• Aucun résultat trouvé

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer's disease

N/A
N/A
Protected

Academic year: 2021

Partager "Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer's disease"

Copied!
4
0
0

Texte intégral

(1)

Review

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer’s disease

Glyce´ralde´hyde-3-phosphate de´hydroge´nase (GAPDH) et la maladie d’Alzheimer N. El Kadmiri

a,

*

,c

, I. Slassi

a,b

, B. El Moutawakil

a,b

, S. Nadifi

a

, A. Tadevosyan

e

, A. Hachem

d

, A. Soukri

c

aLaboratoryofMedicalGeneticsandMolecularPathology,FacultyofMedicineandPharmacy,HassanIIUniversity,Casablanca,Morocco

bDepartmentofNeurologyCHUIBNROCHD,Casablanca,Morocco

cLaboratoryofPhysiologyandMolecularGenetics,FacultyofSciencesAı¨nChock,HassanIIUniversity,Casablanca,Morocco

dLaboratoryofThrombosisandHemostasis,MontrealHeartInstitute,Montreal,Quebec,H1T1C8,Canada

eDepartmentofMedicine,Universite´ deMontre´al,Montre´al,Que´bec,H3C3J7,Canada

1. Introduction

Alzheimerdisease(AD)isasevereneurodegenerativedisease affecting the elderly and together with its related syndromes

(e.g. frontotemporal dementia, dementia associated with cere- brovascular disease and Lewy body dementia) are the leading causes of dementia [1]. Over a century ago, Alois Alzheimer described typical clinical characteristics, which are renowned neuropathological hallmarks of AD: progressive impairment of episodicmemoryandinstrumentalsigns,histologicalexamination of miliary bodies (senile plaques – composed of extracellular deposits of

b

-amyloid (A

b

)) and dense bundles of fibrils PathologieBiologiexxx(2014)xxx–xxx

ARTICLE INFO

Articlehistory:

Received23June2014 Accepted29August2014 Availableonlinexxx

Keywords:

GAPDH

Alzheimer’sdisease b-amyloidaggregation Neurofibrillarytangles

Motscle´s: GAPDH

Lamaladied’Alzheimer L’agre´gationdelab-amyloı¨de Encheveˆtrementsneurofibrillaires

ABSTRACT

Glyceraldehyde-3-phosphatedehydrogenase(GAPDH)isaubiquitousenzymethatcatalyzesthesixth stepofglycolysisandthus,servestobreakdownglucoseforenergyproduction.Beyondthetraditional aerobicmetabolismofglucose,recentstudieshavehighlightedadditionalrolesplayedbyGAPDHinnon- metabolicprocesses,suchascontrolofgeneexpressionandredox post-translationalmodifications.

NeuroproteomicshaverevealedhighaffinityinteractionsbetweenGAPDHandAlzheimer’sdisease- associated proteins, includingtheb-amyloid, b-amyloid precursor proteinand tau. This neuronal proteininteractionmayleadtoimpairmentoftheGAPDHglycolyticfunctioninAlzheimer’sdiseaseand may be a forerunner of its participation in apoptosis. The present review examines the crucial implicationofGAPDHinneurodegenerativeprocessesandclarifiesitsroleinapoptoticcelldeath.

ß2014PublishedbyElsevierMassonSAS.

RE´ SUM

Laglyce´ralde´hyde-3-phosphatede´shydroge´nase(GAPDH)estuneenzymeubiquitairequicatalysela sixie`mee´tape de laglycolyseet serta` briserle glucosepourla productiond’e´nergie. Au-dela` du me´tabolismeae´robietraditionnelduglucose,dese´tudesre´centesontmisene´videncelesroˆlesjoue´spar laGAPDHdans lesprocessusnon-me´taboliquestelsquelecontroˆlede l’expressionge´nique etles modificationspost-traductionnellesredox.Laneuroprote´omiqueare´ve´le´ desinteractionsdehaute affinite´ entrelaGAPDHetlesprote´inesassocie´esa` lamaladied’Alzheimer,ycomprisleb-amyloı¨de, le pre´curseur de b-amyloı¨deet la prote´inetau. Son interactionavec des prote´ines neuronalespeut conduirea` lapertedelafonctionglycolytiquedelaGAPDHdanslamaladied’Alzheimeretpeuteˆtreun pre´curseurdesaparticipationdanslesprocessusapoptotiques.Lapre´senterevueexaminel’implication crucialedelaGAPDHdanslesprocessusneurode´ge´ne´ratifsetclarifiesonroˆledansl’apoptose.

ß2014Publie´ parElsevierMassonSAS.

* Correspondingauthor.

E-mailaddresses:elkadmiri1979@gmail.com,tresverre11@hotmail.com (N.ElKadmiri).

GModel

PATBIO-3156;No.ofPages4

Pleasecitethisarticleinpressas:ElKadmiriN,etal.Glyceraldehyde-3-phosphatedehydrogenase(GAPDH)andAlzheimer’sdisease.

PatholBiol(Paris)(2014),http://dx.doi.org/10.1016/j.patbio.2014.08.002 Availableonlineat

ScienceDirect

www.sciencedirect.com

http://dx.doi.org/10.1016/j.patbio.2014.08.002 0369-8114/ß2014PublishedbyElsevierMassonSAS.

(2)

(neurofibrillarytangles inside nerve cell bodies – composed of hyperphosphorylatedtau) [2–4]. Synapticloss,dendriticretrac- tion, neuronal progressive loss, dystrophic neuritis, granulova- cuolar degeneration, neuropil threads, Hirano bodies, and cerebrovascularamyloidarealsotypicalcharacteristicsthatare thought to have critical influence on cognitive and memory impairmentsobservedinADpatients[5–9].Atthistime,accurate earlydiagnosisof ADis problematicbecauseearlyneurological symptomsofrelentlessneurologicdeteriorationaresharedbya varietyofdisorders,anddefinitivediagnosisisonlypossiblebased onhistologicalinvestigationofthebrainatautopsy.

Analysisofthehumanproteomehasmadesignificantadvances andtherehasbeenagrowinginterestinapplyingproteomicsto researchclinicaldiagnosticsandpredictivetherapiesofneurode- generative disorders [10]. Identification and determination of proteins affecting the degree of neurodegeneration could con- tributetothedevelopmentofproteinbiomarkersthatarecritical fordiagnosingandmonitoringthediseaseanditsprogression,as well as predicting and monitoring the clinical benefits of the responsetotreatment.Inaddition,identificationofsuchproteins hasgreatlyfacilitated studiesatrevealingthemolecular events underlying neurodegenerative diseases. Research conducted in recentyearshasrevealedtheinvolvementoftheoxidoreductase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), in AD pathology[11–13].Geneticsandneuroproteomicshaverevealed highaffinityinteractionsbetweenGAPDHandneurodegenerative disease-associated proteins, including the

b

-amyloid (A

b

)pre- cursorprotein(A

b

PP),A

b

andneurofibrillarytangles.GAPDHis subjecttoseveralformsofoxidativemodificationsinbrainsofAD patients,whichfundamentallydisturbitschemicalstructureand biologicalfunction,includingS-glutathionylation,S-nitrosylation, anditsreactionwithreactiveoxygenspecies(ROS)[14–17].Here, we review the essential role of GAPDH in Alzheimer’s disease pathology;weparticularlyfocus on itsstructural modifications thatinduceamyloidandtauproteinsaggregation.

2. GAPDHstructureandfunction

GAPDH enzymes are a family of largely expressed oxidor- eductases known for their key role in glycolysis. In glucose metabolism,it is catalyzing the phosphorylation of glyceralde- hyde-3-phosphate(G3P) to1,3-bisphosphoglycerateusingnico- tinamideadeninedinucleotide(NAD+)asacofactor.Itprovidesthe biologicalstartingpointnotonlyfortheglycolyticsynthesisofATP but also for reducing equivalents accessible for oxidative phosphorylation. GAPDH exists as a homologous tetramer (148kDa),dimer(74kDa)andmonomer(37kDa)[18].Each GAPDH monomeric form consists of two conserved binding domains:anN-terminalNAD+-bindingdomainandaC-terminal catalytic,orG3P-bindingdomain[19].Ingeneral,GAPDHisusedas ahousekeepinggene,orcytosoliccontrolmarkerinproteinand geneexpressionstudies,aswellasareferenceloadingcontrolin routinebiochemical analysis (e.g. Northern and Westernblots) becauseofitssequencepreservationandexpressionacrossspecies [20].However,recentexperimentalevidencesuggestthatbeyond glycolyticfunctions,GAPDHisinrealityamultifunctionalprotein thathasbeenreportedto:bindnucleicacids[21,22],regulategene expression/transcription[23],possesskinase/phosphotransferase activity[24],facilitatevesiculartransport[25],andbindintegral membraneionpumpsassociatedwithcellCa2+release[26],aswell as interact with a number of small key molecules, including ribozymes[27],glutathione(GSH)[28],p53[29],andnitricoxide (NO) [30–33]. Moreover, GAPDH also interacts and form com- plexes with neurodegenerative disease-related proteins, like huntingtin [33,34],

b

-amyloid and the

b

-amyloid precursor

protein (A

b

PP) [35–38]. Hence, GAPDH cellular manifestations independentofitsroleinenergyproductionisofgreatimportance to neurodegenerativedisease research, specificallyin brains of subjectswith ADbecause formationof

b

-APP or

b

-AP–GAPDH protein complexescouldresult in a reduced level of glycolysis andthusofglucoseconsumption.

3. GAPDHand

b

-amyloid/

b

-amyloidprecursorprotein aggregation

Asindicated,recentstudiesrevealedthespecificinteractionof GAPDHwithneurodegenerativediseaseproteins andthis could potentiallycorrelatewithpathologicalfeatures.Initialinvestiga- tions into the involvement of GAPDH in AD reported cross- reactivity between GAPDHand themonoclonal antibodyAm-3, which recognizes parent A

b

PP but not cleaved A

b

, in brain specimensfromADpatients[12].Tamaokaetal.suggestedthat suchcross-reactivitywasunlikelyascribedtohomologiesbetween epitopesinvolving similar post-translationalmodification,since their putative sites arepresumed to lie outside theA

b

(1–42) sequenceregioninA

b

PP,butweremostlikelyduetoconforma- tional similarities between A

b

and GAPDH, which would ultimately complicate the immunochemical and immunocyto- chemicaldetectionofAD[39,40].Furthermore,adirectinteraction betweenGAPDHandA

b

PPhasbeenobservedbygelfiltrationby Schulzeetal.,inwhichbrainmonomericGAPDHinteractedwith thecytoplasmicC-terminaldomainofrecombinantA

b

PP,while maintaining the rate of glycolysis [15]. Subsequent studies established that brain-derived GAPDH could bind a variety of A

b

isoforms,exhibitinggreatestaffinityforA

b

(1–42)[41–43].

Recently, antibodies that reveal Alzheimer’s diseaseplaques were shown to also interact with nuclear GAPDH from post- mortemspecimensobtainedfromADsubjectsandfromcultured cells incurring apoptosis. Mazzola et al. reported decreased intracellularglycolytic activityofGAPDH inAD patients,which was27%lessglycolyticallyactiveinAlzheimer’scellsascompared with age-matched controls, in both nuclear and post-nuclear fractions [44]. These results provided critical evidence that inhibition of GAPDH’senzymatic activityin AD cells is due to post-translationalalterationsoftheGAPDHproteinstructureand witnessedthatsubcellularfractionationanalysismaybevitalto understanding GAPDH’s cellular function in neurodegenerative diseases.

As mentioned earlier, GAPDH can undergo many different oxidative post-translational modifications, which influence its chemical structureand biological activity,andare abletoform highlystablecomplexeswithsolubleA

b

toformaggregates.Active site modifications consist of mono-ADP-ribosylation, GAPDH- transition metal complex formation, S-glutathionylation and S-nitrosylation by NO or other reactive nitrogen species [45,46]. In brains of AD individuals, such oxidative protein modifications are common, as several groups reported the relationship between oxidative stress and damage as a major hallmarkofADpathology,precipitatinglossofneurons,synapses, andinthelongrun,normalbrainfunction.Cummingetal.revealed thatA

b

promotesanincreaseinGAPDHintermoleculardisulfide bonding in all examined brain extractsfromAD individuals as comparedwithage-matchedcontrols[36].Infactintheirstudy, A

b

treatmentofprimaryandimmortalizedneuronsresultedinthe lossofa120kDadisulfide-linkedisoformofGAPDHinthecytosol andconcomitantappearanceofthesameisoforminthenucleus, suggestingthatoxidativestressinducedbyA

b

promotesnuclear accumulationofdisulfide-bondedGAPDH.Inaddition,A

b

treat- mentincreasestheintracellularconcentrationofROSincultured nervecells.Disulfide-linkedinsolubleaggregatesofhighmolecular weight GAPDH found in AD patients, and aged transgenic AD N.ElKadmirietal./PathologieBiologiexxx(2014)xxx–xxx

2 GModel

PATBIO-3156;No.ofPages4

Pleasecitethisarticleinpressas:ElKadmiriN,etal.Glyceraldehyde-3-phosphatedehydrogenase(GAPDH)andAlzheimer’sdisease.

PatholBiol(Paris)(2014),http://dx.doi.org/10.1016/j.patbio.2014.08.002

(3)

micemayincreasecytotoxicityand indirectlytrigger apoptosis.

Moreover,treatmentofHT22cellswithH2O2ordiamidemimicked theformationofhighmolecularweightdisulfide-linkedGAPDH multimers and resulted in a reduction of about 94% and 66%, respectively, of the GAPDH glycolytic activity as compared to untreated cells. To investigated themolecular mechanism that underliesoxidativestress-triggeredaggregationofGAPDHandthe relationshipbetweenstructuralabnormalitiesinGAPDHandcell death, Nakajima et al., prepared cysteine-substituted mutants C149S, C153S, C244A, C281S, and C149S/C281S of GAPDH to identify residues responsible for disulfide-linked aggregates formation [47]. Their results revealed that neither C149S nor C149S/C281Smutantsaggregated,proposingthattheactivesite cysteine of GAPDH plays an essential role in amyloid binding, aggregationandpromotionofcelldeath.Hence,post-translational modificationsof theredox-sensitiveglycolytic enzyme,GAPDH, inducesamyloid-likeaggregationthroughalterationinGAPDH’s conformation via formation of aberrant disulfide bonds at the active site at cysteine 149, which leads to the formation of insolubleaggregatestherebypromotingneuronalapoptosis.

4. GAPDHandtauaggregation

Neurofibrillarytangles(NFTs)areintraneuronallesionsformed by hyperphosphorylation of themicrotubule-associated protein tauthatleadstoinsolubleneurotoxicaggregates,ofwhich,paired helicalfilaments(PHF)-tauareamajorcomponent.Generally,tau binds tomicrotubulesandis essential foraxonaltransport and maintenanceoftheneuronalnetwork.Neurodegenerative tauo- pathiessuggestthattheabnormalhyperphosphorylationofthetau protein results in a loss of its function, which leads to depolymerizationofmicrotubules,formationofneurotoxicNFTs anddisturbedaxonaltransport,followedbyneuronaldysfunction andneurodegeneration[48–50].TheexplicitrelationbetweenA

b

deposition and tau-related pathology is not clear yet, but tau aggregationhasmanyconsequencesonneuronsandisprobably thefinalcommoncauseofneurodegenerationinAD.LC-MS/MS analysis confirmed that GAPDH co-localized with NFTs and immunoprecipitated with PHF-tau in specimens from the temporalcortexofbrainsfromADpatients[51,52].Furtherstudies by Chenet al. provided evidencethat tau wasable tointeract andinducethedenaturationandinactivationofGAPDH.Authors havealsoestablishedthatthephosphorylatedandpre-aggregated PHF-tau was unable to bind or affect GAPDH denaturation or activity, suggesting a direct involvement of GAPDH in tau aggregationandNFTformationinADpatients’brains.

5. Conclusion

Considerableprogressin thesearchofa novel ADbiological biomarkerhasbeenmadewithmarkersderivedfrompathological lesions.Todate,themostpromisingsourcesofbiomarkersinAD werecerebrospinalfluid(CSF)andbloodplasma,becauseoftheir accessibility.Severalbiomarkershavebeensuggestedsuchasthe CSFtotal-tau[53],phospho-taulevelsandCSFA

b

(1–42)levels [54,55]. The identification of proteins affecting the degree of neurodegenerationcouldenormouslycontributetothedevelop- mentofbiomarkersandmaybeexploredfortheirvalueasanew drugtargetsinAD.Thestrongevidenceoftheinteractionbetween GAPDHandA

b

PP,A

b

,andtaudemonstratesitsdirectparticipa- tionintheaggregationofthesethreeproteinsintotheirinsoluble counterparts. Although the precise molecular mechanisms of manyoftheGAPDHinteractionsandprocessesdescribedinthis review arenot yet clear,thestructure, activityand subcellular localization of GAPDH remains crucial for understanding the countlessrolesitplaysinnormalandneuropathologicalcellular

functions. Therefore, these findings open new avenues for diagnosis by using GAPDH as a biomarker and a promising therapeutictargettosloworcureneurodegenerationinbrainsof ADpatients.

Disclosureofinterest

The authors declare that they have no conflicts of interest concerningthisarticle.

References

[1]BlennowK,deLeonMJ,ZetterbergH.Alzheimer’sdisease.Lancet2006;368:

387–403.

[2]Alzheimer A. U¨ ber einen eigenartigen schweren Erkrankungsprozeb der Hirnrincle.NeurolCentral1906;25:1134.

[3]HardyJ,SelkoeDJ.TheamyloidhypothesisofAlzheimer’sdisease:progress andproblemsontheroadtotherapeutics.Science2002;297:353–6.

[4]KarranE,MerckenM,DeStrooperB.Theamyloidcascadehypothesisfor Alzheimer’sdisease:anappraisalforthedevelopmentoftherapeutics.NatRev DrugDiscov2011;10:698–712.

[5]HigginsGA,JacobsenH.TransgenicmousemodelsofAlzheimer’sdisease:

phenotypeandapplication.BehavPharmacol2003;14:419–38.

[6]ButterfieldDA. Amyloidbeta-peptide(1-42)-inducedoxidativestress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain.Areview.FreeRadicRes2002;36:1307–13.

[7]SwomleyAM,ForsterS,KeeneyJT,TriplettJ,ZhangZ,SultanaR,etal.Abeta, oxidativestressinAlzheimerdisease:evidencebasedonproteomicsstudies.

BiochimBiophysActa2013.

[8]FurgersonM,FechheimerM,FurukawaR.ModelHiranobodiesprotectagainst tau-independent and tau-dependent cell death initiatedby theamyloid precursorproteinintracellulardomain.PloSOne2012;7:e44996.

[9]LeeHP,ZhuX,CasadesusG,CastellaniRJ,NunomuraA,SmithMA,etal.

AntioxidantapproachesforthetreatmentofAlzheimer’sdisease.ExpertRev Neurother2010;10:1201–8.

[10]CaudleWM,PanS,ShiM,QuinnT,HoekstraJ,BeyerRP,etal.Proteomic identificationofproteinsinthehumanbrain:Towardsamorecomprehensive understandingofneurodegenerativedisease.ProteomicsClinAppl2008;2:

1484–97.

[11]BertramL,McQueenMB,MullinK,BlackerD,TanziRE.Systematicmeta- analysesofAlzheimerdiseasegeneticassociationstudies:theAlzGenedata- base.NatGen2007;39:17–23.

[12]SunagaK,TakahashiH,ChuangDM,IshitaniR.Glyceraldehyde-3-phosphate dehydrogenaseisover-expressedduringapoptoticdeathofneuronalcultures andisrecognizedbyamonoclonalantibodyagainstamyloidplaquesfrom Alzheimer’sbrain.NeurosciLett1995;200:133–6.

[13]ButterfieldDA,HardasSS,LangeML.Oxidativelymodifiedglyceraldehyde-3- phosphatedehydrogenase(GAPDH)andAlzheimer’sdisease:manypathways toneurodegeneration.JAlzheimer’sDis2010;20:369–93.

[14]ButterfieldDA,LauderbackCM.Lipidperoxidationandproteinoxidationin Alzheimer’sdiseasebrain:potentialcausesandconsequencesinvolvingamy- loidbeta-peptide-associatedfreeradicaloxidativestress.FreeRadicBiolMed 2002;32:1050–60.

[15]UttaraB,SinghAV,ZamboniP,MahajanRT.Oxidativestressandneurodegen- erativediseases:areviewofupstreamanddownstreamantioxidantthera- peuticoptions.CurrNeuropharmacol2009;7:65–74.

[16]NewmanSF,SultanaR,PerluigiM,CocciaR,CaiJ,PierceWM,etal.Anincrease inS-glutathionylatedproteinsintheAlzheimer’sdiseaseinferior parietal lobule,aproteomicsapproach.JNeurosciRes2007;85:1506–14.

[17]SultanaR,PoonHF,CaiJ,PierceWM,MerchantM,KleinJB,etal.Identification ofnitratedproteinsinAlzheimer’sdiseasebrainusingaredoxproteomics approach.NeurobiolDis2006;22:76–87.

[18]SeidlerNW.BasicbiologyofGAPDH.AdvExpMedBiol2013;985:1–36.

[19]JenkinsJL,TannerJJ.High-resolutionstructureofhumanD-glyceraldehyde-3- phosphate dehydrogenase. Acta Crystallogr D Biol Crystallogr 2006;62:

290–301.

[20]SiroverMA.Newinsightsintoanold protein:thefunctionaldiversityof mammalianglyceraldehyde-3-phosphate dehydrogenase.BiochimBiophys Acta1999;1432:159–84.

[21]DemarseNA,PonnusamyS,SpicerEK,ApohanE,BaatzJE,OgretmenB,etal.

Directbindingofglyceraldehyde3-phosphatedehydrogenasetotelomeric DNAprotectstelomeresagainstchemotherapy-inducedrapiddegradation.

JMolBiol2009;394:789–803.

[22]KondoS,KubotaS,MukudaiY,NishidaT,YoshihamaY,ShirotaT,etal.Binding ofglyceraldehyde-3-phosphatedehydrogenasetothecis-actingelementof structure-anchoredrepressioninccn2mRNA.BiochemBiophysResCommun 2011;405:382–7.

[23]ZhengL,RoederRG,LuoY.SphaseactivationofthehistoneH2Bpromoterby OCA-S,acoactivatorcomplexthatcontainsGAPDHasakeycomponent.Cell 2003;114:255–66.

[24]TisdaleEJ.Glyceraldehyde-3-phosphatedehydrogenaseisphosphorylatedby proteinkinaseCiota/lambdaandplaysaroleinmicrotubuledynamicsinthe earlysecretorypathway.JBiolChem2002;277:3334–41.

N.ElKadmirietal./PathologieBiologiexxx(2014)xxx–xxx 3

GModel

PATBIO-3156;No.ofPages4

Pleasecitethisarticleinpressas:ElKadmiriN,etal.Glyceraldehyde-3-phosphatedehydrogenase(GAPDH)andAlzheimer’sdisease.

PatholBiol(Paris)(2014),http://dx.doi.org/10.1016/j.patbio.2014.08.002

(4)

[25]BryksinAV,LaktionovPP.Roleofglyceraldehyde-3-phosphatedehydrogenase invesiculartransportfromgolgiapparatustoendoplasmicreticulum.Bio- chemBiokhim2008;73:619–25.

[26]PattersonRL,vanRossumDB,KaplinAI,BarrowRK,SnyderSH.Inositol1,4,5- trisphosphatereceptor/GAPDHcomplexaugmentsCa2+releasevialocally derivedNADH.ProcNatlAcadSciUSA2005;102:1357–9.

[27]SioudM,JespersenL.Enhancementofhammerheadribozymecatalysisby glyceraldehyde-3-phosphatedehydrogenase.JMolBiol1996;257:775–89.

[28]PuderM,SobermanRJ.GlutathioneconjugatesrecognizetheRossmannfold of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 1997;272:

10936–40.

[29]ChenRW,SaundersPA,WeiH,LiZ,SethP,ChuangDM.Involvementof glyceraldehyde-3-phosphatedehydrogenase(GAPDH)andp53inneuronal apoptosis:evidencethatGAPDHisupregulatedbyp53.JNeurosci1999;19:

9654–62.

[30]HaraMR,SnyderSH.Nitricoxide-GAPDH-Siah:anovelcelldeathcascade.Cell MolNeurobiol2006;26:527–38.

[31]HaraMR,CascioMB,SawaA.GAPDHasasensorofNOstress.BiochimBiophys Acta2006;1762:502–9.

[32]HaraMR,ThomasB,CascioMB,BaeBI,HesterLD,DawsonVL,etal.Neuro- protectionbypharmacologicblockadeoftheGAPDHdeathcascade.ProcNatl AcadSciUSA2006;103:3887–9.

[33]BaeBI,HaraMR,CascioMB,WellingtonCL,HaydenMR,RossCA,etal.Mutant huntingtin:nucleartranslocationandcytotoxicitymediatedbyGAPDH.Proc NatlAcadSciUSA2006;103:3405–9.

[34]BurkeJR,EnghildJJ,MartinME,JouYS,MyersRM,RosesAD,etal.Huntingtin andDRPLAproteinsselectivelyinteractwiththeenzymeGAPDH.NatMed 1996;2:347–50.

[35]VerdierY,FoldiI,SergeantN,FulopL,PenkeZ,JanakyT,etal.Characterization oftheinteractionbetweenAbeta1-42andglyceraldehydephosphodehydro- genase.JPeptSci2008;14:755–62.

[36]CummingRC,SchubertD.Amyloidbetainducesdisulfidebondingandaggre- gationofGAPDHinAlzheimer’sdisease.FASEBJ2005;19:2060–2.

[37]Schulze H,SchulerA,StuberD,DobeliH,LangenH,HuberG. Ratbrain glyceraldehyde-3-phosphatedehydrogenaseinteractswiththerecombinant cytoplasmicdomainofAlzheimer’sbeta-amyloidprecursorprotein.JNeuro- chem1993;60:1915–22.

[38]Torres-BugeauCM,AvilaCL,Raisman-VozariR,Papy-GarciaD,ItriR,Barbosa LR,etal.Characterizationofheparin-inducedglyceraldehyde-3-phosphate dehydrogenaseearlyamyloid-likeoligomersandtheirimplicationinalpha- synucleinaggregation.JBiolChem2012;287:2398–409.

[39]TamaokaA,EndohR,ShojiS,TakahashiH,HirokawaK,TeplowDB,etal.

Antibodiestoamyloidbetaprotein(Abeta)crossreactwithglyceraldehyde-3- phosphatedehydrogenase(GAPDH).NeurobiolAging1996;17:405–14.

[40]NakamuraS,TamaokaA,SawamuraN,ShojiS,NakayamaH,OnoF,etal.

Carboxylend-specificmonoclonalantibodiestoamyloidbetaprotein(Abeta) subtypes(Abeta40andAbeta42(43))differentiateAbetainsenileplaques andamyloidangiopathyinbrainsofagedcynomolgusmonkeys.NeurosciLett 1995;201:151–4.

[41]OyamaR,YamamotoH,TitaniK.Glutaminesynthetase,hemoglobinalpha- chain,andmacrophagemigrationinhibitoryfactorbindingtoamyloidbeta protein:theiridentificationinratbrainbyanovelaffinitychromatography andinAlzheimer’sdiseasebrainbyimmunoprecipitation.BiochimBiophys Acta2000;1479:91–102.

[42]VerdierY, HuszarE,Penke B,Penke Z,WoffendinG,ScigelovaM,etal.

Identificationofsynapticplasmamembraneproteinsco-precipitatedwith fibrillarbeta-amyloidpeptide.JNeurochem2005;94:617–28.

[43]NaletovaI,SchmalhausenE,KharitonovA,KatrukhaA,SasoL,CaprioliA,etal.

Non-nativeglyceraldehyde-3-phosphatedehydrogenasecanbeanintrinsic componentofamyloidstructures.BiochimBiophysActa2008;1784:2052–8.

[44]MazzolaJL,SiroverMA.Reductionofglyceraldehyde-3-phosphatedehydro- genaseactivityinAlzheimer’sdiseaseandinHuntington’sdiseasefibroblasts.

JNeurochem2001;76:442–9.

[45]KornbergMD,SenN,HaraMR,JuluriKR,NguyenJV,SnowmanAM,etal.

GAPDHmediatesnitrosylationofnuclearproteins.NatcellBiol2010;12:

1094–100.

[46]ColellA,GreenDR,RicciJE.NovelrolesforGAPDHincelldeathandcarcino- genesis.CellDeathDiffer2009;16:1573–81.

[47]NakajimaH,AmanoW,FujitaA,FukuharaA,AzumaYT,HataF,etal.Theactive sitecysteineoftheproapoptoticproteinglyceraldehyde-3-phosphatedehy- drogenaseisessentialinoxidativestressinducedaggregationandcelldeath.

JBiolChem2007;282:26562–74.

[48]IqbalK,AlonsoAdelC,ChenS,ChohanMO,El-AkkadE,GongCX,etal.Tau pathologyinAlzheimerdiseaseandothertauopathies.BiochimBiophysActa 2005;1739:198–210.

[49]HiguchiM,ZhangB,FormanMS,YoshiyamaY,TrojanowskiJQ,LeeVM.Axonal degenerationinducedbytargetedexpressionofmutanthumantauinoligo- dendrocytes oftransgenic micethat modelglial tauopathies. JNeurosci 2005;25:9434–43.

[50]LeeVM,KenyonTK,TrojanowskiJQ.Transgenicanimalmodelsoftauopathies.

BiochimBiophysActa2005;1739:251–9.

[51]WangQ,WoltjerRL,CiminoPJ,PanC,MontineKS,ZhangJ,etal.Proteomic analysisofneurofibrillarytanglesinAlzheimerdiseaseidentifiesGAPDHas adetergent-insolublepairedhelicalfilamenttaubindingprotein.FASEB J 2005;19:869–71.

[52]YangG,WangL,ZhuM,XuD.Identification ofnon-Alzheimer’sdisease tauopathies-related proteinsby proteomicanalysis. Neurol Res2008;30:

613–22.

[53]Andreasen N, Vanmechelen E,Van de Voorde A,Davidsson P, HesseC, TarvonenS,etal.Cerebrospinalfluidtauproteinasabiochemicalmarker forAlzheimer’sdisease:acommunitybasedfollowupstudy.JNeurolNeu- rosurgPsychiatry1998;64:298–305.

[54]ParnettiL,LanariA,AmiciS,GallaiV,VanmechelenE,HulstaertF,etal.CSF phosphorylatedtauisapossiblemarkerfordiscriminatingAlzheimer’sdis- easefrom dementia withLewy bodies. Phospho-TauInternationalStudy Group.NeurolSci2001;22:77–8.

[55]AndreasenN,BlennowK.Beta-amyloid(Abeta)proteinincerebrospinalfluid asabiomarkerforAlzheimer’sdisease.Peptides2002;23:1205–14.

N.ElKadmirietal./PathologieBiologiexxx(2014)xxx–xxx 4

GModel

PATBIO-3156;No.ofPages4

Pleasecitethisarticleinpressas:ElKadmiriN,etal.Glyceraldehyde-3-phosphatedehydrogenase(GAPDH)andAlzheimer’sdisease.

PatholBiol(Paris)(2014),http://dx.doi.org/10.1016/j.patbio.2014.08.002

Références

Documents relatifs

(2013) review how cysteine-based modifications of the plant cytosolic glyceraldehyde phosphate dehydrogenase (GAPDH) provoke the inactivation of classical enzymatic activity of

However, the two muscle GPDH isoforms prevailing under hibernating conditions exhibited a decreased catalytic efficiency when compared with the corresponding major

Molecular phylogenetic studies using the amino acid sequences obtained from the cDNA fragments correspond- ing to an internal region of the GapC genes from sardine and octopus

National Center for Energy Sciences and Nuclear Techniques 18 PUBLICATIONS     165 CITATIONS    .

On the other hand, a specific increase of a major 36-kDa protein band, the expected molecular mass of the GAPDH subunit, was observed in SDS-PAGE analyses of the soluble

RT-PCR amplification using primers constructed from two highly conserved GAPDH regions pro- duced a single cDNA fragment of the expected size ( approx. 0.5 kb ) comprising

1 GAPDH purification steps from human erythrocytes with traditional procedure Proteins were resolved by SDS-PAGE and stained with Coomassie Brilliant Blue (A) or subjected to

Isolation and Purification of Two Bacteriocins 3D Produced by Enterococcus faecium with Inhibitory Activity Against Listeria monocytogenes.. Kaoutar Bayoub • Ilham Mardad • Emna Ammar