• Aucun résultat trouvé

Method of Determining Incombustibility [of Building Materials]

N/A
N/A
Protected

Academic year: 2021

Partager "Method of Determining Incombustibility [of Building Materials]"

Copied!
24
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Technical Translation (National Research Council of Canada), 1957

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20331383

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Method of Determining Incombustibility [of Building Materials] Elteren, J. F.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=ff9ee941-7bdc-4ecf-be36-715a25950105 https://publications-cnrc.canada.ca/fra/voir/objet/?id=ff9ee941-7bdc-4ecf-be36-715a25950105

(2)

PREFACE

B u i l d i n g r e s e a r c h o r g a n i z a t i o n s i n v a r i o u s p a r t s of t h e world have recognized t h e need f o r a d e q u a t e d e f i n i t i o n s f o r terms used i n b u i l d i n g codes, s p e c i f i c a t i o n s and o t h e r

r e g u l a t i o n s . When s p e c i f y i n g requirements f o r i n c o m b u s t i b i l i t y ,

a d e f i n i t i o n of t h e words "incombustiblen o r "combustible" may o n l y be g i v e n by r e f e r r i n g t o a s p e c i f i c t e s t method i n which c o n d i t i o n s of exposure a r e ' w e l l d e f i n e d ,

I n Canada, t h e r e e x i s t s a t p r e s e n t no t e s t method f o r i n c o m b u s t i b i l i t y s i n c e t h e withdrawal of C-EwSeA, S t a n d a r d S p e c i f i c a t i o n ~ 5 4 - 1 9 4 0 . The D i v i s i o n of B u i l d i n g Research h a s been aware of t h e s i t u a t i o n and, d u r i n g r e c e n t y e a r s , has co- o p e r a t e d c l o s e l y w i t h t h e Canadian S t a n d a r d s A s s o c i a t i o n i n t h e development of a new method, Close l i n k s w i t h o r g a n i z a t i o n s i n B r i t a i n and t h e U . 3 - A . have f a c i l i t a t e d t h i s work i n t h a t i n f o r m a t i o n on similar a c t i v i t i e s i n t h o s e c o u n t r i e s w a s

r e a d i l y a v a i l a b l e . Apart from t h e work of Setchltin and I n g b e r g , l i t t l e h a s been achieved towards t h e improvement of e x i s t i n g t e s t methods,

T h i s s y s t e m a t i c study of van E l t e r e n on t h e s u b j e c t i s t h e r e f o r e g r e a t l y a p p r e c i a t e d and w i l l c e r t a i n l y s e r v e as a g u i d e t o anyone concerned i n t h e developmefit o r t h e improvement

of t e s t s on c o m b u s t i b i l i t y . It i s w i t h t h i s i n mind t h a t t h i s t r a n s l a t i o n h a s been prepared as a p a r t of t h i s D i v i s i o n ' s p r e s e n t s t u d y of t h e problem.

The D i v i s i o n of Building Research r e c o r d s i t s t h a n k s t o

M r ,

H,A.G,

Nathan of t h e T r a n s l a t i o n s S e c t i o n of t h e N.R.C. f o r t r a n s l a t i n g t h i s paper.

O t t a w a ,

(3)

NATIONAL RESEARCH COUNCIL OF CANADA Technical Translation TT-694

Title: Method of determining incombustibility

[of

building materials]

(Methode voor de bepaling van onbrandbaarheid)

Author:

J.F.

van Elteren

Reference: Polytech. Tijdschrift, 9A (31-32):

644-650,

1954 Translator: H . 4 . G . Nathan, Translations Section,

N.B.

C.

Library

(4)

MZTHOD OF DETERMINING I N COMB'JSTIBILITY

[OF BUILDING MATERIALS ]

There h a s been a n i n c r e a s i n g demand t h a t t h e m a t e r i a l s used i n c e r t a i n s t r u c t u r e s of b u i l d i h g s , s t r u c t u r a l p a r t s and c o a t i n g s should p r e s e n t no f i r e hazard when exposed t o h i g h t e m p e r a t u r e s , and i f a f i r e does occur should not c o n t r i b u t e t o i t s i n t e n s i t y . I n o t h e r words, t h e m a t e r i a l s should b e

"

incombustible"

.

~ ~ I n c o m b u s t i b i l i t y n may only be d e f i n e d i n c o n j u n c t i o n w i t h a c a r e f u l l y arranged t e s t , such as t h a t d e s c r i b e d i n (1) B r i t i s h Standard No. 476: 1932

.

I n t h i s t e s t , a specimen of t h e m a t e r i a l

(50

mm. x 40 mm.

x

d mm., where d , t h e t h i c k n e s s , should n o t exceed 40 mm. ) Is placed i n a v e r t i c a l h e a t i n g t u b e , which i s h e a t e d t o 750°C. i n

1 1 / 2 hours. The m a t e r i z l i s not considered t o be incombustible

if t h e specimen flames o r produces g a s e s t h a t may b e i g n i t e d by a p i l o t flame o r i f t h e specimen glotvs more b r i g h t l y t h a n t h e w a l l s of t h e h e a t i n g tube.

I n t h e German S t a n d a r d s ( 2 ) a m a t e r i a l i s deemed incornbust- i b l e i f i t cannot be inflamed and i f it i s not reduced t o a s h e s i n t h e absence of a flame.

S e t c h k i n and Ingberg t e s t e d a l a r g e number of m a t e r i a l s i n t h e h e a t i n g a p p a r a t u s d e s c r i b e d i n t h e B r i t i s h Standard. The t e s t s were conducted according t o t h e B r i t i s h Standard and a l s o by a modified method i n which t h e a p p a r a t u s Is heated t o 750°C.

(5)

b e f o r e t h e sample i s introduced*.

They t e s t e d i n s u l a t i n g m a t e r i a l s , a c o u s t i c a l t i l e s and metal powders. The most s u r p r i s i n g r e s u l t was t h a t v i r t u a l l y

a l l t h e m a t e r i a l s r a t e d as lncolvbustible by t h e B r i t i s h method and containing upwards of 2 percent by weight of organlc carbon, flamed o r glowed on a p p l i c a t i o n of t h e modified method i n v o l v i n g i n i t i a l h e a t i n g of t h e furnace t o 750°C.

Setchkln and Ingberg determined t h e content of o r g a n i c carbon I n t h e sample i n v e s t i g a t e d . They used t h i s c o n t e n t a s

a

c r i t e r i o n of t h e amount of combustible c o n s t i t u e n t s of t h e samples.

Some of t h e i r r e s u l t s have been assembled i n Table I. The

s e l f - h e a t i n g , which h a s a l s o been l i s t e d , g i v e s t h e number of Centigrade degrees by which t h e temperature a t t h e c e n t r e of t h e m a t e r i a l t e s t e d i n c r e a s e s beyond t h a t of t h e f u r n a c e ,

On t h e s t r e n g t h of t h e i r t e s t s Setchkin and Ingberg con- clude t h a t i n c o m b u s t i b i l i t y depends, among o t h e r f a c t o r s , on t h e n a t u r e of t h e combustible components.and p o s s i b l y t h e i r d i s t r i b u t i o n i n t h e m a t e r i a l .

The r e s u l t s obtained from l a r g e s c a l e t e s t s , moreover, proved t o be i n agreement with t h e r e s u l t s obtained from t h e i n v e s t i g a t i o n by t h e modified method.

- -

*

Whilst t h e present a r t i c l e w a s b e i n g c o r r e c t e d , B r i t i s h Standard No.

476:

1953 w a s published. The modified method h a s now been adopted, and t h e o b s e r v a t i o n of t h e glow has been replaced by a measurement of t h e temperature. As a requirement of i n c o m b u s t i b i l i t y t h e specimen must n o t cause t h e furnace temperature t o be r a i s e d by more t h a n 50°C.

The furnace temperature i s defined as t h e temperature between t h e i n t e r i o r w a l l of t h e h e a t i n g t u b e and t h e specimen.

(6)

D e t a i l e d I n v e s t i ~ a t i o n Desirab-

I n t h e Netherlands a standard s h e e t h a s been prepared by Commis.sion 58 (Regulations Regarding t h e Fire-Resistance of B u i l d i n g s )

,

which included a d e f i n i t i o n of " i n c o m b u s t i b i l i t y n

a s w e l l a s a method f o r i t s determination. I n November 1953, T e n t a t i v e Sheet V1076 (Building M a t e r i a l s and S t r u c t u r e s of B u i l d i n g s , Determination of I n c o m b u s t i b i l i t y

,

Flammability, Flame Spread and Fire-Besistance) was published. I n t h e i n t r o - duction t o t h e d r a f t it i s pointed out t h a t t e s t s w i l l perhaps show the need f o r modifications i n t h e standard,

Therefore, it appeared p a r t i c u l a r l y d e s i r a b l e t o i n v e s t i g a t e t h e method of determining i n c o m b u s t i b i l i t y i n g r e a t e r d e t a i l .

Against t h e B r i t i s h method and t h a t modified by Setchkin and Ingberg, t h e o b j e c t i o n i s r a i s e d t h a t t h e comparison of t h e

i n t e n s i t y of t h e l i g h t r a d i a t e d from t h e glowing m a t e r i a l with t h a t r a d i a t e d from the wall of t h e almost completely closed h r n a c e i s not easy and by no means a c c u r a t e ,

Examination of t h e German standard immediately r e v e a l s i t s l a c k of d e f i n i t i o n .

I n t h e d r a f t f o r t h e t e n t a t i v e standard s h e e t the method t o be a p p l i e d and t h e term i n c o m b u s t i b i l i t y a r e described a s follows:

The furnace i s heated t o a temperature of 7 5 0 ~ C . The

temperature i s measured by means of a thermocouple whose junction

i s s i t u a t e d on t h e i n t e r i o r w a l l of t h e furnace a t t h e l e v e l of t h e c e n t r e of t h e specimen t o be introduced i n t o t h e furnace.

(7)

The t e s t specimen I s t h e n placed i n t h e f u r n a c e i n such a manner t h a t t h e l o n g i t u d i n a l a x e s of t h e specimen and f u r n a c e

c o i n c i d e ( t h e dimensions of t h e t e s t specimens a r e

60

x

40

x

40 mm.).

During t h e t e s t t h e specimen should be supported by a s t i r r u p of nichrome wire,

A m a t e r i a l I s considered t o be incombustible i f w h i l s t t h e sample i s i n t h e furnace:

( a ) no combustible g a s mixtures a r e produced d u r i n g t h e f i r s t

15

minutes;

( b ) t h e temperature a t t h e c e n t r e of t h e specimen does n o t i n c r e a s e by more t h a n 50°C, above t h e

fur-

nace temperature.

A m a t e r i a l i s considered combustible i f it does not s a t i s f y one o r both of t h e above c o n d i t i o n s .

I n t h i s connection, t e s t s were c a r r i e d o u t t o determine t o what e x t e n t t h e i n c r e a s e i n t h e temperature of t h e m a t e r i a l w i t h r e s p e c t t o t h a t o f t h e furnace provides a c r i t e r i o n of t h e in- c o m b u s t i b i l i t y and of t h e manner i n which t h e temperature i n t h e m a t e r i a l can b e s t be measured,

D e s i m of Furnace

F o r t h o p r e s e n t i n v e s t i g a t i o n a furnace i s used such as t h a t d e s c r i b e d i n t h e d r a f t f o r t h e t e n t a t i v e Dutch Standard Sheet 1076. It i s p r a c t i c a l l y t h e same a s t h a t used i n t h e B r i t i s h method, and a s k e t c h of it ' i s shown i n Fig. 1.

The f u r n a c e used h e r e d i f f e r s from t h a t d e s c r i b e d i n t h e B r i t i s h method by t h e f a c t t h a t i t s bottom i s c l o s e d by a f i r e -

(8)

b r i c k plug provided with n i n e p e r f o r a t i o n s ,

3

mm. i n diameter. The thermocouple with which t h e f u r n a c e temperature i s measured

i s p r o t e c t e d by a porcela.in tube. The l a t t e r h a s been placed

In a s e m i - c i r c u l a r r e c e s s i n t h e f u r n a c e w a l l .

The j u n c t i o n i s e x a c t l y o u t s i d e t h e tube and t h u s l i e s f l a t a g a i n s t t h e furnace wall.

The I n v e s t i r a t i o n

(a) pleasurement of t h e Temperature i n t h e T e s t Specimen S e t c h k i n and Ingberg measured t h e temperature a t t h e c e n t r e of t h e specimen, where t h e r e was a much g r e a t e r i n c r e a s e i n

temperature t h a n on t h e s u r f a c e .

T h i s i s evident f r o m t h e r e s u l t s assembled i n Table 11. S i n c e m a t e r i a l s whose

"

c o m b u s t i b i l i t y n has been e s t a b l i s h e d beyond doubt show p r a c t i c a l l y no d i f f e r e n c e i n temperature, o r only a n e g a t i v e one, when measurements a r e made on t h e s u r f a c e of t h e sample, t h i s method i s n o t s a t i s f a c t o r y and p r e f e r e n c e should t h e r e f o r e be given t o t h e method involving measurcnents a t t h e c e n t r e of t h e specimen.

An a t t e m p t w a s made t o determine how t h i s could b e s t b e achieved and t h e following methods were a p p l i e d .

1, From t h e mid-point of t h e t o p s u r f a c e of t h e sample a c y l i n d r i c a l opening, 6 mm. i n diameter, was bored t o t h e c e n t r e . A ceramic t u b e of 6 mm. o u t e r and

3

mm. i n n e r d i - ameter was placed i n t h i s opening, and t h e thermocouple was t h e n i n s e r t e d i n t h i s tube.

(9)

2 , The sample was provided w i t h an opening of t h e same s i z e a s i n method 1.

The thermocouple w i t h one of i t s w i r e s p r o t e t e d by i n s u l - a t i o n beads was i n s e r t e d i n t h i s opening.

3

From t h e mid-point of t h e t o p s u r f a c e , a n opening, 4.5 mm, i n d i a m e t e r , was bored v e r t i c a l l y through t h e e n t i r e s p e c i - men. The thermocouple was passed t h r c u g h t h i s opening i n such a way t h a t i t s j u n c t i o n w a s a t t h e l e v e l of t h e - e n t r e of t h e q e c i m e n , one wire emerging from t h e upper s u r f a c e and t h e o t h e r from t h e lower s u r f a c e ,

4, T h i s method i s i d e n t i c a l w i t h method

3

except t h a t t h e theruocou?le was p r o t e c t e d by a q u a r t z t u b e of 4.5 mm, o u t e r and

3

mm. i n n e r diameter.

5,

T h i s method d i f f e r s from method

3

only i n t h a t t h e opening was h o r i z o n t a l i n s t e a d of v e r t i c a l .

The r e s u l t s o b t a i n e d from t h e measurements have been

assemblsd i n Table 111. I n t h i s t a b l e , under "maximum i n c r e a s e i n O C . ' , t h e maximum number of c e n t i g m d e d e g r e e s i s g i v e n by

which t h e ternperature i n t h e specimen i n c r e a s e d above t h e f u r - n a c e temperature. T h i s i n c r e a s e i s a l s o g i v e n p e r p e r c e n t of

carbon p r e s e n t i n t h e specimen.

I n t h e c o u r s e of t h e s e t e s t s t h e t e m p e r a t u r e i n t h e specimen f i r s t a t t a i n s t h e f u r n a c e t e m p e r a t u r e a f t e r a c e r t a i n t i m e , t h e n

i t r i s e s above i t and, a f t e r r e a c h i n g a naximum, it drops a g a i n t o a t e m p e r a t u r e below t h a t of t h e f u r n a c e . S i n c e it had been a n t i c i p a t e d t h a t t h e h e a t from t h e b u r n i n g specimen w a s i n some way r e l a t e d t o t h e product of t h e i n c r e a s e i n t h e t e m p e r a t u r e of t h e specimen above t h a t of t h e f u r n a c e and t h e time r e q u i r e d f o r t h i s i n c r e a s e , t h e product of t h e nominal degree and minute

(10)

v a l u e s i s a l s o l i s t e d i n t h e t a b l e . T h i s product has been computed p e r gram of weight of t h e specimen and p e r p e r c e n t of carbon, and i s given a s t h e f a c t o r !J.

The curves d e p i c t i n g t h e course of two d i f f e r e n t t e s t s have been p l o t t e d i n Fig. 2 and

3.

The products of t h e nominal degree and minute v a l u e s a r e i n agreement w i t h t h e a r e a enclosed by t h e curves.

It i s e v i d e n t from t h e v a l u e s given i n T a b l e s I11 and

IV

t h a t :

1, The f i r s t method of measurement g i v e s t h e lowest r e s u l t s . T h i s a p p l i e s p a r t i c u l a r l y t o t h e specimens c o n t a i n i n g

3%

carbon; i n o t h e r words, t h e s p e c i f i c h e a t of t h e ceramic t u b e and t h e h e a t l o s s e s along t h e t u b e play a n important r o l e , which becomes more marked a s l e s s h e a t i s g e n e r a t e d by t h e sample. However, t h e s e a r e t h e samples f o r which t h e d e t e r m i n a t i o n has been intended.

2 , Regarding t h e second method ( i n v o l v i n g t h e u s e o f i n s u l a t i n g beads) t h e same o b j e c t i o n a p p l i e s , though t o a s m a l l e r

e x t e n t .

3

Much h i g h e r r e s u l t s a r e obtained from methods

3

and 4 t h a n from 1 and 2. They show agreement w i t h i n t h e l i m i t s of experimental e r r o r . The average maximum i n c r e a s e s were

98

and 104 i n t h e c a s e of

3%

carbon and 148 and 140 f o r

5%

carbon, t h e averages f o r f a c t o r W being 4,5 and 4,5 i n t h e f i r s t c a s e and 6.0 and 5.9 i n t h e second,

4, The r e s u l t s obtained from method

5

a r s s l i g h t l y l o n e r t h a n t h o s e from methods

3

and 4. The advantage of t h i s method i s t h e p r o t e c t i o n of t h e coupling w i r e s by q u a r t z t u b e s , which c o n s i d e r a b l y i n c r e a s e t h e l i f e of t h e couple. Without t h i s i n s u l a t i o n t h e l a t t e r would have t o be r e p l a c e d a f t e r each t e s t .

(11)

E f f e c t of>he Di~nensions of t h e Test Speclrnea

The f o u r t h method of measurement described above was used f o r t h e determinations reported below. The r e s u l t s have been assembled i n Table I V .

It appears t h a t t h e ditnensions of t h e t e s t specimens g r e a t l y a f f e c t t h e temperature increase. The smaller t h e samples, t h e

s l i g h t e r the i n c r e a s s w i l l be. However, t h e dimensilms do not a f f e c t t h e f a c t o r W e

With respect t o t h e heat of combustion i t should be noted t h a t i f t h e samples contain combustible matter o t h e r than carbon, i t s percentage ( i n t h e f a c t o r I d ) i s converted t o a corresponding percentage of carbon,

( c ) E f f e c t of Combixstilnn Heat and Comnosition of t h e Test Specimens

The t e s t s described below were c a r r i e d out f o r t h e purpose

of determining whether r e l a t i o n s h i p s e x i s t between t h e n a t u r e

and t h e amount of t h e combustible c o n s t i t u e n t s i n t h e case of t h e combustion heat of t h e specimens, and between t h e n a t u r e of t h e o t h e r c o n s t i t u e n t s and t h e temperature i n c r e a s e i n t h e case of t h e f a c t o r W e

The r e s ~ l l t s a r e l i s t e d i n Tables V , V I and V I I .

The values given i n t h e s e t a b l e s f o r t h e temperature i n c r e a s e a r e shown diagrammatically i n Fig. 4,

The percentages of carbon present i n t h e samples, o r , with r e s p e c t t o t h e combustion h e a t , t h e corresponding percentages of

(12)

c a s e i n , have been p l o t t e d on t h e a b s c i s s a .

Fig. 4 shows t h a t a f t e r a n i n i t i a l l y l i n e a r i n c r e a s e t h e subsequent e f f e c t on t h e temperature i n c r e a s e i s s l i g h t , o r

n o n - e x i s t e n t , a s t h e percentage of combustible material. increases, I n o t h e r words, t h e temperature i n c r e a s e p e r p e r c e n t of com-

b u s t i b l e m a t e r i a l i s c o n s t a n t f o r low percentages and t h e n diminishes g r a d u a l l y .

It i s remarkable t h a t t h e composition of t h e t e s t m a t e r i a l a f f e c t s t h e temperature i n c r e a s e . This a p p l i e s t o b o t h t h e

cornbustible m a t e r i a l and t h e f i l l e r ( c . f . Table V I I I )

.

I n Fig.

5

t h e v a l u e s of Tables V , V I and V I I a r e shorm i n t h e same manner as i n Fig. 4 , bt with t h e f a c t o r W a s t h e o r d i n a t e .

It had been a n t i c i p a t e d t h a t f a c t o r W would b e c o n s t a n t , i.e., t h a t t h e temperature-time product would be a d i r e c t c r i t e r - i o n of t h e combustion h e a t , b u t t h i s d i d not prove c o r r e c t .

The e x p e r i a e n t a l method t h u s provides no 2 i c t u r e of t h e amount of c a l o r i e s r e l e a s e d by t h e combustion.

However, t h e d i s t i n c t e f f e c t of t h e n a t u r e of b o t h t h e f i l l e r and t h e combustible c o n s t i t u e n t becomes apparent.

S i n c e t h e primary purpose of t h e d e t e r m i n a t i o n i s t o d i s -

t i n g u i s h between "combustible" and " incombustible" m s t e r i a l s , and

t h e d i v i s i o n l i e s a t low percentages of combustible m a t e r i a l , t h e i n v e s t i g a t i o n was continued with t h e t e s t specimens having a number of o t h e r compositions, but only a t low percentages.

(13)

The r e s u l t s obtained from t h e s e t e s t s have been assembled i n Table I X .

The val~xes of Table I X , including t h e r e s u l t s of some of t h e preceding t e s t s , a r e shown diagrammatically i n Fig.

6

and

7.

The e a r l i e r conclusions regarding temperature i n c r e a s e and f a c t o r W a r e t h u s conflmed.

There i s a marked e f f e c t of t h e combustible m a t e r i a l and f l l l e r on t h e temperature increase. The f a c t o r W i s a l s o a f f e c t - ed, but does not give any i n d i c a t i o n of t h e combustion heat.

An acceptable explanation f o r t h e marked e f f e c t of t h e n a t u r e of t h e combustible m a t e r i a l cannot be deduced from the present t e s t s . The amount of oxygen required f o r t h e combustion of 1 gm. of c a s e i n i s v i r t u a l l y equal t o t h e amount of oxygen consumed by

1 gm. of carbon. Hence t h e g r e a t d i f f e r e n c e cannot be due t o t h i s , nor can i t be a t t r i b u t e d t o t h e formation of water during t h e combustion. This should apply equally t o both wood and c a s e i n . However, the r e s u l t s f o r gypsum-sawdust and gypsum- c a s e i n a r e divergent.

I n cases where a temperature i n c r e a s e of 50°C, t a k e s p l a c e , t h e percentage of combustible m a t e r i a l ( c a l c u l a t e d a s carbon) v a r i e s from

1.3

t o 4.2$, v7'-'?ereas f o r 2% combustible m a t e r i a l t h e f a c t o r W v a r i e s from

0.3

t o 4.1,

The e f f e c t of t h e combustible m s t e r i a l i s much g r e a t e r than t h a t o f t h e f i l l e r . The curves f o r gypsum-sawdust and gypsurn- aica-sawdust l i e c l o s e t o one another and so do those f o r gypsum- carbon and gypsum-mica-carbon. I n both cases t h e temperature i n c r e a s e of gypsum samples i s s l i g h t l y higher than t h a t f o r the corresponding gypsum-mica samples.

(14)

F i n a l l y , mention should be made of t h e time during which t h e temperature i n t h e sample i s above t h a t of t h e furnace.

Fig. 8 g i v e s a number of t h e s e time periods.

It i s evident t h a t t h e time i n c r e a s e s a s t h e percentage of combustible m a t e r i a l i n c r e a s e s . The i n c r e a s e i s l i n e a r and ap- proximately t h e same f o r t h e d i f f e r e n t m a t e r i a l s . Only t h e r e s l a l t s of t h e gypsum-casein samples show g r e a t divergence.

( d ) The Formation of Combustible Gas Mixtures

I n t h e d r a f t f o r -Lha t e n t a t i v e standard s h e e t t h e f i r s t requirement of i n c o m b u s t i b i l i t y i s t h a t during t h e f i r s t

15

minutes of the t e s t no combustible g a s mixtures can form.

I n o r d e r t o check t h i s a p i l o t flame wks burning r i g h t above t h e furnace.

No combustible gas mixture was produced i n any of t h e t e s t s described above.

Conclusion Regarding t h e D r a f t of t h e T e n t a t i v e Standard Sheet V1.076

With r e s p e c t t o t h e spreading of f i r e t h e h e a t r a d i a t i o n i s of p r i n a r y importance. The l a t t e r i s a f u n c t i o n of t h e tem- p e r a t u r e . A s i s evident from t h e above s t a t e m e n t s preference should be given t o t h e f o u r t h method o f measurement i n t h e de- t e r m i n a t i o n of temperature.

For m a t e r i a l s composed of t h e same c o n s t i t u e n t s t h e tem- p e r a t u r e i n c r e a s e a t t h e c e n t r e of t h e t e s t specimen i s d i r e c t l y p r o p o r t i o n a l t o t h e percentage of combustible m a t e r i a l , but t h i s

(15)

i n c r e a s e i s not t h e same f o r m a t e r i a l s with t h e same combustion

heat.

Therefore, i t i s b e t t e r t o measure t h e temperature i n c r e a s e than t o determine t h e combustion h e a t .

References

1. B r i t i s h Standard I n s t i t u t i o n . D e f i n i t i o n s f o r c o m b u s t i b i l i t y of building m a t e r i a l s . B r i t i s h Standard No. 476:

1932.

2. Deutsche Normen

D.I.N.

4102, 1940.

3.

Setchkin,

N.

and Ingberg, S. Test c r i t e r i o n f o r an

(16)

-15-

Table I Composition of t e s t specimen Gypsum

+

l o $

c a s e i n n n

+

20% n

+

15%

carbon 11

+

30%

sawdust

t i l e s None None None

Material t e s t e d Asbestos n II II Acoustical Self-heat ing ( O C , ) 3rganic carbon

%

l e 4 2 , O

3e5

4e5 3 r i t i s h Method 70 62 162 285 I g n i t i o n Difference i n temperature ( O C , ) of furnace and Modified Method None None

55

1 2 2 B r i t i s h Method None None None None Centre of specimen

+ l o o

+120 +110 + 75 Modified T,let'tlod None None Flame & glow Flame & glow Surface of specimen

-30

-30

0

+15

(17)

Table

117;

--

Test Specimen Measurements

Tenp

.

Max. Tenp

.

Composition Dimensions Wt. in gm. m e a s inc

.

inc. per i n cm. acc. t o in

O C * % carbon W

(18)

Table

IV

-

T e s t

Specimen

Me-

surements

Composition

i n

%

Gypsum

55,

Vermiculite

25,

Casein 20 n n Gypsum

95,

Carbon 5

n n Dimensions

i n

cm,

6-lk-4

6-3-3

6-2-2

6 - b 4

6-3- 3

6-2-2 W t

,

i n

-0

48

26

13

'XI0

64

27

Max.

inc

i n

OC. 200

160

130

115

98 80 Temp.

inc.

per

%

carbon

13

11

9

-

W 2.8

3.1

2.3

23

1

5.7

20

16

5 . 2

5.2

(19)

Table

V

Test Specimen Measurements

Dimen- Wt, Max. Temp. Time (min.) during which sions in inc. inc* per

Composition in W t.amp, is gm in O C . $ carbon above fur-

carbon 6-4-4 9 . 1 4 2 145 r 2 s 13? IJO

(20)

Table

V1:

T e s t Specimen ~ e a s u r e m e n t s

Dimen- Temp. Tima (rnin.)

Wt. Max

.

w

d u r i n g which Composition s i o n e i n i n c . i n c

.

tenp. i s i n om. p e r

%

above f u r - Rm. i n F. c a r b o n nnca temp. Table V I I -- - T e s t Specimen Measurements

Dimen- Temp. Time (min.)

Composition a ion6 V t . MAX. i n c . d u r i n g which

i n inc. p a r $ W tsnp. i s

i n % i n cm.

(21)

-20-

Table

VIII

Temperature Gypsum Gypsum-Mica Gypsum

i n c r e a s e

11.3%

c a s e i n ,

1, e.

,

10% carbon

Table

IX

Test Specimen Measurements

Max.. inc. i n OC, 28

5 0

W t . in.. g m , 119 118 Cornposit ion gypsum-2 sawdust

"

-2-7 t~ 1 4 24 7 8 17

-

7

16 Dimen- s i o n 111 cm. 6-4-4

"

65 gypsum,

33

mica, 2 sawdust 64 gypsum, 32 mica, 4 sawdust 63 gypsum,

31

mica,

6

sawdust gypsum-2 cork I' - 4 " 4.1 2.5 1.1 2.7 be3

-

0.9

3-3

Time ( I n min,) during which temp, i n speci-

men

i s above. furnace temp, I 9 Temp,

i n c .

p e r

%

carbon

-

40 I W

-

2 04

(22)

thermocouples

test specimen heating element

temperatur adjustment Fig. 1 I -. .-

-

. . . ,

-.

. 4 gypsuml - - i . . '3% carbon

' /

. . . , , . . ,

.

1.

.

, , . . . . , , -*-.-.--

--...

-..-

.

A

-

- - . . .

5 10 ( 5 i G .Y; I: 4', 4:. ',G -,: hri c , ~ , !'I

-

tima in min. .

.

. , a s , gypsum-=ice -- - . s a w d u s t ' ' c~ , . . I . , . --time in min. Fig. 2 Fig.

3

(23)

-

% carbon F1g. 4.

-

g ~ p s - c a s e ~ n ~ Fig.

5

caseine =

casein

gips =

gypsum

houtrneel

=

sawdust

koolstof

f =

carbon

kurk

=

cork

mica

= mica -% carbon ~ i g . 6

(24)

, , I

.

. .

.

. . - .

.

.

4 , .i -1 &iJ I ' , 6 7 -% c a r h a n

Fig.

7 t i . . .-.A ---.. ..- It; ? ' '$4 7 . 4 Fig. 8 c a s e l n e = c a s e i n g i p s = gypsum houtmeel = sawdust k o o l s t o f f = carbon k u r k = c o r k mica = mlca

Figure

Table  IV
Table  VIII

Références

Documents relatifs

Les résultats obtenus concernant l’activité antifongique des extraits aqueux sont représentés dans (Tableau 06). Avec les extraits des feuilles, l’activité antifongique est

Ce travail est focalisé à l’évaluation de toxicité aigue du mélange binaire d’un insecticide (Dursban) et fongicide (Mancozebe)et d’un insecticide seul (Décis) sur des

Au total, 31 parcelles agricoles ( Fig. 1 ), situées chez 10 agriculteurs représentatifs de la typologie (en termes de pratique et de gestion) et dans une station expérimentale, ont

Et dans notre travail, on a élaboré également une base de données avec cartes numérisées pour faciliter la gestion de fonctionnement du réseau d’alimentation

On étudie numériquement la convection naturelle laminaire de l’air (Pr=0.71) dans une enceinte rectangulaire, pour deux cas : Le premier cas c’est pour la paroi inferieur soumis

In particular, they know that adjectives name properties of entities named by nouns; they know that adjectives imply a contrast (i.e. values on a dimension are

The transcriptional activation of SREBP targets encoding the key enzymes of fatty acid biosynthesis (FASN) and the pentose phosphate pathway (G6PD) leads to a rapamycin-

words, it is critical to resolve between signaling intermediates in their free active and inactive forms (A * and A) from when they are bound to other intermediates, including