofaPisot substitutionis primitive[CS01℄, then,

a ording to Perron-Frobenius Theorem, the eigenvalue

α

admits a positive

eigenve tor

v

. Let us denote by

P

σ

the stepped plane with normal ve tor

v

andtranslationparameter

µ = 0

.

Example 2. We ontinue Example 1. The hara teristi polynomial of

M

σ

is

x

3

− x

2

− 1

; it admits one eigenvalue

α > 1

(whi h is known as the se ond

smallest Pisot number), and two omplex onjugate eigenvalues of modulus

stri tly smaller than 1. The ontra ting plane of

M

σ

is the plane with equa-tion

α

2

x + αy + z0

.

Denition3. [IO93,IO94 ,ABI02,ABS04 ℄ Let

σ

be a unimodular substitution

overthethree-letteralphabet

A = {1, 2, 3}

.Let

P

σ

bethesteppedplaneasso iated to

σ

.The generalizedsubstitution

Σ

σ

asso iated to

σ

isdenedasfollows:

Σ

σ

(x + E

i

) =

3

[

k=1

[

P

σ

(k)=P iS

M

−1

σ

x

− ψ(P ) −

i

X

j=1

e

j

+

k

X

j=1

e

j

+ E

k

Example 3. Let

σ : 1 7→ 13, 2 7→ 1, 3 7→ 2

.Then,

Σ

σ

:

x

+ E

1

7→ M

−1

σ

x

+ e

1

− e

2

+ E

1

 ∪ M

σ

−1

x

+ e

1

+ E

2



,

x

+ E

2

7→ M

σ

−1

x

+ e

1

+ E

3

,

(6)

In ombinatorialterms,

Σ

σ

anbe odedas

1 7→

2

1

2 7→ 3

3 7→ 1.

Let

r = r(m, n) = −⌈(α

2

m + αn)/(α

2

+ α + 1)⌉ + 1

.Onehas:

((m, n), 1) 7→ ((1 − n, m − n − r(m, n) − 1), 1) + ((1 − n, m − n − r(m, n)), 2)

((m, n), 2) 7→ ((1 − n, m − n − r(m, n)), 3)

((m, n), 3) 7→ ((1 − n, m − n − r(m, n)), 1).

Theorem4. [AI01 ℄ Let

σ

be a unimodular Pisot substitution over the

three-letteralphabet

A = {1, 2, 3}

,let

P

σ

bethe steppedplane asso iatedto

σ

andlet

Σ

σ

be thegeneralizedsubstitution asso iated to

σ

.

i) Twodistin t fa eshave disjoint imagesunder

Σ

σ

.

ii) Thegeneralizedsubstitution

Σ

σ

maps anypatternof

P

σ

(thatis,any nite unionof fa esof

P

σ

) onapatternof

P

σ

.

iii)

Σ

σ

(P

σ

) ⊆ P

σ

.

Sin e

Σ

σ

iswell-denedon

P

σ

(a ordingtoTheorem4i)),andsin e

P

σ

is invariantunder thea tionof

Σ

σ

,itisnaturaltoinvestigatethea tionof

Σ

σ

on anysteppedplane.Morepre isely,givenasteppedplane

P(v, µ)

, anweextend

the domain of denition of the generalizedsubstitution

Σ

σ

to the patterns of

P(v, µ)

?Infa t:

Theorem5. Let

σ

beaunimodular Pisot substitution,let

M

σ

beits in iden e matrix, andlet

Σ

σ

bethe generalizedsubstitutionasso iatedto

σ

.

For anysteppedplane

P(v, µ)

with

v

∈ R

3

+

,one has:

i) Theimages of twodistin t pointedfa esof

P(v, µ)

by

Σ

σ

aredisjoint. ii) Theimage of

P(v, µ)

isin ludedin thesteppedplane

P(

t

M · v, µ)

:

Σ

σ

(P(v, µ)) ⊆ P(

t

M · v, µ)

Proof (Sket h).TheproofisbasedonthesameideasasintheproofofLemma2

and3in[AI01℄.Itmainlyusesthefollowinggeometri interpretationofTheorem

2:apointedfa e

x

+ E

i

isin ludedin

P(v, µ)

ifandonlythepoint

x

+

P

i−1

k=1

e

k

isabovetheplane

hv, xi + µ = 0

whilethepoint

x+

P

i

k=1

e

k

isbelowthelatter.

4 Generalized substitutions a ting on fa es of a stepped

surfa e

4.1 The general ase

Sin etheimageofasteppedplanebyageneralizedsubstitutionisasubsetofa

stepped plane,itisinterestingto investigatethea tionofgeneralized

(7)

Theorem6. Let

S

beasteppedsurfa e.Let

σ

beaunimodularPisot

substitu-tionoverthe three-letteralphabet

{1, 2, 3}

andlet

Σ

σ

be the asso iated general-izedsubstitution.Then,theimageoftwodistin tpointedfa esof

S

aredisjoint.

Furthermore, the restri tion

π

Σ

σ

(S)

: Σ

σ

(S) −→ P

0

is1-1.

Proof (Sket h).Werstnoti ethatgiventwofa es

x+E

i

and

y+E

j

,thenthere existsasteppedplane

P

withpositivenormalve tor ontainingsimultaneously

x

+ E

i

,

y

+ E

j

and

z

+ E

k

.WethenapplyTheorem5.

Inotherwords,itremainstoprovethat

π

Σ

σ

(S)

isontoandthat

Σ

σ

(S)

isa onne ted unionof fa es to dedu e that

Σ

σ

(S)

is asteppedsurfa e a ording to Denition 2. Let us investigate this problem in the parti ular ase of the

generalized substitution

Σ

σ

asso iated to the substitution

σ : 1 7→ 13, 2 7→

1, 3 7→ 2

.

4.2 The parti ular aseof

σ

: 1 7→ 13, 2 7→ 1, 3 7→ 2

.

In the present se tion,

σ

denotes the substitution

σ : 1 7→ 13, 2 7→ 1, 3 7→ 2

whereas

Σ

σ

isthegeneralizedsubstititionasso iatedto

σ

:

Σ

σ

:

x

+ E

1

7→ M

−1

σ

x

+ e

1

− e

2

+ E

1

 ∪ M

σ

−1

x

+ e

1

+ E

2



,

x

+ E

2

7→ M

σ

−1

x

+ e

1

+ E

3

,

x

+ E

3

7→ M

σ

−1

x

− e

2

− e

3

+ E

1

.

Letus show that forthis substitution, then theimage ofa stepped surfa e

isstillasteppedsurfa e.First,givenatwo-dimensionalword

u ∈ {1, 2, 3}

Z

2

,we

allhook-word afa torof

u

withthefollowingshape(seeFig.3):

PSfragrepla ements

m

n

Fig.3.Hook-shape.

Theset of hook-wordsof

u

with a hook-shape is alled the hook-language

of

u

.In[Jam04,JP04℄, theauthorsredu edthere ognitionproblem ofthe

two-dimensionalwords odingdis retesurfa estoahookre ognitionproblem.More

pre isely,

Theorem7. [Jam04,JP04℄Let

u ∈ {1, 2, 3}

Z

2

.Then

u

isa odingof adis rete

(8)

1

1

1

2

2

2

3

3

3

2

1

2

1

2

1

2

3

1

3

2

2

3

3

1

2

3

3

1

2

3

3

1

2

1

1

3

n

m

x

y

Fig.4. Left: Thepermitted hook-words. Right: The 3-dimensionalrepresentation of

thepermittedhook-words.

We onverselyasso iatetoea hpermittedhook-wordits3-dimensional

rep-resentationas a onne tedunionoffa esasdepi tedin Figure4:the odingof

anyo urren eofthis3-dimensionalrepresentationinasteppedsurfa eisequal

tothe orrespondinghook-word.

Proposition1. The image by

Σ

σ

of all the 3-dimensional representations of the permittedhooks(seeFig.5)are onne tedin

R

3

.

(a) (b) ( ) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig.5.Theimageofthepermittedhooksby

Σ

σ

.

Wethendedu ethat:

Theorem8. The image of a stepped surfa e

S

by

Σ

σ

is onne ted and the restri tionoftheproje tion map

π

tothelatterisinje tive.Furthermore, allthe

hook-wordso urringinthe odingwithrespe ttotheinje tiveproje tion

π

Σ

(9)

Proof (Sket h). A ording to Theorem 6, the image of a stepped surfa e by

Σ

σ

iswell-dened.The onne tednessfollowsfromProposition1.Considernow a union

H

of three fa es whose oding a ording to the inje tive proje tion

π

Σ

σ

(S)

(seeTheorem6)isahook-word

U

H

.Thereexist(atmost)threefa esof whi htheunionoftheimagesby

Σ

σ

ontains

H

. One he ksthat thedistan e (denedas

d(v, w) = |w − v|

1

)betweenthedistinguishedverti esofthosefa es is uniformly bounded. By performing a nite ase study, one he ks that the

hook-word

U

H

ispermitted.

(a)

S

(b)

Σ

σ

(S)

.

( )

Σ

2

σ

(S)

.

Fig.6.Apie eofanon-planarsteppedsurfa e

S

and2iterationsby

Σ

σ

.

Remarks. Given a stepped surfa e

S

ontaining the unit ube

(10)

surfa es

n

σ

(S))

n∈N

seemsto onvergetowardsthesteppedplane

P

σ

(seeFig. 6);to bemorepre ise, thelimitpointsofthesequen e

n

σ

(S))

n∈N

aresubsets of

P

σ

. We will investigate these onvergen e results and more generally, the possibility of extension of the domain of denition of these multidimensional

substitutions to any stepped surfa e in a subsequent paper. Let us note that

this study an also be applied to obtain an e ient generation methods of

steppedplanesandsurfa es.

Referen es

[AI01℄ P. Arnouxand S.Ito. Pisot substitutions and Rauzy fra tals. Bull.

Belg.Math.So .SimonStevin,8(2):181207,2001.JournéesMontoises

d'InformatiqueThéorique(Marne-la-Vallée,2000).

[ABI02℄ P.Arnoux,V.Berthé, andS.Ito. Dis reteplanes,

Z

2

-a tions,

Ja obi-Perron algorithm and substitutions. Ann. Inst. Fourier (Grenoble),

52(2):305349,2002.

[ABS04℄ P. Arnoux, V. Berthé, and A. Siegel. Two-dimensional iterated

mor-phisms and dis rete planes. Theor. Comput. S i., 319(1-3):145176,

2004.

[AIS01℄ P.Arnoux,S.Ito,andY.Sano. Higherdimensionalextensionsof

sub-stitutionsandtheir dualmaps. J.Anal.Math.,83:183206, 2001.

[BCK04℄ V.Brimkov,D.Coeurjolly,andR.Klette. Digitalplanarity-areview.

Te hni alReportRR2004-24,LaboratoireLIRIS-Université Lumière

Lyon2,may2004.

[BV00℄ V. Berthéand L. Vuillon. Tilings and rotations onthe torus:a

two-dimensional generalization of sturmian sequen es. Dis rete Math.,

223(1-3):2753, 2000.

[CS01℄ V. Canteriniand A.Siegel. Geometri representationofsubstitutions

ofPisottype. Trans.Amer.Math.So .,353(12):51215144, 2001.

[IO93℄ S. Ito and M. Ohtsuki. Modied Ja obi-Perron algorithm and

gen-erating markovpartitions for spe ial hyperboli toral automorphisms.

TokyoJ.Math.,16:441472, 1993.

[IO94℄ S.Ito andM. Ohtsuki. Parallelogram tilings andJa obi-Perron

algo-rithm. TokyoJ.Math.,17:3358,1994.

[Jam04℄ D. Jamet. OntheLanguageofDis retePlanes andSurfa es. In

Pro- eedingsoftheTenthInternationalWorkshoponCombinatorialImage

Analysis,pages227-241.Springer-Verlag,2004.

[JP04℄ D.Jamet,G.Paquin. Dis retesurfa esandinnitesmoothwords

FP-SAC'05.

[KR04℄ R.Klette,A.Rosenfeld,Digitalstraightness-Areview,Dis reteApplied

Mathemati s,139:197230,2004.

[LOTH02℄ N.Lothaire. Algebrai ombinatori sonwords. Cambridge University

Press,2002.

[Pyt02℄ N.PytheasFogg.SubstitutionsinDynami s,Arithmeti sand

Combina-tori s,volume1794ofLe ture NotesinMathemati s. SpringerVerlag,

2002.

[Rev91℄ J.-P.Reveillès. Géométriedis rète, al ulen nombres entierset

algo-rithmique. Thèse deDo torat, Université Louis Pasteur, Strasbourg,

Figure

Fig. 1. The three fundamental faes.
Fig. 2. A piee of a stepped surfae and its two-dimensional oding.
Fig. 3. Hook-shape.
Fig. 5. The image of the permitted hooks by Σ σ .
+2

Références

Documents relatifs

Repeat the exer- cise in homology, for cor G×K H×K and tr G×K H×K (in homology, the hypothesis that G be finite can be supressed, but of course we need [G : H ] &lt; ∞ for the

Résumé - L'adsorption et la décomposition catalytique de NO à la surface de pointes émettrices de Pt et Ru, ont été étudiées par spectrométrie de masse de désorption de

As a function of deposition amount, nucleation occurred first on the central (011) W plane, or its edge, which was located such that the Cr atoms impinged at an angle of about

We say that (s, τ) is decorated if each vertex v of s is associated with an elementary star F v , and a “gluing” application that maps the half-edges of s adjacent to v to the

The objectives of this study were to: (i) photograph the fragmentation of plasma-sprayed molybdenum particles that impacted glass held at room temperature; (ii) use a 3D model

The equivalence of the strong coincidence condition and pure discrete spectrum also holds for substitutions of nonconstant length of Pisot type on two letters (unpublished work of

FROUGNY, Computability by finite automata and Pisot Bases.. HARE, Some computations on the spectra of Pisot and Salem

— We have seen in the previous section that the subshift associated to an irreducible Pisot substitution has pure discrete spectrum as soon as the interior of a piece of the