• Aucun résultat trouvé

Evidencing the role of plants vs soils in the understanding of 137Cs phyto availability using a coupled experimental and modelling approach

N/A
N/A
Protected

Academic year: 2021

Partager "Evidencing the role of plants vs soils in the understanding of 137Cs phyto availability using a coupled experimental and modelling approach"

Copied!
20
0
0

Texte intégral

(1)

IRSN/FRM-296 ind 5

Alexandre Floureta, P. Hennera, A. Martin-Garina F. Lafolieb and L. Févriera

a LR2T/SRTE, IRSN, France, B UMR EMMAH, INRA, France

Evidencing the role of plants vs soils in the understanding of 137Cs phyto availability using a

coupled experimental and modelling approach

(2)

Aim Model Materials & Methods Context

Context Results Conclusion

(Transfert des principaux radionucléides dans les différents compartiments de l'environnement, http://www.irsn.fr)

Fukushima

131I = 90.1015 Bq

137Cs = 10.1015 Bq

Wet deposition

(all radionuclide) Dry deposition (all radionuclide)

Soil leaching (Cs, Sr, Pu)

Food chain transfer (Cs, Sr, I)

Soil secondary contamination Roots

transfer (Cs, Sr)

Transfer into the edible part of the plant

(Cs, I) 137Cs 3 kg

(3)

3 FLOURET ALEXANDRE ICOBTE 2019

Cw

4/17 Soil

Cp

Plant

To Improve the modeling of cesium availability into the soil/solution/plant continuum

 Operational for a large variety of soil and plant

CS

Transfer factor limits

• Variability depending on the type of soil

• Plant absorption of cesium is a linear function of soil concentration.

• All cesium in soil is considered available

0.0E+00 4.0E-02 8.0E-02 1.2E-01 1.6E-01

Maize TF parameter

Sand Loam Clay Organic

TF

AIEA, 2009 – Tecdoc 1616

�� ∗ �=

Transfer factor model

AimAim Model Materials & Methods

Context Results Conclusion

(4)

Adsorption-désorption

CW FFpp Cs

Root

Fe-Al oxides

O.M

Michaelis-Menten model Surface complexation model (Cherif, 2018)

Plant flux  Fp (mol/g/d) - [K]_aq < 1mM

Fmax = Fmax1 Km = Km1

- [K]_aq > 1mM Fmax= Fmax2

Km = Km2

Solution-Plant model

Contrasted experimental data acquisition

Modeling validation

= ���

+ Soil-Solution model

Aim ModelModel Materials & Methods

Context Results Conclusion

(5)

5 FLOURET ALEXANDRE ICOBTE 2019

Soil pH CEC

(meq/kg) Organic carbon (g/kg) Illite (g/kg) Montmorillonite (g/kg) Kaolinite (g/kg)

E 7,5 98,9 11,17 66,05 49,78 20,30

H 5,5 76,4 28,5 144,77 42,40 76,4

S 9,12 11,1 0,18 5,93 153,9 41,55

Material & Method 3 contrasted soils :

2 Plants :

- Millet  low absorption capacity - Mustard  High absorption capacity

Aim Model Material & MethodMaterial & Method

Context Results Conclusion

(6)

48h 96h 7d 14d 21d 0h

137 Cs Contaminated soil

Low K nutrient solution

Permeable grid Root mat

RHIZOtest :

- Soil under total roots influence - Low K nutrient solution

Roots absorption MAX

-No soil particles contamination onto the roots

o 3 soils vs 2 plants = 6 experimentations

RHIZOtest o 6 sampling time,

3 RHIZOtest_plants

3 RHIZOtest_soils

Aim Model Material & MethodMaterial & Method

Context Results Conclusion

Sequential batch desorption 137 Cs environmental availability

(7)

7 FLOURET ALEXANDRE ICOBTE 2019

Continuum

Cs solution;

0.35%

Cs soil; 74.28%

Cs plant; 25.37%

Cs solution;

1.68%

Cs soil; 98.32%

Cs so- lution;

0.01%

Cs soil; 99.99%

Cs so- lution;

0.01%

Cs soil;

99.99%

Cs solution;

0.02%

Cs soil; 96.96%

Cs plant; 3.03% Cs solution;

0.02%

Cs soil; 91.40%

Cs plant; 8.58%

Cs solution;

0.10%

Cs soil; 66.82%

Cs plant; 33.08%

Cs solution;

0.002%

Cs soil; 99.35%

Cs plant; 0.65% Cs solution;

0.01%

Cs soil; 93.61%

Cs plant; 6.38%

T21 Mustard

T21 Millet

Cs in solution Cs in solution

Cs in plants Cs in plants T0

Cs-Mu > Cs-Mi

Sol-E Sol-H Sol-S

Solution

Soil Plant

Aim Model Material & Method

Context ResultsResults Conclusion

Cs-Mu > Cs-Mi

(8)

0 5 10 15 20 25 0%

5%

10%

15%

20%

25%

30%

35%

40%

Soil-S Mustard

Linear (Soil-S Mustard) Soil-S Millet

Linear (Soil-S Millet)

Contact time (d)

Cs Absorbed from the Initial stock (%)

0 5 10 15 20 25

0%

5%

10%

15%

20%

25%

30%

35%

40%

Soil-S Mustard Linear (Soil-S Mustard)

Contact time (d)

Cs absorbed from the initial stock (%)

Linear adsorption, no plateau:

o Available Cs stock have no been depleted

o Plant maximal absorption capacity have not been reached Compartment

Plant

Aim Model Material & Method

Context ResultsResults Conclusion

(9)

9 FLOURET ALEXANDRE ICOBTE 2019

o Same flux (Fp) for each plant on the same soil o Fp (Soil-S) = 100 x Fp (Soil-E)

137Cs soil retention capacity is different for the two soils

A good modeling of the soil-solution continuum is needed Compartment

Solution Plant

Aim Model Material & Method

Context ResultsResults Conclusion

0 5 10 15 20 25

0E+00 8E-10 2E-09 2E-09

3E-09 Soil-E

Mustard Millet

Contact time (d)

Fp (mol/g/d)

0 5 10 15 20 25

0E+00 4E-08 8E-08 1E-07 2E-07

Soil-S

Mustard Millet

Contact time (d)

Fp (mol/g/d)

(10)

o Physico-chemical parameters

Mineralogical clay contents

M/V ratio into the RHIZOtest

Solution composition ([mol/L] , pH)

o Hydrodynamic parameters

Evaporation (pore water renewal rate)

Aim Model Material & Method

Context ResultsResults Conclusion

Sol / Solution Modeling (PHREEQC)

0 5 10 15 20 25

0E+00 1E-08 2E-08 3E-08 4E-08

Model Experiment

Contact time (d)

[Cs] in soil pore water (mol/L)

Soil-E

0 5 10 15 20 25

0E+00 1E-06 2E-06 3E-06 4E-06 5E-06 6E-06 7E-06 8E-06 9E-06 1E-05

Model Experiment

Contact time (d)

[Cs] in soil pore water (mol/L)

Soil-S

(11)

11 FLOURET ALEXANDRE ICOBTE 2019

Sol / Solution / Plant / Modeling (PHREEQC)

Aim Model Material & Method

Context ResultsResults Conclusion

(12)

Conclusion & Perspective

Contrasted experimental data o 137Cs availability

o Soils have stronger impact than plants on137Cs mobility in soil-solution-plant continuum

A good modeling of soil-solution137Cs distribution over time is needed

Complementary data :

o K and other major elements have been measured in soil, solution and plant

Soil-solution modeling  Ok

Soil-solution-plant modeling : ongoing o 137 Cs translocation

Model comparison (E-K model vs surface complexation model) Aim Model Material & Method

Context Results ConclusionConclusion

(13)

13 FLOURET ALEXANDRE ICOBTE 2019

Thank you

Paper

Flouret A. et al., « Effect of soil and plant characteristics on 137Cs transfer in contrasted RHIZOtest experiments » , in prep

Aim Model Material & Method

Context Results Conclusion

(14)

Sol-S Sol-E

(15)

15 FLOURET ALEXANDRE ICOBTE 2019

3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

0 200 400 600 800 1000 1200 1400 1600 1800

f(x) = 47.26 x + 1141.52 R² = 0.98

137Cs in solution (Bq/ml)

137Cs into the soil (Bq/g)

(16)

1.0E-14 1.0E-12 1.0E-10 1.0E-08 1.0E-06 1.0E-04 1.0E-02 1.0E+00 1 10 100 1000

Experimental (thése Hamza) Simulation (1PK-DLM) (min) Simulation (1PK-DLM) (av- erage)

Simulation (1PK-DLM) (Max)

Cw_eq (mol/L)

Kd (L/Kg)

Illite (%) Montmorillonite (%) Kaolinite (%)

0.01 2 23 27 4 9

Min (%) 0.01 23 4

Average (%) 1.005 25 6.5

Max (%) 2 27 9

(17)

17 FLOURET ALEXANDRE ICOBTE 2019

0 5 10 15 20 25

0 1 1 2 2 3 3 4 4 5

Soil-E Mustard Soil-E Millet Soil-S Mustard Soil-S Millet

Contact time (d)

Total biomass (g,DW)

o Biomass are different for each type of plants

o Biomass are different for each type of soils for the same plant

(18)
(19)

19 FLOURET ALEXANDRE ICOBTE 2019

T O T

≡S-OH2+

≡S-OH

≡S-O- Modèle d’échange

d’ions

Modèle d’échange d’ions

Sites spécifiques

Modèles de complexation de surface

Modèles de complexation de surface

à charge variable

(¿ ¿ −)

¿

¿

+¿

(¿ ¿ )2 +2 ¿ 2+ ¿ ¿

2 ¿

Sites non spécifiques

à charge négative permanente

Illite et Smectites (Montmorillonite, bentonite)

Terme électrostatique

à charge permanente

(20)

CsSol

Racine

Phase solide Phase liquide

Références

Documents relatifs

The song whose singer identity has to be verified is modeled as song-based GMM, and the similarity between the models is computed between GMMs obtained using the same type of

Enfin, cette voie de signalisation fait actuellement l’objet d’une attention toute particulière car de nombreux inhibiteurs des protéines de signalisation sont en

In spite of its interesting features, the OFC model does not bring a satisfactory answer to the question of finding a simple model reproducing the GR law for two reasons: (1) a

Table A.23: Sauter mean diameter at the column centre at different axial positions with a superficial gas velocity equal to 25 cm/s heterogeneous regime with demineralised water

3.1 The Hoffman isomorphism and stuffle relations for discrete nested sums 26 3.2 Cut-off nested sums of symbols and multiple (Hurwitz) zeta functions 28 3.3 Renormalised nested sums

The compression ring is not a flat ring, but curves vertically as well to conform to the hyperbolic paraboloid shape of the cable net structure (Figure 5c).. The plan

As the engrafted PDiPS cell-derived DA neurons survive in the adult rodent brain for at least 12 wk, we next transplanted differentiated S1 PDiPS cells into the dorsolateral striatum

As was initially thought in the motivation behind creating a wider diffusion fish for flow field study, it could be the case that the proximity to the side walls of