• Aucun résultat trouvé

Early evolution of the solar accretion disk inferred from Cr-Ti-O isotopes in individual chondrules

N/A
N/A
Protected

Academic year: 2021

Partager "Early evolution of the solar accretion disk inferred from Cr-Ti-O isotopes in individual chondrules"

Copied!
12
0
0

Texte intégral

(1)

HAL Id: hal-03009471

https://hal.univ-lorraine.fr/hal-03009471

Submitted on 17 Nov 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0

Early evolution of the solar accretion disk inferred from

Cr-Ti-O isotopes in individual chondrules

Jonas Schneider, Christoph Burkhardt, Yves Marrocchi, Gregory Brennecka,

Thorsten Kleine

To cite this version:

Jonas Schneider, Christoph Burkhardt, Yves Marrocchi, Gregory Brennecka, Thorsten Kleine. Early

evolution of the solar accretion disk inferred from Cr-Ti-O isotopes in individual chondrules. Earth

and Planetary Science Letters, Elsevier, 2020, 551, pp.116585. �10.1016/j.epsl.2020.116585�.

�hal-03009471�

(2)

Contents lists available atScienceDirect

Earth

and

Planetary

Science

Letters

www.elsevier.com/locate/epsl

Early

evolution

of

the

solar

accretion

disk

inferred

from

Cr-Ti-O

isotopes

in

individual

chondrules

Jonas

M. Schneider

a

,

,

Christoph Burkhardt

a

,

Yves Marrocchi

b

,

Gregory

A. Brennecka

c

,

Thorsten Kleine

a

aInstitutfürPlanetologie,UniversityofMünster,Wilhelm-Klemm-Straße10,48149,Germany bCRPG,CNRS,UniversitédeLorraine,UMR7358,Vandoeuvre-lès-Nancy,54501,France

cNuclearandChemicalSciencesDivision,LawrenceLivermoreNationalLaboratory,Livermore,CA94550,UnitedStatesofAmerica

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received30January2020

Receivedinrevisedform26August2020 Accepted12September2020

Availableonline23September2020 Editor:W.B.McKinnon Keywords: chondrules isotopicanomalies meteoritedichotomy nebularmixing

Isotopic anomalies in chondrules hold important clues about the dynamics of mixing and transport processesinthesolaraccretiondisk.The meaningoftheseanomaliesisdebatedand theyhavebeen interpretedto indicateeither disk-wide transportof chondrulesor localheterogeneities ofchondrule precursors. However, all previous studies relied on isotopic data for asingle element (either Cr, Ti, orO), whichdoes not allowdistinguishing betweensource and precursor signaturesas the causeof the chondrules’isotope anomalies. To overcome thisproblem, we obtained the first combined O, Ti, and Cr isotope data for individual chondrules from enstatite, ordinary, and carbonaceouschondrites. We findthat chondrules from non-carbonaceous (NC) chondriteshave relatively homogeneous17O,

ε

50Ti,and

ε

54Cr,whicharesimilartothecompositionsoftheirhostchondrites.Bycontrast,chondrules

from carbonaceouschondrites (CC) have more variable compositions, someof which differfrom the host chondrite compositions.Although the compositions ofthe analyzed CC and NC chondrules may overlapforeither

ε

50Ti,

ε

54Cr,or17O,inmulti-isotope space,noneoftheCCchondrulesplotinthe

compositional field of NC chondrites, and no NC chondrule plots within the field of CC chondrites. Assuch, our data reveal afundamental isotopic differencebetween NC and CC chondrules,whichis inconsistent with adisk-wide transport ofchondrules acrossand between theNC and CC reservoirs. Instead,theisotopicvariationsamongCCchondrulesreflectlocalprecursorheterogeneities,whichmost likely result from mixing between NC-like dust and a chemically diverse dust component that was isotopicallysimilartoCAIsandAOAs.Thesamemixingprocesses,butonalarger,disk-widescale,were likelyresponsibleforestablishingthedistinctisotopiccompositionsoftheNCandCCreservoirs,which representininnerandouterdisk,respectively.

©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Chondritic meteorites provide fossilized remnants of the ma-terials present in the early Solar System, and are key samples to unravel the early dynamical evolution of the solar accretion disk(Scott andKrot, 2013).Chondrites areunequilibrated assem-blagesofvarious low- andhigh-temperaturecomponents, includ-ingvolatile-rich,fine-grainedmatrix,Fe-Nimetal,refractory inclu-sions,andtheeponymouschondrules,whichconstituteup to90% ofbulkchondrites(e.g.,Scott,2007).Althoughtheconditions, pro-cess(es), and chronology of chondrule formation remain debated (forareviewseeConnollyandJones,2016),theirubiquitous

pres-*

Correspondingauthor.

E-mailaddress:jonas.m.schneider@uni-muenster.de(J.M. Schneider).

enceinthe diskmakesthema primetracer oftransport,mixing, andaccretionprocessesintheearlySolarSystem.

Utilizingchondrulesinthismannerrequiresunderstandingthe genetic relationships among individual chondrules, and between chondrulesandtheir hostchondrite.Thisinformationmaybe ob-tainedfromisotopeanomalies inindividual chondrules. Ofthese, O isotopes are the most extensively studied, but the O isotope variability among chondrules likely represents a combination of precursor heterogeneity, open-system exchange with the nebular gas,andfluid-assistedalterationontheparentbody(e.g.,Clayton, 2003; Kita et al., 2010; Pirallaetal., 2020). As such, the genetic heritageofchondrulescanbedifficulttointerpretusingOisotopes alone.

Otherisotopetracersthathavebeenusedtoassessthegenetic heritageofchondrulesincludevariationsintherelativeabundance of50Ti and54Cr.Anomalies inthesetwo isotopes are

nucleosyn-https://doi.org/10.1016/j.epsl.2020.116585

0012-821X/©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(3)

theticinoriginandare powerfultoolstoinvestigategenetic rela-tionships betweenindividual solids, bulk meteorites, and planets (e.g., Gerber et al., 2017; Trinquier et al., 2009; Warren, 2011). Forinstance,isotopicanomaliesin 50Tiand54Cr,together withO

isotopevariations,wereinstrumentalinidentifyingafundamental isotopic dichotomybetweennon-carbonaceous (NC)and carbona-ceous(CC)meteorites(Warren,2011).Subsequentworkhasshown that this dichotomy extends to several other elements, most no-tably Mo(Buddeetal.,2016a;Pooleetal.,2017;Worshametal., 2017). The NC and CC meteorites represent two genetically dis-tinct disk reservoirs thatremained spatially separatedforseveral millionsofyears(Ma),mostlikelythrough theearlyformationof Jupiter(Kruijeretal.,2017).TheNCreservoiristhereforethought torepresenttheprimordialinner,andtheCCreservoirthe primor-dialouterSolarSystem.

The existence oftheNC-CC dichotomy amongbulk meteorites raisesthequestionofwhetherthisdichotomyalsoexistsatthe in-dividualchondrulescale.Thismightbeexpected,giventhatthe di-chotomywaslikelycausedbydistinctdustcompositionsbetween the tworeservoirs. As chondrules providea snapshot ofthe dust composition ata particular time and location in the disk, chon-drules fromthe NC and CC reservoir should have fundamentally different isotopic compositions, at least for elements that define theNC-CCdichotomy.However,theisotopiccompositionof chon-drules may also vary because the chondrules themselves derive fromdifferentareasofthediskandweresubsequentlytransported to the accretion region of their host chondrite. Currently avail-able CrandTi isotopic datado not allowdistinguishing between thesetwodisparateinterpretationsandhavebeeninterpretedboth assourcesignatures(Olsen etal., 2016) andlocalheterogeneities amongchondruleprecursors(Gerberetal.,2017).

A major problemcommon to previous isotopic studies on in-dividual chondrules is that the isotopic datawere only obtained for a single element. Although such studies reveal isotopic het-erogeneities amongchondrulesforeachinvestigatedelement, the interpretation of a single isotopic signature in terms of large-scale disk processes remains inherently uncertain. To overcome thisshortcoming,weobtainedcombinedCr,Ti,andOisotopicdata foracomprehensivesetofindividualNCandCCchondrules.These data provide new and firm constraints on the origin of isotope anomaliesinchondrulesandtheirrelationtotheNC-CCdichotomy observedamongbulkmeteorites.Combined,thesenewconstrains haveimportantimplicationsforunderstandingtheearlyevolution ofthesolaraccretiondisk.

2. Materialandmethods

2.1. Samples

Allsamples ofthisstudywere partofthe Tiisotopestudy by Gerberetal.(2017) andincludesinglechondrulesaswellasbulk rocksfromthecarbonaceouschondrites Allende(CV3),GRA06100 (CR2), and NWA 801 (CR2), the enstatite chondrite MAC02837 (EL3) andthe ordinary chondrite Ragland (LL3.4). Forthis study, sevenchondrulesfromAllende,sixfromGRA06100,onefromNWA 801,ninefromRagland,andfourfromMAC02837wereselected.In addition,matrixandpooledAllendechondruleseparates, consist-ingofhundredsofchondrulesandchondrulefragments(Buddeet al.,2016a),werealsoanalyzed.

Aftergentlycrushingpiecesofbulkchondriteinanagate mor-tar,individual chondrules were hand-pickedwithtweezersunder abinocularmicroscope.Wheneverpossible,whole,spherical chon-drules wereselected.Adheringdustwas removedfromchondrule rimsbysonicationinacetonefor15–30min.Theindividual chon-drules were photographed witha Keyence VHX-500F digital mi-croscope(SMFig.S1),andthenbrokeninanagatemortar.A

frag-ment comprising between 5-20 wt.% of the bulk chondrule was embedded into epoxy for petrographic characterization by SEM (Fig. S1) andin-situ Oisotopic analyses by SIMS. The remaining chondrule material, comprising 80-95 wt.% of the original bulk chondrule, was dissolved in purified mineral acids, and Ti was separatedby ion exchange chromatography(Gerber etal., 2017). TheCrisotopemeasurementsofthisstudyweremadeonpurified Cr fromthe column washes of the Ti chemistry of Gerber et al. (2017).Chromiumconcentrationsweredeterminedonthecolumn washespriortoCrseparationbyionexchangechromatography, us-ing aThermoScientific X-SeriesII quadrupole inductivelycoupled plasma-massspectrometer(ICP-MS).

2.2.OxygenisotopemeasurementsbySIMS

Thinsections of the chondrulefragments were examined mi-croscopicallyintransmitted andreflectedlight. Scanningelectron microscope observations were performed at CRPG-CNRS (Nancy, France)usingaJEOLJSM-6510with3nAprimary beamat15kV. Cathodoluminescence (CL) imaging of chondrules was performed usingan RGBCL-detection unit attached to a field emission gun secondary electron microscope JEOL J7600F at the Service Com-mun de Microscopie Électronique (SCMEM, Nancy, France). We measured the O isotopic compositions of chemically character-izedolivine crystals withaCAMECA ims1270 E7atCRPG-CNRS.

16O,17O,and18OionsproducedbyaCs+ primaryionbeam

(

15 μm,

4nA) were measured inmulti-collection mode with two off-axis Faraday cups (FCs) for 16,18Oand the axial FC for 17O(see Marrocchietal.,2018a).Toremove16OHinterference

on the 17Opeak and to maximize the flatness atop the 16O

and18Opeaks,theentranceandexitslitsofthecentralFCwere

adjusted to obtain a mass resolution power (MRP) of

7000 for

17O.The multi-collection FCswere seton slit1 (MRP

=

2500).

Totalmeasurementtimeswere240s (180smeasurement

+

60s pre-sputtering).We usedthree terrestrialstandardmaterials (San Carlosolivine,magnetite,anddiopside)todefinetheinstrumental massfractionation lineforthe threeoxygen isotopes andcorrect for instrumental mass fractionation due to the matrix effect of olivine. Toincrease the precision onthe measurements, we con-secutivelyanalyzedfourstandards,eightchondruleolivinecrystals, andfourstandards.TypicalcountratesobtainedontheSanCarlos olivine standards were 2

.

5

×

109 cps for 16O, 1

.

0

×

106 cps for 17O, and5

.

4

×

106 cps for18O. Data aregivenin thedelta

nota-tion

δ

17,18O (

=

[(17,18O/16Osample/17,18O/16OSMOW)

1]

×

1000), and

capital delta notation



17O (

= δ

17O

0.52

×δ

18O). Depending on

samplehomogeneityandsize,between2and25individual mea-surements were obtained on each chondrule fragment. Only one measurementperolivinegrainwascarriedoutandeachSIMSspot was then checkedby SEM.Analyses fromcracks orgrain bound-aries were not included. The 2

σ

errors were

0.2



for

δ

18O,

0.4



for

δ

17O,and0.9



for



17O.Theerroron



17Owas cal-culatedbyquadraticallysummingtheerrorson

δ

17Oand

δ

18Oand thestandarddeviationof



17Ovaluesofthefourterrestrial stan-dards.

2.3.ChromiumseparationandisotopicmeasurementbyTIMS

Chromium was separated from the sample matrix using a three-stageionexchangechromatography.Thefirsttwostepswere similarto the procedures fromYamakawaetal.(2009) and Trin-quier et al. (2008), employing both anion and cation exchange resins.Theelutionprocedureonthethirdcolumn(cationexchange resinAG50W-X8,200-400 mesh)was slightlymodified compared to the two aforementioned studies. The Cr cut from the second columnwasloaded in0.5MHNO3 andresidual matrixelements

(4)

1MHCl,beforeCrwas elutedwith10mlof2MHCl.Toremove residualorganics, theCrcut was thentreatedwith2

×

4 dropsof

aquaregia at 120◦C, 2

×

2 dropsof concentrated HNO3 at120◦C,

and2

×

1drop ofH2O2 at80◦C.The sample was then converted

withconcentratedHCltwice beforeit wastakenup inan appro-priate volumeof6MHCltoobtaina

500 μg/gloadingsolution. The Cr yield of the full chemical procedure was determined on aliquotsbyICP-MS,andwasgenerally

>

70%.Aliquots oftheNIST 3112astandardprocessedthroughthesamechemistryyielded in-distinguishableisotopicresultsasunprocessedstandards.

TheCrisotopemeasurementswereperformedona ThermoSci-entificTritonPlus thermalionizationmassspectrometer (TIMS)at theInstitutfürPlanetologieinMünster.Approximately1 μgCrper sample was loaded onto single outgassed Re filaments and cov-ered with an Al-Si-gel emitter. The emitter was made from 3 g of Aerosil 300 (Evonik) Si-Gel in 60 ml MQ water, a portion of which was then mixed 1:1 with a 5 g/L H3BO3 solution and a

1000 μg/g Al solution. Ion beams were simultaneously collected instaticmodeforallfourchromiumisotopes(50Cr,52Cr,53Cr,and

54Cr)usingFaraday cups connectedto1011



feedbackresistors.

The signalintensitywas usually

10 Von52Crand200-250 mV on54Cr.Possibleinterferencesfrom50Ti,50V,and54Fewere mon-itored using 49Ti, 51V, and 56Fe beams in cups L4, L1, and H4,

respectively. However, Ti and V signals were not detected above baselineduring themeasurementsofthisstudy,andinterferences fromFewereminimal.Measured56Fe/52Crratiosweretypically

<

10−5,wellbelowthe10−4thresholdforsuccessfulFeinterference

correction(Qinetal.,2010).WetestedtheaccuracyoftheFe inter-ference correction bymultipleanalyses ofFe-dopedCrstandards. Repeatedmeasurementofindividualfilaments showedadecrease intheFesignalovertime,butnochangeinthefinal interference-corrected54Cr/52Crratio.

Dataacquisitionconsistedof50blocksof30cycleseach(1500 totalcycles),4s integrationtimepercycle, anda baselineand re-focuseverythreeblocks.Instrumentalmassfractionationwas cor-rectedbyinternalnormalizationto50Cr/52Cr

=

0.051859(Shields

et al., 1966) usingthe exponential law(Russell et al., 1978). All data are reported in

ε

-units as the parts-per-ten-thousand de-viation from the 53Cr/52Cr and 54Cr/52Cr measured for the NIST

SRM3112aCrstandardineachsession.Repeatedmeasurementsof the NISTSRM3112a Crstandard ineach session(n

=

7–14) pro-vided an external reproducibility (2s.d.) of

±

0.2

ε

53Cr and

±

0.3

ε

54Cr. Depending on the total amount of Cr available, samples

were loaded on 1-3 filaments and each filament was measured multipletimesifpossible,resultinginuptosevenindividual mea-surements for individual chondrules. For the pooled chondrule separates,matrixfractions,andbulk Allende,thenumberof mea-surementswaslarger asmoreCrwasavailable forthesesamples. Reported uncertainties for sample measurements are 95% confi-dencelimitsofthemean(n

4),ortwicethestandarddeviation obtained for the NIST SRM3112a Cr standard that was analyzed duringthesamesession(n

<

4).

3. Results

3.1. PetrographyandOisotopes

Petrographic characteristics of the individual chondrules are provided in Table 1and inFig. S1. Exceptforone barred olivine (BO)chondrule,and oneAl-rich chondrule,all investigated chon-drules fromtheCVchondrite Allendeareporphyriticolivine (PO) andolivine-pyroxene(POP)type I(lowFeO)chondrules.All inves-tigatedchondrulesfromtheCRchondritesGRA06100andNWA081 are porphyritic olivine-pyroxene-rich (POP)type Ichondrules. All butonechondrulefromtheordinarychondritesRaglandaretypeII chondrules(75

<

Mg#

<

90)andincludeporphyriticchondrules(PO,

Fig. 1. Oxygenthree-isotopeplot.CCchondrulesplotalongtheCCAMlinewitha slopeofapproximately1.Thecomparativelylargeerrorsareduetointra-chondrule heterogeneitywithsingleolivinegrainsbeingisotopicallydistinctfromoneanother. OCandECchondrulesdonotdisplaysignificantintra-chondrulevariationandplot onorabovetheterrestrialfractionationline(TFL)withaslopeof0.52.

POP),radialpyroxenechondrules(RP,withsystematicpresence of smallolivine grains)andone crypto-crystalline (C) chondrule. Fi-nally,thefourinvestigatedchondrulesfromtheenstatitechondrite MAC02837 aretype Iporphyriticpyroxene(PP) andradial pyrox-ene (RP) chondrules. The diameters of the analyzed chondrules rangefrom0.7to 1.9mm forCC chondrules,from1.0to2.7mm forOC,andfrom0.9to1.7mmforECchondrules.

TheOisotopiccompositionsofthechondrules areprovidedin Table 1, and plotted in Fig. 1. The data of the individual analy-sesfor each chondrule are givenin the supplementary materials (SM, Table S1). For most chondrules, measured olivine grainsof agivenchondruleexhibithomogeneous



17Owithinuncertainty. Forthesesamples averagingthe individual olivine measurements providesagood estimateofthebulk chondrule’sOisotopic com-position(TableS1).However,threeCVandtwoCRchondrules con-tain relict grains,which are definedashavinga



17Ovalue that differsfromthatoftheirhostchondruleoutsideof3

σ

(Ushikubo etal., 2012). An SEM image of the CV chondrule fragment with themost16O-richrelictgrain(



17O

= −

14



)isshowninFig.2, alongwithanCLimageofthesamesample.Forthesampleswith relictgrains,averagingoftheolivine



17Ovaluesprovidesabiased estimateofthebulkchondrulecompositiontowardsthe composi-tion of the relict grains. This is because we have not randomly sampledthe chondrules, andchondrules do not consist solelyof olivine. Prior studies haveshown that low-Capyroxenes are iso-topicallyhomogeneousforO, andthatthey havethesameO iso-topiccompositionsasthehostolivines(Tenneretal.,2018,2015). Wethereforecalculatedthe“bulk”O-isotopiccompositionof chon-drules having relict grainsby considering the host olivines only. Importantly,theOisotopic compositionsofhostmineralsreflects contributionsfromOinheritedfromchondruleprecursors(through relict mineraldissolution) andfromO comingfrom the gas(i.e., SiO,H2O;LibourelandPortail,2018;Marrocchi etal.,2019). Our

bulk estimate, therefore, accountsfor the effectof relict mineral dissolutionandshouldbeclosetotheactualbulkOisotopic com-position(TableS1).

In an O three-isotope diagram the bulk CC chondrules plot alongaslope

1linebelowtheterrestrialfractionationline(TFL), whereas the NC chondrules are clustered on or above the TFL (Fig. 1). The ordinary chondrite chondrules display indistinguish-able



17Ovaluesaveragingat1.4

±

0.7



.Similarly,theenstatite chondritechondrulesexhibithomogeneous



17Owithanaverage

(5)

Table 1

Chromium,titaniumandoxygenisotopicandconcentrationdataforterrestrialsamples,bulkchondritesandchondrules. Sample Typea [mm]b Weight [mg]c Cr [ppm]d ne ε53Cr±2σf ε54Cr±2σf Ti [ppm]b ε50Tib±2σ 17O±2σ Terrestrial DTS2b Silicatesg 27 1551 8 0.12±0.07 0.16±0.13 DTS2b Chromitesg 7 0.03±0.20 0.02±0.34 JA-2 161 423 5 0.03±0.16 0.13±0.28 BIR1a 240 392 3 0.08±0.17 0.07±0.30 Average 0.05±0.13 0.08±0.16 OC (Ragland - LL3.4)

MSc42 Type II, POP 2.7 17 4108 1 0.40±0.10 −0.24±0.24 601 −0.43±0.14 1.28±1.24 MSc43 Type II, RP 2.1 14 4613 5 0.45±0.17 −0.11±0.18 327 −0.41±0.13 0.82±0.63 MSc44 Type II, RP 2.4 13 4693 3 0.25±0.15 −0.34±0.31 550 −0.48±0.13 1.58±2.25 MSc45 Type II, RP(O) 2.6 18 3959 4 0.37±0.16 −0.14±0.34 803 −1.00±0.12 1.83±0.97 MSc49 Type II, RP 1.4 1.8 4316 3 0.74±0.13 −0.39±0.32 439 −0.67±0.56 1.43±0.60 MSc50 Type II, PO 1.4 2.4 3870 741 −0.53±0.08 1.15±0.39 MSc51 Type II, C 1.0 1.2 4593 2 0.47±0.13 −0.51±0.32 553 −0.58±0.08 1.79±0.83 MSc52 Type II. POP 1.4 2.8 800 −0.60±0.09 1.09±1.29 MSc53 Type II, RP 1.5 1.2 472 −0.24±0.15 1.07±1.09 Average 1.8 4307 0.45±0.330.29±0.31 5870.55±0.42 1.34±0.69 Std8 Whole rock 51 3034 4 0.21±0.06 −0.31±0.19 606 −0.70±0.13 EC (MAC02837 - EL3) MSc55 Type I, PP 1.3 1.3 2200 443 −0.13±0.11 −0.20±0.54 MSc57 Type I, PP 1.2 0.9 2217 546 −0.21±0.13 −0.02±0.44 MSc58 Type I, RP 0.9 0.7 1865 408 −1.47±0.19 −0.08±0.81 MSc61 Type I, PP 1.7 4.4 796 1 0.18±0.06 0.01±0.19 137 −0.28±0.08 0.38±0.94 Average 1.3 1769 3840.52±1.27 0.02±0.51 Std9 Whole rock 54 2843 1 0.16±0.06 0.02±0.19 486 −0.40±0.12 CV (Allende - CV3) MSc2 Type I, PO 1.5 1.5 2493 5 0.12±0.25 1.24±0.14 1190 4.85±0.16 −5.21±1.29 MSc3 Type I, PO(P) 1.2 1.7 2670 5 0.07±0.16 0.71±0.19 793 −0.15±0.14 −5.95±0.75 MSc5 Type I, BO 1.2 1.3 3295 4 0.05±0.17 1.16±0.21 1401 1.73±0.18 −4.82±1.22 MSc8 Type I, POP 1.9 5.7 3121 7 0.13±0.10 1.43±0.16 775 −0.05±0.08 −2.98±1.21 MSc10 Type I, PO 1.4 2.0 2844 6 0.07±0.12 0.82±0.15 1015 1.30±0.11 −4.99±1.90 MSc12 Type I, PO 1.8 2.9 3307 6 0.07±0.12 0.09±0.11 953 1.56±0.20 −5.43±1.45 MSc14 Al-rich 1.8 4.2 2987 3 −0.10±0.13 0.44±0.32 1760 7.32±0.09 −5.74±1.13 Average 1.5 2960 0.06±0.15 0.84±0.95 1127 2.36±5.485.02±1.97 AL 25 Chondr. fraction 0.25−1.6 302 17 0.07±0.09 0.55±0.23 1204 2.50±0.12 AL 32 Chondr. fraction 0.5−1.0 384 10 0.03±0.08 0.65±0.19 1161 2.17±0.15 AL 36 Chondr. fraction 0.5−1.0 518 15 0.05±0.08 0.55±0.18 1029 2.24±0.14 Average 0.05±0.04 0.58±0.11 1131 2.30±0.35 AL 26 Matrix fraction 506 14 0.30±0.07 1.18±0.14 656 2.68±0.07 AL 27 Matrix fraction 394 17 0.15±0.04 0.98±0.13 663 1.91±0.19 AL 42 Matrix fraction 469 8 0.17±0.09 1.01±0.19 696 2.25±0.15 Average 0.21±0.16 1.06±0.22 672 2.28±0.78

Allende 2 Whole rock 36 6 0.12±0.12 0.96±0.22 Allende 2 Whole rock 41 4 0.11±0.10 1.06±0.30

Ti1 Whole rock 37 3970 4 0.13±0.20 1.06±0.34 731 3.31±0.14 Ti2 Whole rock 32 4013 12 0.20±0.06 0.99±0.11 826 3.22±0.34 Std1 Whole rock 10 3198 6 0.19±0.07 1.18±0.18 729 3.20±0.16 Average 3727 0.15±0.08 1.05±0.17 762 3.24±0.12 CR (GRA06100 - CR2) MSc72 Type I, POP 0.9 0.9 3984 2 0.06±0.13 1.25±0.30 873 2.21±0.16 −2.28±0.60 MSc73 Type I, POP 0.7 0.4 4952 842 2.13±0.26 −2.58±1.69 MSc74 Type I, POP 1.1 0.9 3880 2 0.27±0.13 1.39±0.30 624 1.98±0.23 −1.72±0.47 MSc75 Type I, POP 1.1 1.0 5617 977 1.79±0.16 −3.65±0.72 MSc76 Type I, POP 1.2 1.9 3778 2 0.21±0.13 1.20±0.30 782 1.41±0.15 −3.88±0.86 MSc77 Type I, POP 1.8 4.6 3706 2 0.24±0.13 1.37±0.30 789 1.21±0.08 −0.89±1.00 Average 1.1 4320 0.20±0.19 1.30±0.18 814 1.79±0.802.50±1.14 Std10 Whole rock 51 3096 3 0.26±0.13 1.23±0.30 715 3.26±0.09 CR (NWA 801 - CR2) MSc78 Type I, POP 1.6 1 3393 642 3.39±0.17 −1.75±1.10

a TypeIchondruleshaveFa-content<10,typeIIchondrules>10;PP—porphyriticpyroxene,PO—porphyriticolivine,POP—porphyriticolivine-pyroxene,BO—barredolivine,

RP—radialpyroxene,C—cryptocristalline.

b DatafromGerberetal.(2017).

c Massdenotesdigestedsamplemass,forchondrulesthisrepresentsbetween80and95%ofchondrulemass. d ErroronCrconcentrationmeasurementsisestimatedtobe10%.

e NumberofindividualCrisotopemeasurements.

f Chondruledata:forn4the95%confidenceintervalisused,forn4the2s.d.oftheNIST3112astandardoftherespectivesessionisused,foraveragesthe2s.d.isgiven. g BulkpowdersofDTS2bweredigestedinaquaregiaandsubsequentHF-HNO

3.TheresidualchromitesweredigestedinParrbombswith2mlconc.HNO3at190◦Cfor4

(6)

Fig. 2. (a)Back-scatteredelectronimageofPOchondruleMSc10fromAllende(CV3) showingthelocationsofionprobemeasurements(coloredellipses).Thecolors in-dicatetherangeof17Ovalues.(b)CLimagerevealinginternalstructuresofolivine grains.16O-richrelictolivinegrainsshownoCLemissionduetolowabundancesof

CLactivators(e.g.,Ca,Al,Ti)whilehostolivinegrainsshowCLemissioninducedby higherconcentrationofCa,Al,andTi.

value of 0.02

±

0.51



. The CR chondrules display more variable



17Owithvaluesfrom

3.9to

1.5



,andforchondrulesfrom Allende



17Ovariesfrom

3to

6



.Itisimportanttorecognize that theuncertaintyonthebulk



17Oforsomeoftheindividual

CCchondrules islargerbecausethechondrulesareinternally het-erogeneous.Thus, withinandamongindividual CCchondrules(in particularCVchondrules)thereisOisotopevariability.Bycontrast, different grains within individual NC chondrules are isotopically homogeneous,andvariabilityamongNCchondrulesislimited.

3.2. Chromiumisotopes

The Cr isotope data are reported in Table 1. In addition to the chondrules andbulk chondrites, we also report data for the terrestrialrockstandardsBIR1a,DTS2b,andJA-2.Thesewere pro-cessed through the full analytical procedures alongside the me-teorite samples to assess the accuracy and precision of the Cr isotopemeasurements.The

ε

53Crvaluesoftheterrestrialsamples

are indistinguishablefromNIST SRM3112a,buttheir

ε

54Cr seems

tobeoffsettoslightlyhighervalues.Thisisconsistent with simi-larsmalloffsetsreportedformeasured

ε

54Crofterrestrialbasalts

inpriorstudies(Mougeletal.,2018;Qinetal.,2010).Similar off-setsofnaturalrocksfromstandardsolutionsareobservedforother

Fig. 3.ε54Crvaluesofindividualchondrules.Compositionsofrespectivebulk

chon-dritesareshown assolid lines;shaded areasaround theselinesindicate2s.d. uncertaintiesofthebulkvalues.Boldsymbolsrepresentdatafromthisstudy,open symbolsareliteraturedata(Trinquieretal.,2008;Yamashitaetal.,2010;Connelly etal.,2012;Olsenetal.,2016;Zhuetal.,2019).Bulkchondritevaluesarefromthis study(EC,OC,CR,andCV),andQinetal.(2010) (CB,CO).

elements(e.g.,Ti,Mo) andarelikelyduetonon-exponential frac-tionation processes, possibly induced during standard production (Zhangetal.,2011;Buddeetal.,2019).

TheCrisotopicdataforthebulkchondritesamplesarealsoin good agreement with previously reported data for samples from thesamechondritegroups(Trinquieretal.,2007;Qinetal.,2010; Göpeletal.,2015).Combined,thedataforterrestrialsamplesand bulkchondritesthereforeshowgoodinter-laboratoryagreement.

Individualordinarychondritechondrulesdisplayvariable

ε

53Cr

rangingfrom

0.25to

0.74, whichformostchondrulesarealso higher than the bulk ordinary chondrite value. Chondrules from the other chondrite groups investigated in this study show less variabilityand are more similar to the valuesof their respective hostchondrites. Thevariable

ε

53Cr amongthe OCchondrules

al-mostcertainlyreflectsradiogenic variationsresultingfromthe de-cay of short-lived 53Mn (t1/2

3

.

7 Ma). However, asthe Mn/Cr

ratios of the chondrules were not determined in this study, the magnitudeofpotentialradiogenic

ε

53Crvariationscannotbe

quan-tified. Regardless, the main focus of this study is on nucleosyn-thetic

ε

54Cr variations, and the

ε

53Cr will therefore not be

(7)

The

ε

54Cr values ofthe EC, OC, andCC chondrules andtheir

hostbulk chondrites areshowninFig. 3. TheOCchondrules dis-playnoresolvable

ε

54Crvariationsandtheirmean

ε

54Crare

indis-tinguishable from thehost chondrite’s

ε

54Cr. Likewise, the

ε

54Cr

ofthe singleEC chondruleofthisstudy isindistinguishablefrom the

ε

54Cr of bulk enstatite chondrites. Compared to the EC and

OCchondrules,allCRchondruleshaveelevated

ε

54Cr,andmostof

them areindistinguishable fromthe

ε

54Cr ofbulk CRchondrites.

By contrast,individual Allende chondrulesexhibit highly variable

ε

54Cr, with a continuum from

0.1 to

1.4

ε

54Cr (Fig. 3). The

ε

54CrresultsforCRandCVchondrules areconsistent withthose

of Olsen et al.(2016), although these authors reported a some-what larger range of

ε

54Cr valuesamong CR andCV chondrules

(Fig.3).Finally,thethreepooledchondruleseparatesfromAllende, each consisting of hundreds of chondrules (Budde etal., 2016b), areindistinguishablefromoneanotherandhaveanaverage

ε

54Cr

of0.58

±

0.12.ThisvalueisresolvedfromthebulkCVcomposition (

ε

54Cr

1) andfromAllendematrix,whichhasan average

ε

54Cr

of

1.

3.3. Titaniumisotopes

To facilitate direct comparison of the O and Cr isotopic data withpreviouslyobtainedTiisotope dataon thesamechondrules, theTi concentrationand

ε

50TidatafromGerberetal.(2017) are

also provided in Table 1,and the resultsare briefly summarized here.WhereasECandOCchondrulesexhibitonlysmall

ε

50Ti

vari-ations relative to the composition of their host chondrites, CC chondrules are characterized by a broad range of

ε

50Ti values,

rangingfromtheslightlynegative

ε

50TitypicallyobservedforOC

chondrules tothelarge

ε

50Ti excessesknownfromCa–Al-rich

in-clusions (CAIs) (Fig. 4). The CC chondrules also display a broad correlation of

ε

50Ti andTi concentration, indicating the addition

ofisotopicallyheterogeneousandTi-rich—i.e.,CAI-like—materialto enstatiteandordinarychondrite-likechondruleprecursors(Gerber etal.,2017).

4. Discussion

WhilethenewOandCrisotopedataforsingle chondrulesare consistent with results of previous studies, the major advantage of thisstudy is that,for thefirst time, the Cr, O, andTi isotopic data havebeen obtainedforthe same individual chondrules.We willshow belowthat althoughtheisotopicdataforeachelement alone reveal isotopic heterogeneity among chondrules, only the combineddataofallthreeelementsmakeitpossibleto disentan-gletheprocess(es)responsiblefortheseheterogeneities.

ThekeyobservationsofthecombinedCr,Ti,andOisotopicdata maybesummarizedasfollows(Fig.4).First,OCandECchondrules displayrelativelyhomogeneous



17O,

ε

50Ti,and

ε

54Cr,whichare

indistinguishable from the compositions of their respective host chondrites.Second,CCchondruleshave,onaverage,moreelevated

ε

50Tiand

ε

54Cr,andlower



17OcomparedtoNC(i.e.,OCandEC)

chondrules. Although the compositionsof CC and NCchondrules mayoverlapforeither

ε

50Ti,

ε

54Cr,or



17O,inmulti-isotopespace

noneoftheinvestigatedCCchondrulesplotsinthecompositional fieldofNCchondrites,andnoneoftheinvestigatedNCchondrules plotswithintheCCfield(Fig.4a-c).Finally,incontrasttoNC chon-drules, CC chondrules—and in particular CV chondrules—exhibit variableisotopeanomaliesforallthreeelements.Thedistinct iso-topic compositionsof NC andCC chondrules for a range of geo-andcosmochemiallydifferentelements,combinedwiththe obser-vation of isotopic homogeneity in NC chondrules versus isotopic heterogeneity in CC chondrules represents a fundamental differ-encebetweenNCandCCchondrites.

Below, we first attempt to identify the carrierof the isotopic anomaliesamongthechondrules,andthenusethecombined iso-topicdatatoevaluate mixingandtransport processesbefore and duringchondrite parentbody accretion.Finally,we willplacethe chondrulecompositionsintothebroadercontext oftheevolution ofdistinctdiskreservoirs,namelytheNCandCCreservoirs.

4.1. Originofisotopicheterogeneitiesamongchondrules

When the

ε

54Cr data for chondrules from NC and CC

chon-dritesare consideredtogether,chondrulesfromchondriteswitha higherabundanceofCAIs(i.e.,CV,CO)exhibitmore

ε

54Cr

variabil-ity compared to chondrites with lower CAI abundances (i.e., EC, OC,CR). The same observation holds for

ε

50Ti variations among

chondrules,whichhavebeenattributedtotheheterogeneous dis-tribution of CAIs among the chondrule precursors (Gerber et al., 2017). Specifically, the

ε

50Ti variations amongtheCV chondrules

are correlated withtheir Ti content, consistent withthe variable additionof50Ti- andTi-rich CAIstochondruleprecursors(Gerber etal.,2017).Bycontrast,thereisnoobviouscorrelation between

ε

54Cr andCr concentration amongthe CV chondrules, neitherin

thedata ofthis study,nor when datafor CVand COchondrules frompreviousstudiesarealsoincluded(Olsenetal.,2016;Zhuet al., 2019). The

ε

54Cr anomalies inthe chondrulesmay, therefore,

reflectadmixtureof anisotopicallyhighly anomalous component, in which case small amounts of admixed material are sufficient togeneratetheobserved

ε

54Crvariations,whiletheCr

concentra-tionswouldremainunaffected.Alternatively,theadmixedmaterial isisotopicallylessanomalous andhada Cr concentration similar tothechondrulesthemselves.

Materialsknown to have significant 54Cr excesses andwhich may be capable of shifting bulk isotopic compositions include presolargrainsandCAIs.Forinstance,Cr-bearingnanospinels iden-tifiedinthematrixofprimitivecarbonaceouschondriteshave el-evated 54Cr/52Cr ratios of up to 50x the solar composition (Qin etal., 2010; Dauphaset al., 2010; Nittler etal., 2018). Toassess whether these grains can account for the observed

ε

54Cr

varia-tionsamongchondrules, wecalculatedthe numberofnanospinel grainsthat wouldneed to be added toan averageCV chondrule togeneratetheobserved1-2

ε

54Crvariations.Usingtypicalvalues

forCV chondrules(1 mg; 3000 μg/gCr)andpresolarnanospinels (80-200 nm; 2.5x solar 54Cr/52Cr; Dauphas et al., 2010; Nittler

etal., 2018), we find that tens of thousands ofgrains would be neededtogeneratethe observed 1-2

ε

54Cr variations amongthe

chondrules. The basicpicture doesnot change even when grains withthe highest reported anomalies (56x solar) are used in the calculation,sincethe 54Cr anomaliesofthenanospinelgrainsare inverselycorrelatedwiththeirsize(Nittleretal.,2018).Therefore, if presolar nanospinels were the only source of

ε

54Cr variations

amongchondrules,thentheamountofpresolargrainsmixedinto differentchondrules wouldhave to varyby tens of thousandsof grainsfromone chondrule tothe next. Such a scenariois highly unrealisticintermsofmixingdynamicsofdustin thesolar neb-ula,andcontrasts withtheoverall rarityofpresolargrainsinthe meteoriterecord.Assuch,presolarnanospinelsdonotseemtobe responsibleforthe

ε

54Crvariabilityamongindividualchondrules.

Aswas shownbyGerber etal.(2017), Tiisotope variationsin CCchondrulesweremostlikelycausedbyincorporationofvariable amountsofrefractory inclusionssuch asCAIs.However, although CAIshavewellresolved

ε

54Crexcesses,theycontaintoolittleCrto

significantlyaffecttheCrisotopic compositionofchondrules, and soadmixtureofCAIstochondruleprecursorsresultsinastrongly curvedmixinghyperbolain

ε

50Tivs.

ε

54Crspacewithlittle

over-allvariationsin

ε

54Cr(Fig.4d).Accordingly,thechondrulesofthis

study do not plot on a mixing line betweenNC chondrules and CAIs (Fig. 4d-f). Moreover, there are chondrules with

ε

54Cr

(8)

ex-Fig. 4.17O,ε50Ti,andε54CrofindividualchondrulesincomparisontobulkNCandCCmeteorites(a-c)andCAIs/AOAs(d-f).TheNC(red)andCC(blue)fieldsrepresent

therangeofanomaliesmeasuredforbulkmeteoritesfromtheNCandCCreservoir,respectively.TheNCandCCfieldsaswellasrepresentativeCAIisotopiccompositions arebasedondatacompiledinBurkhardtetal.(2019).Bulkchondritedatapoints(opensymbols)areonlyshownforsamplesfromwhichindividualchondrules(filled symbols)wereanalyzedinthisstudy.(a)-(c)NCchondrulesdisplayrelativelyhomogeneous17O,ε50Ti,andε54Cr,whichareindistinguishablefromthecompositionsof

theirrespectivehostchondrites,whileCCchondruleshavemorevariableε50Ti,ε54Cr,and17O.NotethatalthoughthecompositionsofCCandNCchondrulesmayoverlap

foreitherε50Ti,ε54Cr,or17O,inmulti-isotopespacenoCCchondruleplotswithintheNCfield,andnoNCchondruleplotswithintheCCfield.Alsonotethatmost

CCmeteoritesareaffectedbyaqueousalterationwhichmaymodifytheirpristine17Othroughtheinteractionwith16Opoorwater(-ice)(Pirallaetal.,2020).Alteration

corrected17Ovaluesforbulkcarbonaceouschondriteswouldthusplotatslightlylower17O.(d)-(f)Thecompositionofallchondrulescanbereproducedbymixing

betweenanNCcomponentwithchondriticCr/Ti/OratiosandanisotopicallyCAI/AOA-likecomponent(IC)having morevariableCr/Ti/Oratios.Crossesonmixinglines indicate20%stepsofICcomponentinNC-ICmixture.(Forinterpretationofthecolorsinthefigure(s),thereaderisreferredtothewebversionofthisarticle.)

cesses butno

ε

50Ti anomalies,indicating that the

ε

54Crexcesses

are unrelatedtotheadditionofCAIs.Theseobservationsruleout CAI admixture as a significant driver for

ε

54Cr variations among

chondrules,andshowthat the50Tiand54Cranomaliesarecarried

bydistinctmaterials.

Amoeboid olivine aggregates (AOAs) are another component that isabundant incarbonaceous chondrites andmaybe respon-sible for the

ε

54Cr variations among chondrules. Of note, AOAs

are characterized by similar

ε

54Cr and

ε

50Ti excesses than CAIs

(Trinquieretal.,2009),butcanhavemuchhigherCr/Ti(Komatsu et al., 2001; Sugiura et al., 2009), reflecting their less refractory character comparedto CAIs.Moreover, there isgrowing evidence thatCCchondrulesinheritedprimitive16O-richprecursors

includ-ingnotonlyCAIsbutalsoAOA-likerelictsilicategrains,suggesting admixtureofnon-CAIbutisotopicallyanomalousmaterialto chon-druleprecursors(Kita etal.,2010;Marrocchietal., 2019,2018a). This isalso consistent with the observation that samples ofthis studyincludechondrulescontainingrelictolivinegrainswith

(9)

neg-ative



17O of up to

14



. Moreover, when the Cr, Ti, and O

isotope variations among the chondrules are considered together (Fig.4d-f),itisevidentthatadditionofCAIsalonecannotaccount fortheobservedvariations.Instead,componentswithCAI-like iso-topiccompositionsbutlessrefractorychemicalcompositions,such asAOAs,musthavebeenpartofchondruleprecursors.

To more quantitatively assess as to whether the addition of AOA-like material is consistent with the observed isotopic vari-abilityamongchondrules,wecalculatedmixinglinesbetweentwo chemicallyandisotopicallydistinctdustcomponents.One compo-nent is characterized by a chondritic chemical and NC-like iso-topic composition. The other component hasa CAI/AOA-like iso-topic composition and is characterized by variable refractory to non-refractory element ratios; this range in compositions is re-flectedinincreasingCr/TifromtypicalCAI-likevaluestothemore elevatedvaluesobservedforAOAs.Theresultsofthemixing calcu-lationsshowthatheterogeneousmixingofdifferentchemical com-ponentsfromtwobulkdustreservoirsreproducestheentirerange ofobserved chondrulecompositionsquitewell (Fig. 4d-f).For in-stance, while the extreme composition of the Al-rich chondrule MSc14 fromAllende (

ε

50Tiof

7,

ε

54Cr

0.4)reflects admixture

ofrefractory,CAI-likematerial,chondruleswith

ε

54Crexcessesbut

NC-like

ε

50Ti(e.g.,AllendechondrulesMSc3andMSc8)are

con-sistent with addition of material with AOA-like Cr/Ti (Fig. 4d). The mixing calculationsinvolving Oisotopes are less straightfor-ward because the O concentrations of the mixing endmembers are not well known. Nevertheless, assuming a reasonable range of O/Cr and O/Ti ratios for the mixing endmembers [O concen-trations are based on the typical modal mineralogy ofOCs (Mc-Sween et al., 1991), CAIs (Grossman, 1975) and AOAs (assuming pure forsterite)], we find that all CC chondrules fall within the range of possible mixing trajectories (Fig. 4e). Finally, it is note-worthy that although the NC chondrules of this study fully plot within thecompositionalfieldsofbulkNCbodies,they neverthe-lessseemtodefineaweaktrendtowardstheisotopiccomposition ofCAIs/AOAs(Fig. 4).Thismaysuggestthatsmallamountsof iso-topicallyCAI-likematerialwerealsopresentamongtheprecursors ofNCchondrules.However,investigatingtherelevance andorigin ofthistrendwillrequireTi andCrisotopemeasurements ofrare OCchondruleswithrelict16O-richgrains(Kitaetal.,2010).

In summary, the Cr-Ti-O isotopic heterogeneity among single chondrulescanbeaccountedforbymixingofanNCdust compo-nentwithchemicallyvariabledustcomponentshavinga CAI/AOA-likeisotopiccomposition.Thismixingmodelisconsistentwiththe higher abundance of CAIs and AOAs in carbonaceous chondrites, andtherarityofthesecomponentsinNCchondrites.

4.2. Chondruletransportversusprecursorheterogeneity

Because the range of

ε

54Cr values observed among CV

chon-drules is similar to the range measured among bulk meteorites, Olsenetal.(2016) arguedthatachondrule’s

ε

54Crreflectsits

spe-cificformationlocationwithinthedisk.Thisinterpretationimplies that chondrules with distinct

ε

54Cr formed in different regions

of the disk. As such, the variable

ε

54Cr of CV chondrules would

in turn require formation of chondrules from a given chondrite group across large areas of the disk, and the subsequent disk-wide transport ofthe chondrules tothe accretionregion oftheir respective host chondrites. Thisinterpretation of the chondrules’ isotopic compositions assource signatures is very different from the interpretation put forwardabove, in which the isotopic het-erogeneities are inherited signatures of chondrule precursors. As notedabove,whileitisdifficulttodistinguishbetweenthesetwo interpretations basedsolelyonisotopic datafora single element, the combined Cr-Ti-O isotopicdata from thisstudy allow distin-guishingbetweensourceandprecursorsignatures.

Ifthe isotopic variations wouldreflect distinct source regions ofchondrules,thentheir



17O,

ε

50Ti,and

ε

54Crsignaturesshould

becorrelated.Forexample,a chondrulefromtheinner Solar Sys-tem(i.e.,the NC reservoir)that was transportedto the accretion regionofCVchondrites shouldnot onlyexhibit anNC-like

ε

54Cr,

butalsoNC-like



17Oand

ε

50Ti.Conversely,aCCchondrulefrom

theouterSolarSystem(i.e.,theCCreservoir)shouldhaveCC-like



17O,

ε

50Ti,and

ε

54Cranomalies.However, amongtheCV

chon-drulestherearesampleswithNC-like

ε

50TiandCC-like

ε

54Cr,and

therearealsoCVchondruleswithCC-like

ε

50TibutNC-like

ε

54Cr.

Moreover,in



17Oversus

ε

54Crspace,allCCchondrulesplotclose

to the field of bulk CC chondrites (Fig. 4b,e). Thus, although CV chondrules with NC-like

ε

54Cr exist, the combined



17O–

ε

54Cr

of these chondrules nevertheless places their origin in the CC reservoir. Combinedthese observationshighlight that theCr-Ti-O isotopicvariabilityamongCVchondrulescannotbetiedtoan ori-ginfromdistinctdiskregionsinaself-consistent way.Thesedata are,therefore, inconsistentwith variableformation regions ofCV (andotherCC)chondrulesandsubsequenttransportofchondrules through the disk.By contrast,the Cr-Ti-O isotopic variations can readilybeattributedtolocalheterogeneitiesamongchondrule pre-cursors,resultingfromtheincorporationofchemicallydiverseand isotopicallyCAI-likematerialintothedustaggregatesthatbecame chondrules.Thisinterpretationisalsoconsistentwithmixing mod-elsthat employbulkchemical compositionsofchondrules,which alsofavor local precursorheterogeneity over chondrule transport (HezelandParteli,2018).

4.3.RelationbetweenisotopicanomaliesinchondrulesandtheNC-CC dichotomyofthedisk

Althoughtheisotopeanomaliesinchondrulesdonottrace spa-tially distinct origins andlarge-scale transport of the chondrules themselves,they nevertheless provide evidencefor transport and mixingamongtheir precursors.Thisisbecausethedegreeof iso-topicvariabilityamongchondrules ofagivenchondritegroup re-flects the amount of isotopically anomalous precursor materials presentinagivenregion ofthedisk,andhowwell thismaterial was mixedatthechondrule precursorscale.The isotopic hetero-geneitiesamongchondrules,therefore,provideinformationonthe spatialandtemporalevolutionofthesolarprotoplanetarydisk.

Recently, it has been argued that the isotopic dichotomy be-tweentheNCandCCreservoirsoftheaccretiondiskresultsfrom a change in the isotopic composition of infalling material from theSun’sparentalmolecular cloud(Burkhardtetal., 2019; Nanne et al., 2019). In this model, early infalling material was charac-terizedby an isotopiccomposition asmeasured inCAIs, whereas theisotopiccompositionofthelaterinfallhadan NC-likeisotopic composition.The outward transport ofearly infalling material by viscousspreading(HuesoandGuillot,2005;Pignataleetal.,2018; YangandCiesla,2012)resultedinan earlydiskhavingaCAI-like isotopiccomposition(termedICforInclusion-likeChondritic reser-voir;Burkhardtetal., 2019).Laterinfall onto thedisk,now with anNC-likeisotopic compositionthen changedthe compositionof theinnerdisk,whiletheouterdiskretainedamemoryofthe iso-topiccompositionoftheearlydisk.Ultimately,theseprocessesled to theformation of the CC reservoir, representing theouter disk whose composition can be regarded as a mixture of IC and NC material,andtheNCreservoir,representingtheinnerdisk,whose compositionisdominatedbythelaterinfall.

Thecombined Cr-Ti-Oisotopicdata forchondrules are consis-tentwiththismodel,becausetheyreveallimitedvariabilityinNC chondrulesandvariable

δ

16O(i.e.,low



17O),

ε

54Cr,and

ε

50Ti

en-richmentsinCC chondrules.Since chondrules providea snapshot ofthe dust composition at their formation location (Scott,2007; Buddeetal., 2016b;Bollard etal., 2017; MorrisandBoley,2018),

(10)

therelativelyhomogeneousisotopiccompositionofNCchondrules indicatesthattheyformedinawell-mixedreservoirdominatedby NCdust.This isconsistentwiththeidea that theinner disk pre-dominantlyconsistsofmaterialfromthelaterinfall(Burkhardtet al.,2019;Nanneetal.,2019),andwiththerarityofCAIsand CAI-like refractory material in NC chondrites (Ebert et al., 2018). By contrast,CCchondrulesformedinaregionofthediskwhich con-tainsmaterialfromboththeearlyandlate infall.The dataofthis study indicatethat thismixture ofearly and late infalling mate-rial was heterogeneous atthe level of individual CV chondrules, whichdidnot onlyincorporatevariousamounts ofCAIs,butalso lessrefractorymaterialwithCAI-likeisotopiccompositions.Thisis consistentwiththehigherabundanceofCAIsandAOAsinCCover NCmeteorites,andwiththeideathatthesecomponentsrepresent remnants of theIC reservoir, which hadformed during theearly infall and contained not only CAIs, but also less refractory ma-terial (Burkhardt etal., 2019; Nanneet al., 2019). Finally,within theCCreservoir,theisotopicvariationsamongchondrulesseemto show aprogressive homogenizationfromCV andCOtoCR chon-drules(Gerberetal.,2017;Zhuetal.,2019).Thisisconsistentwith thelate formationtimesof

3.7MaafterCAIsforCRchondrules compared to

2.2 Ma after CAIs for CV chondrules (Schrader et al., 2017; Nagashimaetal.,2017;Buddeetal., 2016b,2018),and mayindicatethe progressivehomogenizationofICandNC mate-rialwithintheouterdisk.

4.4. Originofisotopeanomaliesinbulkcarbonaceouschondrites

The evidence for mixing between IC and NC components in the outer disk hasimplications for understanding thegeneration ofisotopeanomalies amongbulk carbonaceouschondrites.In the

ε

50Ti–



17Oand

ε

50Ti–

ε

54Crdiagrams(Fig.4),CCchondrulesplot

within andoutsidethefieldsofbulk CCchondrites,reflecting the strong control of CAIs on particular

ε

50Ti (Gerber et al., 2017).

VariableCAIabundancesalsoaccountformuchofthe

ε

50Ti

varia-tionsamongbulkcarbonaceouschondrites(Trinquieretal.,2009). Bycontrast,in



17O–

ε

54Crspace, CCchondrulesplotclosetothe

compositional fieldofbulk CC chondrites.As such,the chondrule datacanhelpassesstheoriginof

ε

54CrvariationsamongbulkCCs.

Trinquier et al. (2007) observed a correlation between



17O

and

ε

54Cr among bulk carbonaceous chondrites (see Fig. 4) and

argued that this correlation reflects mixing between two iso-topically distinct reservoirs. However, the origin of these reser-voirs, and whether they can be tied to specific meteorite com-ponents, remained ambiguous. More recently, it was argued that the



17O–

ε

54Crcorrelation resultsfrommixingCI-likedustwith

a hypothetical 16O-rich (i.e.,CAI-like



17O)but 54Cr-poor (

ε

54Cr

≈ −

10)component(Alexander,2019;Zhuetal.,2019).Direct ev-idencefortheexistenceofsucha54Cr-poorcomponentislacking,

however. None of the CC chondrules of this study plot outside therangeofmixingtrajectoriesbetweentheNCandICreservoirs, and so these data also provide no evidence for the existence of material with strongly negative

ε

54Cr. However, mixingbetween

NC andIC materials doesnot easily account forthe



17O–

ε

54Cr

array of bulk carbonaceous chondrites, which is almost perpen-dicular to the NC-ICmixing trajectories(Fig. 5). Either thisarray is inherited from the NC reservoir, where bulk meteorites plot along a similar, parallel trend, orthe array reflects variable mix-ing between CI-like material, characterized by the highest

ε

54Cr

and



17O, and chondrules withlower

ε

54Cr and



17O. Of note,

for pooled Allende chondrule separates, each consisting of hun-dreds ofchondrules, we obtained

ε

54Cr

=

0

.

58

±

0

.

11 (Table 1).

Combinedwiththeaverage



17O

= −

5

.

4

±

0

.

9 ofthisstudy,this showsthatCVchondrulesplotatthelowerleftofthe

ε

54Cr–



17O

array definedby bulkCCs.As such,mixingbetweenCI-like mate-rial anda common “chondrule-component” may account for the

Fig. 5.17Ovs.ε54Crofchondrulesandbulkmeteorites.NC(red)andCC(blue)

bodies(opensymbols)definedistinctfields.WhiletheoffsetbetweenNCandCC meteoritesmostlikelyreflectsmixingbetweenNCandICmaterials,thebroad cor-relationof17Oandε54CramongCCmaterialsmostlikelyreflectsmixingbetween

averageCCchondrulesandCI-likedust.Bulkmeteoritedatafromcompilationin Burkhardtetal.(2019).Forclarityerrorbarsonbulkmeteoritedatawereomitted. NotethatmostCCmeteoritesareaffectedbyaqueousalterationwhichmay mod-ifytheirpristine17Othroughtheinteractionwith16Opoorwater(-ice)(Pirallaet

al.,2020).Alterationcorrected17Ovaluesforbulkcarbonaceouschondriteswould thusplotatslightlylower17O.Datafor17OofCVmatrixwastakenfromPiralla etal.(2020) (Marrocchietal.,2018b).TL:TagishLake.

correlated

ε

54Cr–



17Ovariationsamongbulkcarbonaceous

chon-drites. Such a mixing scenario would be consistent with chemi-calvariationsamongCCchondrites (e.g.,Braukmülleretal.,2018; Alexander,2019), andwiththecorrelation ofmass-dependent Te isotope compositions and

ε

54Cr anomalies observed among bulk

carbonaceouschondrites(Hellmannetal.,2020).

5. Conclusions

The first combined Cr-Ti-O isotope data set for individual chondrules reveals a fundamental difference between chondrules from non-carbonaceous (NC) and carbonaceous chondrites (CC). Whereas NC chondrules display relatively homogeneous



17O,

ε

50Ti, and

ε

54Cr, which are indistinguishable from the

composi-tionsoftheirrespectivehostchondrites,CCchondruleshavemore variable

ε

50Ti,

ε

54Cr, and



17O. Importantly, although the

com-positions ofCC andNC chondrules may overlapfor either

ε

50Ti,

ε

54Cr, or



17O, inmulti-isotope spacenone ofthe measured CC

chondrulesplots inthecompositional field ofNCchondrites,and none of the NC chondrules plots within the field of CC chon-drites. These data are inconsistent with a prior proposal for the disk-wide transport of chondrules across the NC and CC reser-voirs, and indicate that there has been no significant exchange of chondrules betweenthese reservoirs. Instead the entirerange ofisotopic anomalies inchondrules is attributableto the hetero-geneous nature oftheir precursors, andcan be accountedfor by mixingbetweenNC-likedust andachemically diversedust com-ponentthat was isotopically similar toCAIs andAOAs.The same mixingprocesses,butonalarger, disk-widescale,werelikely re-sponsibleforestablishingthedistinctisotopiccompositionsofthe NC and CC reservoirs, which represent in inner and outer disk, respectively.

Figure

Fig. 1. Oxygen three-isotope plot. CC chondrules plot along the CCAM line with a slope of approximately 1
Fig. 2. (a) Back-scattered electron image of PO chondrule MSc10 from Allende (CV3) showing the locations of ion probe measurements (colored ellipses)
Fig. 4.  17 O, ε 50 Ti, and ε 54 Cr of individual chondrules in comparison to bulk NC and CC meteorites (a-c) and CAIs/AOAs (d-f)
Fig. 5.  17 O vs. ε 54 Cr of chondrules and bulk meteorites. NC (red) and CC (blue) bodies (open symbols) define distinct fields

Références

Documents relatifs

Table 1: Oxygen isotopic compositions of host and relict olivine grains in chondrules of chondrite NWA 5958. Relict grains correspond to those with low Ti contents and  17 O

Livres d’artiste et Leurs éditeurs-créateurs Genevois 7 novembre 2011 – 31 mai 2012 BiBliotHèquE D’Art Et D’ArcHéologiE Promenade du Pin 5 1204 Genève T+41(0)22 418 27

Olivine (sometimes with evidence of reduction) and FeO-rich (up to 10.2 wt% FeO) pyroxene grains are present in some chondrules of the least equilibrated E3 chondrites (Rambaldi et

Although the evalitation of the nc)rmiility rule with rehpect to a von Mises surface centred at the origin might be a first approximation, the tests shown in this section

We modeled Fe/Mg interdiffusion profiles measured in zoned olivines to evaluate the peak metamorphic temperatures and time scales of the CK parent body metamorphism, and proposed

Phase Relations in Ti}Ni}Al}N and Ti}Ni}Al}O Systems Crystallographic data from X-ray powder di!raction and EMPA results for the systems Ti}Ni}Al}N and Ti}Ni}Al}O are summarized

The very high strain hardening rate could be explained by the simultaneous activation of two different deformation modes, the primary TRIP mode on one side, and the

Benchmark; MS1-GR: subset of samples from sites which fulfil all criteria for reference conditions, MS1-NR: samples from a Member State which participated in the reference