• Aucun résultat trouvé

Effect of catalytic conditions on the synthesis of new aconitate esters

N/A
N/A
Protected

Academic year: 2021

Partager "Effect of catalytic conditions on the synthesis of new aconitate esters"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: hal-00717594

https://hal.archives-ouvertes.fr/hal-00717594

Submitted on 13 Jul 2012

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Effect of catalytic conditions on the synthesis of new

aconitate esters

William Piang-Siong, Pascale de Caro, Corinne Lacaze-Dufaure, Alain Shum

Cheong Sing, William Hoareau

To cite this version:

William Piang-Siong, Pascale de Caro, Corinne Lacaze-Dufaure, Alain Shum Cheong Sing, William

Hoareau. Effect of catalytic conditions on the synthesis of new aconitate esters. Industrial Crops and

Products, Elsevier, 2011, vol. 35, pp. 203-210. �hal-00717594�

(2)

To link to this article:

DOI: 10.1016/j.indcrop.2011.06.031

URL:

http://dx.doi.org/

10.1016/j.indcrop.2011.06.031

This is an author-deposited version published in:

http://oatao.univ-toulouse.fr/

Eprints ID:

5439

To cite this version:

Piang-Siong, William and De Caro, Pascale and Lacaze-Dufaure, Corinne

and Shum Cheong Sing, Alain and Hoareau, William Effect of catalytic

conditions on the synthesis of new aconitate esters. (2012) Industrial

Crops and Products, vol. 35 . pp. 203-210. ISSN 0926-6690

O

pen

A

rchive

T

oulouse

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers

and makes it freely available over the web where possible.

Any correspondence concerning this service should be sent to the repository

administrator:

staff-oatao@listes.diff.inp-toulouse.fr

(3)

Effect

of

catalytic

conditions

on

the

synthesis

of

new

aconitate

esters

William

Piang-Siong

a,b

, Pascale

de

Caro

a,b,∗

, Corinne

Lacaze-Dufaure

c

, Alain

Shum

Cheong

Sing

d

,

William

Hoareau

e

aUniversitédeToulouse,INP,LCA(LaboratoiredeChimieAgro-Industrielle),ENSIACET,4alléeEmileMonso,F-31030Toulouse,France bINRA,UMR1010CAI,F-31030Toulouse,France

cUniversitédeToulouse,INPT,CIRIMATUMRCNRS5085,ENSIACET,4alléeEmileMonso,F-31030ToulouseCedex4,France

dUniversitédelaRéunion,FacultédesSciencesetTechnologies,LCSNSA(LaboratoiredeChimiedesSubstancesNaturellesetdesSciencesdesAliments),15avenueRenéCassin,B.P.

7151,97715Saint-DenisCedex9,LaRéunion,France

eeRcane,40BoulevardGabrielMacéBP315,97494Sainte-ClotildeCedex,LaRéunion,France

Keywords: Aconiticacid Isoamylalcohol Esterification Heterogeneouscatalysis Ionicliquid Greenindicators

a

b

s

t

r

a

c

t

Sugarcaneisacropwhichgenerateslargeamountsofbiomassandajuicerichinhigh-valuenatural molecules.Afterextractingsugarfromthejuice,therecoveringofvariouscompoundssuchasorganic acidscontainedinmolassescouldcontributetoincreasethecompetivityofthesugarindustry.Therefore, accordingtothebiorefineryapproach,weproposetostudythechemicalconversionofoneoftheseacids, theaconiticacid,byesterificationreactions.Anewseriesofaconitateestershavebeensynthesizedby combiningaconiticacidandalcoholsfromnaturalorigin.Theeffectsofexperimentalconditionshave beeninvestigatedandhaveshownthatthetypeofcatalysishasasignificanteffectontheselectivity. Kinecticshavethusbeenperformedtodeterminethebestconditionstosynthetizeenriched composi-tionsinesters.Homogeneouscatalysisgeneratesthehighestyieldintriester.Heterogeneouscatalysis (macroporousresins)ispreferedfortheproductionofmonoesterswhilecatalysisassistedbyionicliquid isadaptedtopreparemainlydiesters.Greenindicatorshavebeendiscussedaccordingtothe calcula-tionsperformed.Theresultingpolyfunctionalestersaretotallybiosourcedmoleculesandhaveagreat potentialasbioproductsfordifferentapplications.

1. Introduction

Thereisanever-increasinginterest fortheuseofrenewable resources for the production of bioproducts based on natural ingredients.Therisingcrudeoilpriceduetoitsrarefactionincites to diversify the feedstocks towards renewable raw materials. Therearedifferentpurposestoreplaceapetroleumbasedproduct bya biobasedcompound, accordingtothespecificationsofthe products:

-acleanprocessofproductionwhichgeneratesalower environ-mentalimpactsuchasagaininVOCemission,

-alowtoxicitywhichmakesthemadaptedtobenignandgreen formulations,

-ahighbiodegradabilitywhichisnecessaryincaseofcontactwith theenvironmentattheirendoflife,

∗ Correspondingauthorat:UniversitédeToulouse,INP,LCA(Laboratoirede Chimie Agro-Industrielle), ENSIACET, 4alléeEmile Monso, F-31030Toulouse, France.Tel.:+330534323505;fax:+330534323597.

E-mailaddress:pascale.decaro@ensiacet.fr(P.deCaro).

-innovativepropertieswhichmakethemattractiveforusers.

So, we intended toinvestigatethepotentialof aconitic acid (1,2,3-propentricarboxylicacid)asarawmaterialforthe prepara-tionofbioproducts.Aconiticacidisatricarboxylicacidindustrially producedbydehydrationofcitricacid.Aconiticacidcanalsobe extractedfromco-productsgeneratedbysugarindustry.

The up-grading of the natural aconitic acid represents an opportunity to use an available feedstock and to increase the competivinessofsugarindustry.Thisapproachcorrespondstothe biorefineryconceptwhichisbeingdevelopedinnumerous agroin-dustrychainsin ordertominimise thewasteanddiversifythe outlets.

Weproposetostudytheesterificationofaconiticacidwith nat-uralalcoholssuchasisoamylalcoholandlaurylalcohol.Isoamyl alcoholisoneoftheshortalcoholspresentinfuseloilsobtainedin thepotresidueafterdistillationofethanolfromfermentedsugar.

ThisC5alcohol representsbetween60and 75%offuseloils, accordingtotheoriginofbioethanol(beet,wheat,etc.).

Laurylalcohol(dodecanol)isobtainedfromlauricacidwhich is themain fattyacidpresent in coconutoil. It is used forthe

(4)

Fig.1.Thetwoisomersofaconiticacid.

preparationofsurfaceactiveagentsforcosmeticandhealthcare industry.

Thefirstobjectiveconsistsinpreparingesterswhichcouldhave interestingpropertiestoreplacepetroleumbasedproductswhich arebannedbyregulations.Estersfromnaturalorganicacidsare mentionedtobepotentialcandidates.Forexample,citrateesters areusedasplasticizersinformulationforpluralcomponent latex-foam(Olangetal.,2010)orforliquidcoatingcompositions(Jonn etal.,2008).Glycerolestersareusedaslubricantorsurfactantin formulationforcleaningapplications(Grossetal.,2008)andfor enginelubricants(Patiletal.,2010;Seemeyeretal.,2008).

Thesecondobjectiveistoselectasyntheticroutewhichis com-patiblewiththeprinciplesofgreenchemistry.Theimprovementof esterificationmethodstotakeintoaccounttheenvironmentaland sanitaryaspectsisstillachallengeinindustry.

Moreover, thestudy of new experimentalconditions is the opportunitytoorientatethereactiontowardsaspecificester cate-gory.

Aconiticacidhastwoforms,cisandtrans(Fig.1).Inthe sugar-cane,thetransisomerwhichisthemoststable,isthedominant one.

Acidaconitichasthusthreenon-equivalentacidfunctionsthat is tosay doted of a differentreactivity. In particular,two acid functionstakeparttothedelocalisationoftheelectron.Thus,the carbonylsitewhichisnotconjugatedshouldbethemostreactive. Esterificationreactionsfromaconiticacid(AA)leadtothree suc-cessivereactionstopreparemonoesters,diestersandonetriester (Fig.2).

Thesynthesisofaconitateestershasbeenpreviouslyperformed inbatchorcontinuousstirredreactorwithahomogeneous cata-lyst.Forexample,BruinsandCanapary(1956)haveusedsulfuric acidtosynthesizetributylaconitatewithahighmolarratio alco-hol:acid12:1at175◦C.Robertsetal.(1954)havesynthetisedesters

ofaconiticacidusingp-toluenesulfonicacidwithamolarratio3.3:1 for3.5hbycodistillatingwaterwithtoluenewithayieldof tri-isoamylaconitateof 85.6%.Guthrieetal.(1976)have usedacid halidetopreparemethylaconitatewithamolarratioof65:1for 3.5h.

Theequilibriumisusuallyshiftcontinuouslybyadsorptionon dryingagentsorbycodistillationwith“entrainers”suchasbenzene ortoluene(Cockremetal.,1993;CoxandCarruthers,1936;Frappier

etal.,2002;WeibergandStimpson,1942).

Themajor drawbacksof homogeneouscatalyst arethe final neutralizationofthehomogeneouscatalyst,andtheextractionof reactionproductsbyavolatilesolvent.Moreover,theseconditions requirehightemperatures,aheavytreatmentandalargeexcessof alcohol.

Therefore, heterogeneous catalysisbecomes more and more attractiveforthechemicalindustry.Forinstance,zeolitesandmetal oxides,acidtreatedclays orcation-exchangeresins(Choudhary etal.,2001;Maetal.,1996)areusedtoperformclean esterifica-tions.

Macroporousresinsarementionedasaperformingcatalystfor esterification.Thus,theyconstituteanalternativetohomogeneous catalystssincetheyarenon-corrosive.Theycanbeeasilyremoved fromthereactionmixtureandcanbereusedafterthereaction.

Petrini etal. (1988)have synthetised monomethylaconitate

usingAmberlyst15withamolarratioof100:1forreagents,atroom temperaturefor10hwithayieldof80%andatotalselectivity.AG 50W-X4resinswereusedbyGiletal.(2006)topreparetributyl aconitatewithanexcessof50%ofalcoholat140◦Cfor1.5h,to

provideafinalcompositionof83%intriester.

Akineticstudywasperformedfortheesterificationofcitricacid withethanolcatalyzedbyAmberlyst15(Kolahetal.,2006)witha yieldabove90%.Similarconditionswereappliedtothe esterifica-tionofsuccinicacidwithethanol(Kolahetal.,2008).

Room temperatureionicliquids (RTILs)called “designer sol-vent”do notcontributetovolatileorganiccompoundemissions thankstotheirlowvaporpressure.Theyrepresentanalternative mediawhichcouldbeinterestingfortheesterificationofasolid compound,sinceitactsbothassolvent-catalystandcanintervene intheshiftofequilibrium.

Coleetal.(2002)havereportedtheuseofBronstedacidicionic liquidasadualsolvent-catalystinesterificationreaction.Another

workbyZhuetal.(2003)hasshownthattheBronstedionic

liq-uid1-methylimidazoliumtetrafluoroborate[hmim][BF4]isalsoa

suitablecatalystfortheesterificationofcarboxylicacids(C2–C11) with a primary alcohol. Joseph et al. (2005) have shown that [bmim][PTSA]cancatalysethesynthesisofbenzylacetateingood yield(100%).Fraga-Dubreuiletal.(2002)synthesizebenzylacetate using[bmim][HSO4]withayieldof95%.[mimps]3[PW12O40]was

usedbyLengetal.(2009)topreparetri-n-butylcitratewithan

excessofalcohol(1:5)at130◦Cduring3htoobtainayieldof98%

andaselectivityof98%.

Foranesterification,thechoiceofRTILsmusttakeintoaccount theseparationbetweentheestersandwaterformedduringthe reaction.

Accordingtothestateoftheart,fewstudiesonthe esterifica-tionofaconiticacidwerecarriedoutandfewdataaboutyieldsand selectivityareavailable.Mostofthemdealwiththesynthesesof triestersathightemperature(above140◦C)orinpresenceof

(5)

venttogetanazeotropicmixture.Exchangerionresinsarecited tobemoreadequateforthepreparationofmonoestersatroom temperaturewithahighexcessofalcohol.

Weproposetocarryoutthesynthesisofaconitateesterswitha bettercontrolofselectivitybydevelopingnewexperimental con-ditionsforcleanerprocesses.Theemphasiswasplacedtocompare performancesofaconventionalhomogeneouscatalysiswithtwo othercatalyses:heterogeneousandionicliquid.

2. Materialsandmethods 2.1. Materials

Trans-aconiticacid(98%),isoamylalcohol (98%),sulfuricacid (95–98%), ionic liquid: 1-methylimidazolium hydrogensulfate [mim][HSO4](Basionics®AC39,BASF,≥95%)werepurchasedfrom

Sigma–Aldrich.Amberlyst®15(Fluka)wasusedinH+formwithout

modification.

2.2. Esterificationprocedure

Esterification reactions were performed in a batch reactor (50mL).Fortheconditionscorrespondingtohomogeneous(H2SO4)

andheterogenouscatalyses(resins),adevicetoremovewaterby distillationwasconnectedtothereactor.Masspercentagesof cat-alystareexpressedrelativetoisoamylalcoholweight.

2.2.1. Homogeneouscatalysis(method1)

Isoamyl alcohol (172.2mmol) and aconitic acid (28.7mmol) weremixedandheatedunderstirringuntilthesolubilizationof thesolidaconiticacid,before2.7wt.%ofsulfuricacidwasadded. Thereactionwasstirredat100◦Cduring540min.Attheendofthe

reaction,20mLofethylacetatewasaddedtothereactionmedium andtheorganicphasewaswashedfourtimeswith10mLofwater. Theorganicphase wasdriedwith9gofsodiumsulphate.Ethyl acetateandisoamylalcoholwereremovedin thesametimeby evaporation.

2.2.2. Heterogeneouscatalysis(method2)

Isoamyl alcohol (172.2mmol) and aconitic acid (28.7mmol) weremixedandheatedunderstirringuntilthesolubilizationof thesolidaconiticacid,before3wt.%ofcationexchangeresinH+

Amberlyst®15(orenzyme)wasadded.Thereactionwasstirredat

85◦Cduring90min.Attheendofthereaction,thecatalystwas

separated throughfiltrationand washed two timeswith20mL ofethylacetate.Organicphasewasthenconcentratedbysolvent evaporation.

2.2.3. Catalysisbyionicliquid(method3)

Isoamyl alcohol (86.1mmol) and ionic liquid (9.50g) were mixedandheatedunderstirring.Whenthemixturereached100◦C,

aconiticacid(28.7mmol)wasaddedandthemediumwasstirred during540min.Attheendofthereaction,themediumwascooled atroomtemperatureuntiltheformationoftwodistinctphases. 10mLofethylacetatewasaddedandtheorganicphasewas sep-aratedbysettling.Ionicphase waswashedwith20mLofethyl acetate.Theorganicphasewasdriedonsodiumsulphate(6g)and ethylacetatewasevaporated.

2.3. Characterization

2.3.1. High-performanceliquidchromatography(HPLC)

Aconitic acid and the aconitate esters were identified with DionexHPLCusing a reversed phaseC18 column(Omnisphere, 4.6mm×250mm).Themobilephaseiscomposedofwaterwith 0.1%H3PO4 andCH3CN(1.0mL/min) accordingtothefollowing

gradient:50%CH3CN(t=0–5min)to100%CH3CN(t=15–20min)

to50%CH3CN(t=25–30min).

TheUVdetection(Hewelett-Packard1100)wasperformedat awavelengthof210nm.Aconiticacidandtri-isoamylaconitate wereidentifiedandquantifiedbycomparingHPLCretentiontime andpeakareawiththeirrespectivecalibrationstandards.Mono anddiesterswereidentifiedbyHPLC–MS.

Therelativepercentagesofcompounds(aconiticacidandesters) weredeterminedbytheratiobetweenproductpeakareaandthe sumofcompoundspeakarea.Aconiticacidwasquantifiedthrough acalibrationperformedwithacommercialstandard(98%). 2.3.2. Nuclearmagneticresonance(NMR)

1H and13CNMR spectrawerecollected ona BrukerAvance

300spectrometerwitha5mmBBFOATMAprobe.Allspectrawere acquiredat298.0KusingCDCl3orDMSO-d6assolvent.Chemical

shiftsarereportedaspartspermillionfromtetramethylsilanewith anabsolutefrequency300.13MHz.

1Hand13CNMRoftrans-aconiticacid(AA)(DMSO-d

6).1HNMR:

ı6.92(s,1H,C CH),and3.95ppm(s,2H,CH2).13CNMR:ı171.76

(s,C O),167.84(s,C O),167.84(s,C O),140.60(s,C CH),129.32 (s,C CH),and33.17ppm(s,CH2).

1H and 13C NMR of mono-isoamyl aconitate (MIA) (CDCl 3). 1H NMR: ı 7.07 (m, 1H, C CH), 4.13–4.18 (m, 2H, O–CH 2), 3.95 (m, 2H, CH2), 1.71–1.62 (m,1H, CH2–CH–),1.57–1.46 (m, 2H, CH2–CH–), and 0.95–0.90ppm (m, 6H, CH3). 13C NMR: ı 170.87–170.38 (d, C O), 169.80–169.58 (d, C O), 165.19 (d, C O),141.99–140.95–138.93(t,C CH),131.04–130.07(t,C CH), 64.08–63.96(d,CH2–O),37.11(s,O C–CH2),33.07–32.86(m,CH2), 24.95–24.65(m,CH)and22.55–22.37ppm(m,CH3). 1Hand13CNMRofdi-isoamylaconitate(DIA)(CDCl

3).1HNMR:

ı7.04–6.96(d,1H, C CH),4.28–4.10(m,4H,O–CH2),3.95–3.94

(d, 2H, CH2), 1.71–1.69 (m, 2H, CH2–CH–), 1.60–1.50 (m, 4H,

CH2–CH–),and0.95–0.90ppm(t,12H,CH3).13C NMR:ı170.82

(s, C O), 169.92 (d, C O), 165.17 (d, C O), 141.99–138.95 (d, C CH),130.97–128.22(d,C CH),64.80–63.91(d,CH2–O),37.14

(s,O C–CH2),33.34–32.85(d,CH2),25.02(s,CH)and22.39ppm

(d,CH3).

1Hand13CNMRoftri-isoamylaconitate(TIA)(CDCl

3).1HNMR: ı6.92(s,1H,C CH),4.28–4.10(m,6H,O–CH2),3.96(s,2H,CH2), 1.72–1.62 (m,3H, CH2–CH–),1.60–1.50(m, 6H, CH2–CH–),and 0.95–0.90ppm(t,18H,CH3).13CNMR:ı169.89(s,C O),166.06 (s, C O), 165.43 (s, C O), 139.98 (s, C CH), 129.06 (s, C CH), 64.55–63.71(d,CH2–O),37.15(s,O C–CH2),33.15(s,CH2),25.02 (d,CH)and22.40ppm(d,CH3).

3. Resultsanddiscussion

Threecatalysesconditionshavebeenselected:homogeneous catalyse (H2SO4)as thestandardconditions, Amberlyst 15as a

cationexchangerand1-methylimidazoliumhydrogensulfateasan ionicliquid(Fig.3).

Withmacroporousresins,theminimumalcohol/aconiticacid ratiowhich waspossibletouseis equalto6. Theliquid phase constitutedbythealcoholmustcoverthesolidphase(resin).

Theamountofionicliquidwasdeterminedastheminimum volumetoensurethesolubilizationoftheaconiticacid.Withionic liquid,thestartingmediumwashomogeneousandbecame bipha-sicduringtheformationofesters.

(6)

Fig.4.Chargesontheatoms(NBOpopulationanalysis).A:aconiticacid;B:isoamyl alcohol.

Theeffectsofseveralexperimentalparametershavebeen stud-iedinordertooptimizetheconversionofaconiticacidandtoenrich themediumwithoneoftheesters.

3.1. Quantumcalculations

We haveperformed quantumcalculations toinvestigatethe reactivityofaconiticacidandisoamylalcohol.Wehavefirstlooked forthemoststableconformationsofbothcisandtransisomers.The structureswereoptimisedattheB3LYP/pVTZandMP2/pVTZlevel oftheoryusingtheGaussian03package(Frischetal.,2004).

Thetransisomerismorestableof2.6kcal/mol(MP2/pVTZ)than thecis isomer and isthus thermodynamically favoured.This is inagreementwiththeisomerisationofthecistothetrans iso-mer observedexperimentally. The bond lengths aresimilar for thetwo cisandtransisomers.Weestimatedamolarvolumeof 120.5cm3/molforthetransisomer,withanaverageradiusof4.49 ˚A

andamolarvolumeof106.0cm3/molforthecisisomer,withan

averageradiusof4.33 ˚A.

Inordertocalculatethechargesontheatomsfortheaconitic acidandtheisoamylalcohol,weperformedaNBOandMulliken populationanalysis.TheresultsarepresentedinFig.4.

Thefirststepofthereactionofesterificationisaprotonationof theoxygenatomofthecarbonylfunctionoftheaconiticacid.Itis followedbyanucleophilicadditionofthealcoholonthecarbonof thecarbonylfunction.Thecalculatedchargesonthethreeoxygen atomsoftheaconiticacidmoleculearesimilarandshouldexhibit asimilarreactivity.

ThecalculatedchargesontheCatoms(Fig.5)ofthecarbonyl functionsshowthatC6hasaslightlymorepositivecharge.This differencemayexplainthepreferentialreactivityofthissiteforthe additionofthealcoholmolecule.Thisdataisinagreementwiththe experimentalpartsincewehaveobservedthatthechemicalshift

Fig.5. Trans-aconiticacid.

ofC6onaconiticacid(172ppm)hasmovedafteresterification.The mono-isoamylaconitatethuspresentsachemicalshiftat170ppm. Thecalculatedchargesonethyleniccarbon,C2andC3atoms showthatC2hasahigherelectronicdensity,meaningthatin13C

NMR,C3ismoreunshieldedthanC2.Itisthuspossibletodetermine thefollowingchemicalshifts:ıC2=129ppmandıC3=140ppm.

3.2. Effectoftemperature

Theeffectoftemperaturefrom85to120◦Conthe

esterifica-tionofaconiticacidwithisoamylalcoholwasstudied.Resultsare presentedinTable1.Anincreasingtemperaturedoesnotimprove theconversionofaconiticacidbutactspositivelyontheyieldof triester.

Whateverthecatalyst,theproportionoftriesterinthemedium isthusincreasedwithtemperature.Wecannotethat heteroge-neouscatalysisisverysensitivetotemperaturesinceanincrease from85◦Cto100C,isenoughtoenhancethepercentageoftriester

from6to46%.

Thediesterscontentsdependontherelativeconversionratesof monoesterintodiestersandofdiestersintothetriester.

Thetemperatureconditionswhichleadtothehighestcontents oftriester(66%),diesters(59%)andmonoesters(54%)willbekept forthefollowingstudies.

3.3. Effectofcatalystloading

TheeffectsofthecatalystloadingarepresentedinTable2.For homogeneouscatalysis,thecatalystloadingvariesfrom1.7to3.7% wtandforheterogeneouscatalysisbetween3and7wt.%.

Itappearsthatcatalystloadinghasfeweffectsontheconversion ofaconiticacid.But,theyieldoftriesterincreaseswithcatalyst loadingforhomogeneouscatalysisleadingtoanenrichedmedium intriester.Moreover,itisnotusefultoincreasetheloadingabove 3%inheterogeneouscatalysttopreparemonoesters.

Weobservethattheyieldsofdiestersandtriesterarebetter whentheionic liquidis usedas acosolvent.In thelatter case, theionicliquidbrings12.5timesmoremilli-equivalentsH+than

Table1

Influenceoftemperature.

Catalysis T(◦C) Acidconversion(%) Yieldoftriester(%)* Relativepercentageofesters(%)

Monoesters Diesters Triester

85 88.4 34.0 10 50 40 Homogeneousa 100 91.2 59.1 4 30 66 120 87.3 65.2 3 26 71 85 86.1 6.9 54 40 6 Heterogeneousb 100 86.6 43.3 8 46 46 120 86.3 56.5 5 41 54 85 88.1 7.4 38 52 10 Ionicliquidc 100 87.6 19.7 15 59 26 120 89.3 34.1 5 51 44

Reactionconditions:5h,amolarratioisoamylalcohol/aconiticacid,6:1,catalystloading,2.7wt.%;bmolarratioisoamylalcohol/aconiticacid,6:1,catalystloading,5wt.%; cmolarratioisoamylalcohol/aconiticacid,3:1,ionicliquidasco-solvent.

(7)

Table2

Influenceofcatalystloading.

Catalysis Catalystloading(wt.%) Acidconversion(%) Yieldoftriester(%) Relativepercentageofesters(%)

Monoesters Diesters Triester

1.7 90.3 47.1 6 41 53 Homogeneousa 2.7 91.2 59.1 4 30 66 3.7 89.5 64.5 3 27 70 3 87.0 3.7 59 36 5 Heterogeneousb 5 86.1 6.9 54 40 6 7 88.5 5.3 53 40 7 Ionicliquidc 5 84.6 11.1 35 51 14 d Cosolvent 87.6 19.7 15 59 26

Reactionconditions:5h,amolarratioisoamylalcohol/aconiticacid6:1,100C;bmolarratio6:1,85C;cmolarratio6:1,100C;dmolarratio3:1,100C.

itdoesincatalyticconditions,whichenhancestheconversionof monoestersintodiestersandintotriester.

Intheabsenceofdevicetoremovewater,theuseofahydrophilic ionicliquidseemsefficienttotrapwaterandtoshiftthe equilib-rium.Furthermore,asthesolubilizationofaconiticacidisensured byionicliquid,itispossibletoreducetheexcessofalcoholtothe ratio3:1.

Eventually,forhomogeneouscatalysis,theconditionsallowing tominimisetheamountofacidiceffluentsandtogetanenriched mediaintriestercorrespondstoacatalystloadingequalto2.7%.

For heterogeneouscatalysis,we observedthat 3%ofcatalyst loadingisenoughtogetanenrichedmediuminmonoesters.

3.4. Kineticstudies

3.4.1. Freecatalyticesterification

Thereactionofaconiticacidwithisoamylalcoholwastested underfreecatalystunderthestandard,100◦Candamolarratio

“isoamylalcohol:aconiticacid”of6:1.

Fig.6 represents therelativepercentage of compounds dur-ingthereaction,correspondingtotheself-catalysiscapacityofthe reaction.

Spontaneously,thereactionofesterificationgeneratesthe for-mation of monoesters which are converted progressively into diestersandinmorelimitedproportionsintotriester.

Thisexperimentconfirmsthatmonoestersandthendiestersare intermediatesforthesynthesisofthefinaltriester.

Finally,thecontributionof self-catalysismustbeconsidered especiallyforlowcatalystloadingsunderhightemperatures.

Fig.6. Self-catalyzedesterification ofaconiticacid: molarratioisoamyl alco-hol/aconiticacid,6:1,100◦C(:AA;N:MIA;:DIA;×:TIA; :conversion).

3.4.2. Kineticprofilesaccordingtocatalyst

Thepreliminarytestsallowedtodefinetheexperimental con-ditionssummarizedinTable3toperformthekineticstudies.

Figs.7–9showtheplotsoftheconversionofaconiticacidas

limitingreactant.Therelativepercentagesinthereactionmedia (aconiticacid,monoesterMIA,diesterDIAandtriesterTIA)arealso represented.

Itwasfoundthattheuseofsulphuricacidleadstothemaximum conversioncloseto100%before2h.

Thecation-exchangeresinalsoprovidesahighconversionbut witha slowerkinetic:almost100%ofaconiticacidisconverted after4h.

With the ionic liquid, a lower conversion close to 70% is observed,thatisstillacceptable.

Wecannotethatthetypeofcatalysthasaninfluenceonthe selectivityofreactionsincethecompositionsofestersare differ-entaccordingtotheconditions.Table4indicatesthemajoresters presentinthefinalreactionmedia;homogeneouscatalystmainly providesthetriesterwhereasheterogeneouscatalystorientatesthe reactiontowardstheproductionofmonoestersanddiesters.The ionicliquidratherfavourstheformationofdiesters.

Asitisnotpossibletogetatotalselectivityforthemonoesters andthediesters,wethoughtthatitcouldbeinterestingto pre-parecompositionsenrichedwiththedesiredester.Wehavethus selectedspecifictimesofreactioncorrespondingtothehighest con-tentinesters(Table4).Unreactedaconiticacidofconditions2*and 3,wasremovedbyextractionwithwater.

Itisthuspossibletopreparefiveenrichedcompositionswith oneoftheesters.Methods1and2improved performancesthat werementioned in previousworks as wegot almost complete conversionofacidandhigherestercontents.

Moreover,theproductionofthesemixturesavoidsan expen-sivesteptoseparateestersandtheirresultingpropertiesmaybe adaptedtosomeapplications.

3.4.3. Effectofthehydrocarbonchainlength

Thepreviousconditionshavebeenadaptedtothesynthesisof aconitateestersfromdodecylalcohol.Experimentalconditionsand resultsarepresentedinTable5.

Dodecylalcoholpresentsagoodreactivitytowardsaconiticacid, leadingtoahighconversionoftheacidintotriester,under homo-geneouscatalyst(method1′).

Table3

Conditionsforkineticreaction.

Methods Catalysis T(◦C) Catalyst

loading(wt.%)

Molarratioisoamyl alcohol:aconiticacid

1 Homogeneous 100 2.7 6:1

2 Heterogeneous 85 3 6:1

(8)

Table4

Compositionofestersinselectedmedia.

Methods Catalysis Selectedtime(min) Percentageofthemajorester(%) Acidconversion(%) 1a Homogeneous 40 Diesters(57) 98 1 540 Triester(79) 99 2a Heterogeneous 90 Monoesters(67) 73 2 540 Diesters(59) 98

3 Ionicliquid 540 Diesters(69) 64

aDerivedfrommethods1or2bymodifyingthereactiontime.

Fig.7.Esterificationofaconiticacidcatalyzedbysulfuricacid,accordingtomethod 1(:AA;N:MIA;:DIA;×:TIA; :conversion).

Fig.8. Esterificationofaconiticacidcatalyzedbyion-exchangeresin,accordingto method2(:AA;N:MIA;:DIA;×:TIA; :conversion).

Forheterogeneousconditions,theconversionofaconiticacidis lowerwithdodecylalcoholcomparedtoisoamylalcohol(methods 2and2′).Thisresultcanbeexplainedbythelimitingeffectdueto

themorerestrictedaccessibilityofthecatalyticsitesbythelong chainalcoholandtoaloweralcohol:acidratio.

Fig.9.Esterificationofaconiticacidwithionicliquid,accordingtomethod3(:AA; N:MIA;:DIA;×:TIA; :conversion).

Therefore,thechainlengtheffectismainlyobservedinthe pres-enceofmacroporouscatalysis.

Moreover,theresultsconfirmthatmacroporouscatalyticsites alsolimittheconversionofmonoestersanddiestersintotriester.In fact,macroporousresinsrepresentefficientconditionstoprepare preferentiallymonoestersanddiesterswithbothalcohols.

Thecompositionsinmonoesters/diestersobtainedwith meth-ods2and2′showthatthetemperatureisasignificantparameterto

enhancetheconversionofmonoesterintodiester,asitwasnoted withTable1.

Finally,heterogeneouscatalysisoffersperformingconditionsto reachagood selectivitytowardsmono/diestersbutalsoletthe possibilitytoobtaincompositionrichintriesterbyactingonthe temperature.

3.5. Environmentalfactors

AconvenienttoolisproposedbyEissenandMetzgertocompare alternativechemicalsynthesesregardingtheirpotential environ-mental impact.TheEATOS(EnvironmentalAssessment Toolfor Organic Synthesis) procedure(Eissen and Hungerbühler, 2003;

EissenandMetzger,2002)allowstocalculateenvironmental

per-formancesmetricswhenthesystematicdesignofmoresustainable processesisundertakenonalaboratoryscale.Metricswhichare consideredarethefollowingones:

Table5

Comparisonbetweenthereactivityofisoamylalcoholanddodecylalcohol(for5h).

Methods Catalysis Percentageofthemajorester(%) Aconitic conversion(%) Temperature(◦C) Catalyst loading(%) Molarratio alcohol:acid 1

Homogenous Tri-isoamylaconitate(66) 91 100 2.7 6:1

1′ Tridodecylaconitate(75) 96 100 2.7 3:1

2

Heterogeneous Mono-/di-isoamylaconitate(59/36) 87 85 3 6:1

(9)

Fig.10.Preparationoftri-isoamylaconitate.

-Themassindex,S−1,whichisthemassofallrawmaterials[kg]

usedforthesynthesis,permassunitofthepurifiedproduct(raw materials,solvents,catalysts,auxiliaries,etc.).

- Theenvironmentalfactor,E,whichrepresentsthemassofwastes [kg]permassunitoftheproduct.

ForthedeterminationofEandS−1,thefollowingmaterialshave

beenintegratedforthecalculationoftheamountofwastes: -Thenon-reactantalcoholandacidaccordingtotheyield; -Theco-productssuchaswaterandotheresters;

-Thehomogeneouscatalyst(H2SO4);

-Theamountofwaternecessarytoremovethehomogeneous cat-alyst;

-Theamountofsodiumsulphatetodryorganiclayer;

-Aquarterofthemacroporousresinandionicliquidweight,since thetestshaveshownthattheycouldbeusedfourtimeswithout significantlossofperformances;

-Theextractionsolvent.

Thesehypothesesallowedtocomparethedifferentroutesto obtainthetargetedproduct.

Calculationswerecarriedoutwithtwodifferentpurposes: -Comparisonofdifferentsynthesesofthetriester;

-Comparisonofsynthesesforthreedifferentenrichedmedia. 3.5.1. CalculationofE-factorandS−1forsynthesesoftriester

Thecalculationsdealwiththesynthesisoftri-isoamylaconitate accordingtothemethodsI,IIandIIIwhichhavebeenadaptedfrom methods1,2and3(Fig.10andTable6).

Fig.11showsaquantitativeassessmentofmethodsI,IIandIII. TheprotocolIIisthemosteffectiveprocedurewithregardtoits massefficiency(S−1=10.3kgkg−1),andtoitsenvironmentalfactor

(E=9.3kgkg−1).TheeffectivenessofmethodIIisduetoaneasy

treatmentstep(recoveringofcatalyst,lowamountofauxillaries, nosewage).Moreover,weknowthattheyieldoftriestercanstill beimprovedbyrisingthetemperature.

WecanconfirmthattheweakpointofthemethodIisthe pro-ductionofsewage.MethodIIIispenalizedbyseveralfactors:the lowerconversionintriester,theuseofanextractionsolventand theamountofionicliquid.

Table6

Datausedforthecalculationofgreenunitsforthesynthesesoftri-isoamylaconitate forareactiontimeof300min.

Conditions Methods

I II III

Temperature 100 120 120

Catalystloading(%) 3.7 5 Cosolvent Acidconversion(%) 89.5 86.3 89.3 Yieldoftriester(%) 64.5 56.5 34.1

Fig.11.CalculationofmassindexS−1andenvironmentalfactorE(softwareEATOS)

forthetri-isoamylaconitatesynthesis–methodsI(H2SO4),II(Amberlyst15)and

III(Ionicliquid).

3.5.2. CalculationofEandS−1forsynthesisofenrichedmedia

Thecalculationsconcernthesynthesesofthethreeenriched media,withtheconditionspresentedinTable7.

Fig.12showsthecomparisonofmassindexS−1andE-factorfor

themethods1,2and3.

Theproductionofmonoesterwithmethod2leadstothelowest massefficiency(S−1=18.5kgkg−1)andthelowestenvironmental

factor(E=17.5kgkg−1)duetotheadvantagesdescribedfor

hetero-geneouscatalyst.

Formethod3,wecanthusidentifytwolimitingfactors,theyield andtheamountofauxiliaries.Bymodifyingthecharacteristicsof ionicliquid,wemightaffectpositivelythemassefficiencyandthe environmentalfactor.Thepresentresultsshowtheuseofanionic liquidcanbejustifiedwhenaspecificselectivityistargeted. Table7

Datausedforthecalculationofgreenunitsforthesynthesisofenrichedmedia accordingtothedescribedprotocols.

Conditions Methods

1 2 3

Temperature(◦C) 100 85 100

Catalystloading(%) 2.7 3 Cosolvent

Reactiontime(min) 540 90 540

Acidconversion(%) 99 73 64

(10)

Fig.12. CalculationsofmassindexS−1andenvironmentalfactorE(softwareEATOS)

forthepreparationofenrichedcompositions–methods1(H2SO4),2(Amberlyst15)

and3(Ionicliquid).

Thesedatashouldbetakenintoconsiderationwhenascale-up isplaned.

4. Conclusion

Thisstudyshowsthepotentialitiesofaco-productofthe sug-arcaneindustryasrawmaterialtoprepareseveralesters.

Newconditionshavebeenstudiedtosynthesizeaconiticesters inastirredbatchreactorandtoorientatethereactiontowardsan estercategory(monoesters,diestersortriester).

Quantumcalculations have giveninsight in thereactivity of thethreesitesandhaveconfirmedthesitewhichispreferentially esterified.

Intheexperimentalpart,theeffectsofparametershavebeen studiedtoprepareenrichedcompositionsavoidingafurtherstep ofpurificationandleadingtoimprovedyieldsforspecificesters.

Moreover,thepreparationofesterswithdifferenthydrocarbon chainsallowstomodulatethephysico-chemicalpropertiesofthe moleculestomeetseveralspecifications.

Fortheproductionoftriesterswithlongorshortchains, homo-geneouscatalysisleadstothebestselectivity,butheterogeneous catalystrepresentsthebestconditionstomeetgreen chemistry criteria.

For the production of enriched media,high conversions are obtained to produce compositions with major esters contents above65%.Theseenrichedcompositionshavevariablehydrophilic propertiesaccordingtothenumberofesterifiedsites,which mod-ifiesthepolarhead.

Amongthethreeenrichedcompositions,thecalculatedgreen indicators(massindexand environmentalfactor)werethebest fortheheterogeneousconditions.Despitethelackofbenefits con-cerninggreenindicators,conditionsassistedbyanionicliquidare performingtoshifttheequilibriumwithoutthecostofadistillation.

Thefeaturesofresinmacroporoussitesfostertheproduction ofmonoestersanddiesters,bylimitingtheconversionofdiesters intotriester.Inthiscase,wehaveshownthatanincreasingtriester proportioncanbereachedbyactingontemperature.

Finally,macroporousresinsstillremainthebestwaytoimprove conventional methods into more ecofriendly routes. Moreover, suchconditionsoffertheopportunitytoactontheselectivityand thustopreparenewbioproductsofgreatinterest.

Acknowledgements

WewouldliketothanktheRegionalCouncilofReunionIsland foritsfinancialsupport.eRcaneisalsogratefullyacknowledgedfor itsfinancialcontributionanditscooperation.

References

Bruins,P.F.,Canapary,R.C.,1956.Esterificationofacids.USPatent2,766,273. Choudhary,V.R.,Mantri,K.,Jana,S.K.,2001.Selectiveesterificationoftert-butanolby

aceticacidanhydrideoverclaysupportedInCl3,GaCl3FeCl3andInCl2catalysts.

Catal.Commun.2,57–61.

Cockrem,M.,Milner,C.,Douglas,J.P.,1993.Récupérationdesestersdelactateetde l’acidelactiquedansunbouillondefermentation.WO9300440.

Cole,A.C.,Jensen,J.L.,Ntai,I.,Tran,K.L.T.,Weaver,K.J.,Forbes,D.C.,Davis,J.H.,2002. Novelbrönstedacidicionicliquidsandtheiruseasdualsolvent-catalysts.J.Am. Chem.Soc.124,5962–5963.

Cox,H.L.,Carruthers,T.F.,1936.Hydroxycarboxylicacidesters.USPatent2,046,150. Eissen,M.,Hungerbühler,K.,2003.Massefficiencyasmetricfortheeffectivenessof

catalysts.GreenChem.5,G25–G27.

Eissen,M.,Metzger,J.O.,2002.Environmentalperformancemetricsfordailyusein syntheticchemistry.Chem.Eur.J.8,3580–3585.

Fraga-Dubreuil,J.,Bourahla,K.,Rahmouni,M.,Bazureau,J.P.,Hamelin,J.,2002. Catal-ysedesterificationsinroomtemperatureionicliquidswithacidiccounteranion asrecyclablereactionmedia.Catal.Commun.3,185–190.

Frappier,E.P.,Davis,J.E.,Grendze,M.,Scriven,E.F.V.,Wyeth,J.T.,Kuen-Wai,C.,2002. Processforproducingcitrateesters.USPatent6,403,825.

Frisch,M.J.,Trucks,G.W.,Schlegel,H.B.,etal.,2004.Gaussian03,RevisionE.01. Gaussian,Inc.,Wallingford,CT.

Gil,N.,Saska,M.,Negulescu,I.,2006.Evaluationoftheeffectsofbiobasedplasticizers onthethermalandmechanicalpropertiesofpoly(vinylchloride).J.Appl.Polym. Sci.102,1366–1373.

Gross, S.F., Barabash, M.J., Hessel, J.F., 2008. Graffiti remover, paint stripper, degreaser.USPatent7,449,437.

Guthrie,R.W.,Hamilton,J.G.,Kierstead,R.W.,Miller,O.N.,Sullivan,A.C.,1976.Citric acidderivatives.USPatent3,810,931.

Jonn,J.Y.,McCrum,B.,Su,W.,Warren,T.,Badejo,I.T.,2008.Liquidcoating composi-tions.USPatent7,318,937.

Joseph,T.,Sahoo,S.,Halligudi,S.B.,2005.Brönstedacidicionicliquids:agreen, efficientandreusablecatalystsystemandreactionmediumforFischer esterifi-cation.J.Mol.Catal.A:Chem.234,107–110.

Kolah,A.K.,Asthana,N.S.,Vu,D.T.,Lira,C.T.,Miller,D.J.,2006.Reactionkineticsof thecatalyticesterificationofcitricacidwithethanol.Ind.Eng.Chem.Res.46, 3180–3187.

Kolah,A.K.,Asthana,N.S.,Vu,D.T.,Lira,C.T.,Miller,D.J.,2008.Reactionkineticsfor theheterogeneouslycatalyzedesterificationofsuccinicacidwithethanol.Ind. Eng.Chem.Res.47,5313–5317.

Leng,Y.,Wang,J.,Zhu,D.,Ren,X.,Ge,H.,Shen,L.,2009.Heteropolyanion-basedionic liquids:reaction-inducedself-separationcatalystsforesterification.Angew. Chem.Int.Ed.48,168–171.

Ma,Y.,Wang,Q.L.,Yan,H.,Ji,X.,Qiu,Q.,1996.Zeolite-catalyzedesterification.I. Synthesisofacetates,benzoatesandphthalates.Appl.Catal.A:Gen.139,51–57. Olang,F.N.,O’leary,R.J.,Korwin-Edson,M.,Quinn,R.E.,2010.Formulationmethod

forpluralcomponentlatex-foam.USPatent20,100,189,908.

Patil,A.O.,Wu,M.M.-S.,Ho,S.C.H.,2010.Lubricantcompositioncontainingglycerol tri-esters.USPatent20,100,216,678.

Petrini,M.,Ballini,R.,Marcantoni,E.,Rosini,G.,1988.Amberlyst15:apractical, mildandselectivecatalystformethylesterificationofcarboxylicacids.Synth. Commun.18,847–853.

Roberts,E.J.,Martin,L.F.,Magne,F.C.,Mod,R.R.,1954.Aconiticandtricarballylicacid esterasvinylplasticizers.RubberWorld,801–804.

Seemeyer,S.,Morrison,E.D.,Scharrenbach,S.,CaussindeSchneck,C.,Rich,P.,Court, C.,2008.Conveyorlubricantsincludingemulsionofalipophiliccompoundand anemulsifierand/orananionicsurfactantandmethodsemployingthem.US Patent20,080,176,778.

Weiberg,S.M.,Stimpson,E.G.,1942.Preparationoflacticacid.USPatent2,290,926. Zhu,H.-P., Yang, F.,Tang, J.,He, M.-Y., 2003. Bronsted acidicionic liquid 1-methylimidazoliumtetrafluoroborate:agreencatalystandrecyclablemedium foresterification.GreenChem.5,38–39.

Figure

Fig. 2. Esterification of aconitic acid.
Fig. 4. Charges on the atoms (NBO population analysis). A: aconitic acid; B: isoamyl alcohol.
Fig. 6 represents the relative percentage of compounds dur- dur-ing the reaction, corresponding to the self-catalysis capacity of the reaction.
Fig. 9. Esterification of aconitic acid with ionic liquid, according to method 3 (: AA;
+3

Références

Documents relatifs

Il est possible que le réseau criminel, de par ses caractéristiques structurelles (taille, non-redondance des contacts), mais aussi de par les ressources et la variété

Dans un premier temps, nous nous sommes intéressés aux formes de Dirichlet sur ce graphe, qui permettent, ensuite, de définir le laplacien.... 2 Formes de Dirichlet sur le graphe de

Genesoil Soil description: code, type of soil, number of soil layers, water capacity, soil depth and p0 parameter for one layer soil water balance model Layersoil Soil

The loss of orthogonality is more severe when the agressive threshold is used, due to an earlier use of the simple precision in the inner products, as well as the use of the

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB..

L'objectif principal de ces travaux de recherche est d'étudier la performance à long terme de la technique de la nappe phréatique surélevée combinée à un recouvrement

Si vous ou quelqu’un que vous connaissez a : gagné un prix du livre ou d’article, reçu un prix d’enseignement, donné une conférence publique ou une entrevue, écrit

For each series, the concrete is severely degraded by tensile stresses at peak:, and the maximal load gain obtained by fibers actually induces a drop in ductility due to a