• Aucun résultat trouvé

From crude protein to precision protein: implications for the ideal protein concept

N/A
N/A
Protected

Academic year: 2021

Partager "From crude protein to precision protein: implications for the ideal protein concept"

Copied!
37
0
0

Texte intégral

(1)

From crude protein to precision protein:

implications for the ideal protein concept

Jaap van Milgen, Mathieu Gloaguen, Alberto Conde, Roberto Barea, Ludovic Brossard and Nathalie Le Floc’h

(2)

• Introduction

• Expressing amino acid requirements and

interpreting the response to the amino acid supply

• Responses to the supply of branched-chain amino acids (Val and Ile)

• How far can we go with precision protein?

• Conclusions

Outline

(3)

• Introduction

• Expressing amino acid requirements and

interpreting the response to the amino acid supply

• Responses to the supply of branched-chain amino acids (Val and Ile)

• How far can we go with precision protein?

• Conclusions

Outline

(4)

• Reducing the CP content in the diet:

• reduces the risk of digestive problems

• increases the efficiency of N utilization

• reduces N excretion

• With the use of L-Lys, DL-Met, L-Thr, L-Trp, and L-Val, more amino acids potentially become

colimiting

• Little is known about the “requirements” of secondary amino acids

Introduction

(5)

0 5 10 15 20 25 30 35 40

Nitrogen content, %

The CP content of amino acids is rather “crude”

(6)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

1.8 Requirement Crystalline AA Excess

SID supply, %

Using free AA allows improving the AA profile

no free AA, 1.0% SID Lys CP = 21.6%

cost = 100

(7)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

1.8 Other ingredients Free AA Excess

SID supply, %

with free AA, 1.0% SID Lys CP = 17.1%

cost = 87

Using free AA allows improving the AA profile

(8)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

1.8 Other ingredients Free AA Excess

SID supply, %

with free AA, 1.0% SID Lys CP = 15.5%

cost = 89

Using free AA allows improving the AA profile

(9)

• Introduction

• Expressing amino acid requirements and

interpreting the response to the amino acid supply

• Responses to the supply of branched-chain amino acids (Val and Ile)

• How far can we go with precision protein?

• Conclusions

Outline

(10)

• Expressing AA requirements (AID, SID, % of Lys)

• Experimental considerations

• Estimating “the” requirement vs the response Expressing amino acid requirements and

interpreting the response to the amino acid supply

(11)

available minimum oxidation excess

retained

diet ileal indigestible

specific endogenous losses standardized ileal digestible

Expressing amino acid requirements

apparent ileal digestible maintenancebasal endogenous losses

(12)

AID Basal endogenous losses SID

Lys 100 100 100

Met 30 28 30

Met+Cys 59 72 60

Thr 63 105 65

Trp 17 37 18

Val 68 114 70

Ile 53 82 54

Leu 98 136 99

Phe 48 87 49

Phe+Tyr 92 159 94

His 31 41 32

Amino acid requirements are typically greater when expressed on a SID basis

(13)

AA:Lys

Response

Lys < requirement Lys << requirement

← AA Lys →

The second-limiting factor in a dose-response study should be known

(14)

AA:Lys

Response

Lys < requirement Lys << requirement Lys > requirement

The second-limiting factor in a dose-response study should be known

Expressing the amino acid requirement relative to Lys is valid only when Lys is second-limiting in the study

(15)

60 62 64 66 68 70 72 74 76 78 80 200

250 300 350 400 450 500 550 600

SID Val:Lys, %

Daily gain, g/d

Estimating “the” requirement vs the response

(16)

20 25 30 35 40 45 50 0.30

0.35 0.40 0.45 0.50 0.55 0.60

Ile requirement, %

The amino acid requirement will typically decline during the experiment

response no response

partial response

(17)

• Introduction

• Expressing amino acid requirements and

interpreting the response to the amino acid supply

• Responses to the supply of branched-chain amino acids (Val and Ile)

• How far can we go with precision protein?

• Conclusions

Outline

(18)

INRA (1993) NRC (1998) BSAS (2003)

Lys 100 100 100

Val 68 68 70

Ile 60 54 58

Leu 100 102 100

Ideal amino acid profile:

all amino acids are equally limiting

(19)

leucine valine

isoleucine

a-keto-b-methylvalerate (KMV)

a-ketoisovalerate (KIV)

a-ketoisocaproate (KIC)

BCAA amino transferase

a-methylbutyryl CoA isobutyryl CoA isovaleryl CoA

BCKA dehydrogenase

Metabolism of branched-chain amino acids

(20)

Val Ile Leu

Publications 20 22 1 (+1)

- peer-reviewed 9 12 1 (+1)

- other 11 10

Dose response experiments 28 46 2 (+2)

- peer-reviewed 15 24 2 (+2)

- other 13 22

What do we know about BCAA requirements in growing pigs?

(21)

BW range (kg) Reported requirement Relative to NRC (1998)

Jackson et al., 1953 13-29 0.40% Val 51%

Lewis and Nishimura, 1995 67-80 0.33-0.43% AID Val 80-105%

Liu et al., 2000 60-85 11.4 g SID Val/d 98%

James et al., 2001 9-15 0.62-0.67% SID Val 90-97%

Mavromichalis et al., 2001 5-10 0.60 g SID Val/MJ ME 101%

10-20 0.53 g SID Val/MJ ME 105%

Gaines et al., 2006 8-12 0.92% SID Val 114%

12-20 0.78% SID Val 114%

Paulicks et al., 2008 12-25 67% SID Val:Lys 99%

Torrallardona et al., 2008 9-23 >65% SID Val:Lys >96%

Jansman et al., 2008 9-26 66% SID Val:Lys 97%

Barea et al., 2009 12-25 > 70% SID Val:Lys >103%

Wiltafsky et al., 2009 8-25 65-67% SID Val:Lys 96-99%

Trautwein et al., 2010 12-25 67-70% SID Val:Lys 99-103%

Nemecheck et al., 2010 7-11 65% SID Val:Lys 96%

Sloth et al.,2010 10-29 65% SID Val:Lys 96%

Millet et al., 2010 9-25 68-71% SID Val:Lys 100-104%

Gloaguen et al., 2011 12-22 72% SID Val:Lys 106%

Gaines et al., 2011 13-32 65% SID Val:Lys 96%

Vinyeta et al., 2011 9-25 70% SID Val:Lys 103%

Waguespack et al., 2012 20-45 67-70% SID Val:Lys 99-103%

Lohmann et al., 2012 15-30 0.79% SID Val >120%

Reported information about the Val requirement

Most work done in the last 10 yrs

Almost all work concerns pigs < 30 kg

Most requirements estimated by the linear-plateau model

Reported requirements are around the NRC estimate

(22)

55 60 65 70 75 80 250

300 350 400 450 500 550 600

SID Val:Lys, %

Daily gain, g/d

55 60 65 70 75 80

500 600 700 800 900 1000 1100

SID Val:Lys, %

Feed intake, g/d

A Val deficiency reduces both feed intake and growth

(23)

Leu+ Leu++ Leu+++ Leu++++ Leu++++

Ile++++

0 100 200 300 400 500 600

Feed intake Daily gain

g/d

Excess Leu aggravates the effect of a Val deficiency

(24)

Leu+ Leu++ Leu+++ Leu+ Leu++ Leu+++

0 200 400 600 800 1000 1200

Feed intake Daily gain

g/d

--- Val sufficient --- --- Val deficient ---

Excess Leu aggravates the effect of a Val deficiency

(25)

55 60 65 70 75 80 200

250 300 350 400 450 500 550

600 113% Leu:Lys

Daily gain, g/d

55 60 65 70 75 80

200 250 300 350 400 450 500 550

600 165% Leu:Lys

Excess Leu aggravates the effect of a Val deficiency

(26)

16:00

fasting

8:30

Val+ or Val- test meal

(70 g)

ad libitum Val+

Test meal,

70 g Ad libitum intake of Val+, g

Val- 217

Val+ 252

9:30 16:00

0 50 100 150 200

250 Post-prandial plasma [Val]

The pig rapidly detects a Val deficiency

16:00

fasting

8:30

Val+ or Val- test meal

(70 g)

ad libitum Val+

12:30 16:00

(27)

• 46 dose-response studies since the 1950s

• Suitable for meta-analysis

• Criteria for selection:

• Supplementation with ≥ 4 levels of D-Ile or L-Ile

• Diet composition

• Intake and growth response

Reported information about the Ile requirement

(28)

0 20 40 60 80 100 120 0

20 40 60 80 100 120 140 160 180

Ile supply, % of NRC requirement 200

Meta-design of Ile response studies

(29)

0.0 0.2 0.4 0.6 0.8 1.0 0

200 400 600 800 1000 1200

Daily gain, g/d

Response to Ile supplementation

Standardization of the responses:

• within-study response (Y-axis)

• relative to the NRC (1998) requirement (X-axis)

(30)

0 50 100 150 200 0

20 40 60 80 100 120

Relative daily gain, %

Response to Ile supplementation

Is there a response (P < 0.25)?

33

13

(31)

Protein sources used to study the Ile requirement

27%

of BCAA 3%

of BCAA

(32)

0 50 100 150 200 0

20 40 60 80 100

120 with blood cells

Response to Ile supplementation

0 50 100 150 200

0 20 40 60 80 100

120 without blood cells

 1

 9

 32

 4

Relative daily gain, %

(33)

150 200 250 300 350 400 70

80 90 100 110

120 Requirement estimate Linear (Requirement estimate)

Ile requirement, % of NRC

The Ile requirement depends on the supply of the other branched-chain amino acids

The NRC (1998) Ile requirement appears too high for diets without blood cells

50% SID Ile:Lys appears sufficient

An Ile supply 10% below the requirement reduces feed intake by 15% and daily gain 21%

(34)

• Introduction

• Expressing amino acid requirements and

interpreting the response to the amino acid supply

• Responses to the supply of branched-chain amino acids (Val and Ile)

• How far can we go with precision protein?

• Conclusions

Outline

(35)

Ingrediets Cereals – SBM – AA Cereals – AA

CP, % 17.6 15.6 13.5 11.8 13.0 14.0

L-Lys HCl 0.28 0.46 0.72 0.92 1.00 1.00

DL-Met, L-Thr, T-Trp + ++ +++ ++++ ++++ ++++

L-Val + ++ +++ ++++ ++++

L-His, L-Ile, L-Leu, L-Phe + ++ +++ +++

L-Glu + ++

L-Arg, L-Gly, L-Pro + +

How far can we go with precision protein?

(12-22 kg BW pigs; 1.0% SID Lys)

(36)

Ingrediets Cereals – SBM – AA Cereals – AA

CP, % 17.6 15.6 13.5 11.8 13.0 14.0

Feed intake, g/d 766 775 779 734 810 782

Gain, g/d 450b 454b 442b 358a 420b 451b

G:F 0.58c 0.58c 0.56bc 0.46a 0.52b 0.57c

How far go we go with precision protein?

(37)

• There is still a great potential to reduce the protein content in the diet

• Knowledge about the requirements (and responses) of secondary amino acids and nitrogen is limited

• There is variation among pigs in the response to a limiting amino acid supply:

• Some “safety margin” will be required to fulfill the needs of all animals

• A potential for precision feeding systems?

Conclusions

Références

Documents relatifs

Où que j'aille, dans n'importe quelle ruelle, sur n’importe quelle place, d'un bâtiment à l'autre, tout demeurait obstinément désert et calme comme si un

Implicitement, cette estimation du volume utile est introduite dans le modèle de gestion par optimisation en utilisant la Programmation Dynamique Stochastique

Dans cette partie, nous avons pu établir la synthèse de quatre régulateurs différents pour la commande de la BDFM. Un régulateur Proportionnel-Intégral-Dérivation, un

Although benefits were observed only at specific timepoints, these results indicate that zinc supplementation in the form of amino acid complex provided in water or in feed aid

Factorial calculation of amino acid requirements for growing

Jaap van Milgen, Mathieu Gloaguen, Roberto Barea Gaitan, Ludovic Brossard, Nathalie Le Floc’H.. To cite

If environmental and housing conditions are responsible for these differences, the effect on performance are partly associated to the stimulation of the immune system

Based on all these arguments, the current research was conducted in order to determine the optimum proportion between Met and CysTSAA in the total of sulfur amino acids