• Aucun résultat trouvé

Search for a Heavy Particle Decaying into an Electron and a Muon with the ATLAS Detector in √s=7  TeV <em>pp</em> collisions at the LHC

N/A
N/A
Protected

Academic year: 2022

Partager "Search for a Heavy Particle Decaying into an Electron and a Muon with the ATLAS Detector in √s=7  TeV <em>pp</em> collisions at the LHC"

Copied!
19
0
0

Texte intégral

(1)

Article

Reference

Search for a Heavy Particle Decaying into an Electron and a Muon with the ATLAS Detector in √s=7  TeV pp collisions at the LHC

ATLAS Collaboration

ABDELALIM ALY, Ahmed Aly (Collab.), et al.

Abstract

This Letter presents the first search for a heavy particle decaying into an e±μ∓ final state in

√s=7  TeV pp collisions at the LHC. The data were recorded by the ATLAS detector during 2010 and correspond to a total integrated luminosity of 35  pb−1. No excess above the standard model background expectation is observed. Exclusions at 95% confidence level are placed on two representative models. In an R-parity violating supersymmetric model, tau sneutrinos with a mass below 0.75 TeV are excluded, assuming all R-parity violating couplings are zero except λ′311=0.11 and λ312=0.07. In a lepton flavor violating model, a Z′-like vector boson with masses of 0.70–1.00 TeV and corresponding cross sections times branching ratios of 0.175–0.183 pb is excluded. These results extend to higher mass R-parity violating sneutrinos and lepton flavor violating Z's than previous constraints from the Tevatron.

ATLAS Collaboration, ABDELALIM ALY, Ahmed Aly (Collab.), et al . Search for a Heavy Particle Decaying into an Electron and a Muon with the ATLAS Detector in √s=7  TeV pp collisions at the LHC. Physical Review Letters , 2011, vol. 106, no. 25, p. 251801

DOI : 10.1103/PhysRevLett.106.251801

Available at:

http://archive-ouverte.unige.ch/unige:41131

Disclaimer: layout of this document may differ from the published version.

(2)

Search for a Heavy Particle Decaying into an Electron and a Muon with the ATLAS Detector in ffiffiffi

p s

¼ 7 TeV pp collisions at the LHC

G. Aadet al.* (ATLAS Collaboration)

(Received 29 March 2011; published 22 June 2011)

This Letter presents the first search for a heavy particle decaying into ane final state in ffiffiffi ps

¼ 7 TeV pp collisions at the LHC. The data were recorded by the ATLAS detector during 2010 and correspond to a total integrated luminosity of35 pb1. No excess above the standard model background expectation is observed. Exclusions at 95% confidence level are placed on two representative models. In anR-parity violating supersymmetric model, tau sneutrinos with a mass below 0.75 TeV are excluded, assuming allR-parity violating couplings are zero except0311¼0:11and312¼0:07. In a lepton flavor violating model, aZ0-like vector boson with masses of 0.70–1.00 TeV and corresponding cross sections times branching ratios of 0.175–0.183 pb is excluded. These results extend to higher mass R-parity violating sneutrinos and lepton flavor violatingZ’s than previous constraints from the Tevatron.

DOI:10.1103/PhysRevLett.106.251801 PACS numbers: 12.60.Jv, 12.60.Cn, 13.85.Rm, 14.80.Ly

Events withe (e) in the final state, which played an important role in the discoveries of the tau lepton and the top quark, have a clean experimental signature and low background. Many new physics models allow anesig- nature. For example, in R-parity violating (RPV) super- symmetric models [1] a sneutrino can decay toe. Models with additional gauge symmetry can accommodate ane signature through lepton flavor violating (LFV) decays of an extra gauge boson Z0 [2]. Standard model (SM) pro- cesses that can produce an e signature typically have small cross sections, and theeinvariant mass (me) lies below the range favored for new physics signals. This Letter reports a search for a heavy particle decaying into theefinal state using data taken with the ATLAS detec- tor. The results are interpreted in terms of the production and decay of a tau sneutrino~and aZ0. Both the CDF and D0 Collaborations at the Tevatron collider have reported searches for the RPV production and decay of the~[3–7].

The CDF Collaboration has also set limits on the LFV couplings as a function of theZ0mass [4].

The ATLAS detector [8] is a multipurpose particle phys- ics apparatus with a forward-backward symmetric cylin- drical geometry and near4 coverage in solid angle [9].

The inner tracking detector (ID) consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The ID is surrounded by a thin super- conducting solenoid providing a 2 T magnetic field and by a finely segmented, hermetic calorimeter. The latter covers jj<4:9 and provides three-dimensional reconstruction

of particle showers using lead-liquid argon sampling for the electromagnetic compartment followed by a hadronic compartment which is based on iron-scintillating tiles sampling in the central region and on liquid argon sam- pling with copper or tungsten absorbers forjj>1:7. The muon spectrometer surrounds the calorimeters and consists of three large superconducting toroids, a system of preci- sion tracking chambers, and detectors for triggering.

The data used in this analysis were recorded in 2010 at a center-of-mass energy ffiffiffi

ps

¼7 TeV. Application of data- quality requirements results in a total integrated luminosity of 35 pb1 with an estimated uncertainty of 11% [10].

Events are required to satisfy one of the single lepton (e or) triggers, which have nominal transverse momentum pT thresholds up to 15 GeV foreand 13 GeV for. The trigger efficiency is measured to be 100%, with a precision of 1%, for e candidates containing two leptons with transverse momentumpT>20 GeV.

To selecteevents, the electron candidate is required to have pT>20 GeV and to lie inside the pseudorapidity regions jj<1:37or1:52<jj<2:47. The event is re- jected if the candidate cluster is located in a problematic region of the electromagnetic calorimeter. Electron identi- fication and isolation requirements provide rejection against hadrons. A set of electron identification criteria based on the calorimeter shower shape, track quality, and track matching with the calorimeter cluster, referred to as

‘‘medium’’ in Ref. [11], is applied. In addition, a calorime- ter isolation criterion ER<0:2T =ET<0:1is applied, where ER<0:2T is defined as the transverse energy deposited in the calorimeter within a cone of radiusR¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ2

p <

0:2around the electron cluster, excluding the core energy deposited by the electron, andET is the transverse energy of the electron.

The muon candidate must be reconstructed in both the ID and the muon spectrometer. A good match of the

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri- bution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

(3)

parameters of the ID and muon spectrometer tracks is required, and thepTvalues measured by these two systems must be compatible. Furthermore, the muon candidate must have pT>20 GeV, jj<2:4, and be isolated in the ID with pR<0:2T =pT<0:1, where pR<0:2T is defined as the sum of thepT of tracks withpT>1 GeVwithin a cone of radiusR <0:2around the muon track, excluding the muon track.

Jets are reconstructed by using the anti-ktjet clustering algorithm [12] with a radius parameter of 0.4. Only jets withpT>20 GeVandjj<2:5are considered. If such a jet and an electron lie withinR¼0:2of each other, the jet is discarded. Leptons are considered only if they are separated from all of the remaining jets by R >0:4. Electrons and muons are also required to be separated from each other byR >0:2.

The e candidate events are required to have exactly one electron and one muon with opposite charge satisfying the above selection criteria. Furthermore, events have to contain at least one primary vertex reconstructed with more than four associated tracks withpT>150 MeV.

The SM processes that can produce anesignature are predominantly tt, Z=!, W=Zþjets, diboson, single top, and QCD multijet events. Among the processes listed above,tt,Z=!, single top,WW,WZ, andZZ produce electrons and muons in the final state and amount to80%of the expectededata yield. The contributions from these processes are estimated by using Monte Carlo (MC) samples generated at ffiffiffi

ps

¼7 TeV and processed with the standard chain of the ATLASGEANT4[13] simu- lation and reconstruction [14] using the ATLAS MC09 parameter tune [15]. The event generators used are

PYTHIA 6.421 [16] (W and Z=), POWHEG 1.0 [17] (tt),

MADGRAPH 4 [18] (W=Zþ), MC@NLO 3.4 [19] (single top), andHERWIG 6.510[20] (WW,WZ, andZZ). The MC samples are normalized to cross sections with higher order corrections applied, as follows. The cross section is calcu- lated to next-to-next-to-leading-order accuracy forW and Z=[21], next-to-leading-order plus next-to-next-to-lead- ing-log fortt[22], and next-to-leading-order forWW,WZ, andZZ[23]. Single top andW=Zþcross sections come from MC@NLO and MADGRAPH, respectively. Studies of Z=!‘‘(‘¼e; ) events have shown that the lepton reconstruction and identification efficiencies, energy scale, and resolution need to be adjusted in the MC calculations to properly describe the data. The appropriate corrections are applied to the MC calculations in order to improve the modeling of the backgrounds.

The processesW=Zþ,W=Zþjets, and pure QCD jet production give rise to background in addition to prompt leptons, which come fromW andZdecay. Jets misidenti- fied as leptons, electrons from photon conversions, and leptons from hadron decays (including b- and c-hadron decays) are classified as instrumental background. The instrumental background accounts for 20% of the

expected edata yield. The dominant component of the instrumental background comes from events with one prompt lepton and one jet identified as a lepton, with an additional contribution from events with two misidentified jets. These sources are referred to as jet instrumental background and are estimated by using data. The back- ground component initiated by prompt photons, referred to as the photon instrumental background, is estimated from MC calculations.

The jet instrumental background is estimated by using data in the following way. Two selections are defined, both requiring at least one lepton satisfying all lepton criteria.

The selections are defined by the second lepton candidate:

The ‘‘tight’’ selection requires the second candidate to pass all lepton criteria, while the ‘‘loose’’ selection does not enforce the lepton isolation requirement. The probability for a lepton to satisfy the lepton isolation requirement is estimated by applying the loose and tight selections on Z= !‘‘events. The probability for a jet to satisfy the lepton isolation requirement is estimated by applying the loose and tight selections on a sample of QCD dijet events to which a cut on the missing transverse energy EmissT <

15 GeV is applied to removeWþjets events. These two probabilities, along with numbers of events selected in the loose and tight samples, are used to estimate the back- ground in the final selected sample. The background is estimated to be 12þ105 events for candidates with one electron and one jet satisfying the muon selection criteria and19þ287 events for candidates with one muon and one jet satisfying the electron selection criteria. The dominant uncertainty on the jet instrumental background estimation comes from the pT dependence of the probability for a jet to pass the lepton isolation criterion. The background due to two jets satisfying the lepton requirements is esti- mated to be1:3þ51:3events from same-sign dilepton events in the data with the subtraction of contributions estimated from MC calculations for all physics processes except the QCD multijet. The overall jet instrumental background is found to be29þ3010events. This background level has been checked in simulated samples, which agree with the data- driven estimates.

The dominant photon instrumental background comes from theWð!ÞandZð!Þprocesses where the photon is reconstructed as an electron. A photon can be reconstructed as an electron if it lies close to a charged particle track or the photon converts to eþe after inter- acting with the material in front of the calorimeter. The photon instrumental background is found to be 4:00:7 events.

TableIshows the number of events selected in the data and the estimated background contributions with their uncertainties. A total of 160 e candidates are observed in the data, while the expectation from SM processes is 163þ3418events. The dominant sources of systematic uncer- tainty for the SM prediction arise from the uncertainty on

(4)

the probability for a jet to satisfy the lepton isolation requirement (70% for an electron and 30% for a muon), theoretical cross sections on the physics background pro- cesses (5%–15%), and the integrated luminosity (11%).

Other systematic uncertainties from the lepton trigger, reconstruction and identification efficiencies, energy or momentum scale, and resolution have been included and are small.

Since no excess is observed in the data, limits are set for the production of~in RPV supersymmetric models and an LFVZ0-like vector boson.

The RPV production of~byddannihilation decaying intoeis considered. By fixing all RPV couplings but0311 and 312 to zero, the contributions to the e final state originate from the ~ only. With these couplings, along with the assumption that~is the lightest supersymmetric particle, the ~ can decay only to dd or e. The signal cross section depends on the~mass (m~),0311, and312. The third-generation~is considered since stringent limits exist on the electron sneutrino and muon sneutrino [1]. The couplings 0311¼0:11 and 312 ¼0:07, compatible with the current indirect limits [1], are chosen as a benchmark point.

Aneresonance can be generated in models containing a heavy neutral gauge boson with nondiagonal lepton flavor couplingsZ0[24]. Very stringent limits on the com- bination of the mass and the coupling toeeandeof such models have been inferred from searches for rare muon decay [2]. By using the data presented in this Letter, a limit on the production cross section times branching ratio toe can be placed on a Z-like vector boson. To calculate the acceptance and efficiency, theZ0 is assumed to have the same quark and lepton couplings as the SMZ.

MC events with~orZ0decaying intoeare generated withHERWIG[20,25] orPYTHIA, respectively. Samples are produced with sneutrino masses ranging from 0.1 to 1 TeV andZ0masses from 0.7 to 1 TeV.

Theeinvariant mass distribution is presented in Fig.1 for data, background contributions, and two possible new physics signals: a~withm~ ¼650 GeV and aZ0 with mZ0 ¼700 GeV. The cross section is 0.31 pb form~ ¼ 650 GeV [26] and 0.61 pb for mZ0 ¼700 GeV [27]. The

corresponding overall acceptance times efficiency is 55%

for~and 50% forZ0.

Themespectrum is examined for the presence of a new heavy particle. Form~<500 GeV, the search region for specificm~is defined to beðm~3 ; m~ þ3 Þ, where is the expected me resolution (e.g., ’15 GeV for m~ ¼400 GeV). For higher m~, the region me>

400 GeV is used. The expected and observed 95% C.L.

upper limits on ðpp!~Þ BRð~!eÞ are calcu- lated by using a Bayesian method [28] with a flat prior for the signal cross section as a function of m~. Figure 2(a) shows the expected and observed limits, as a function of m~, together with the 1 and 2 standard deviation uncertainty bands. The expected exclusion limits are de- termined by using simulated pseudoexperiments contain- ing only SM processes by evaluating the 95% C.L. upper limits for each pseudoexperiment at each value ofm~. The median of the distribution of limits is shown as the ex- pected limit. The ensemble of limits is also used to find the 1 and2 envelope of the expected limits as a function of m~. For a sneutrino with a mass of 100 GeV (1 TeV), the limit on the cross section times branching ratio is 0.951 (0.154) pb. The theoretical cross sections for0311¼0:11, 312 ¼0:07and0311¼0:10,312 ¼0:05are also shown.

Sneutrinos with masses below 0.75 (0.65) TeV are excluded by using 0311¼0:11 and 312¼0:07 (0311 ¼0:10 and 312 ¼0:05). The results improve on the previous CDF 95% C.L. limit of 0.56 TeV assuming 0311¼0:10 and 312 ¼0:05. The 95% C.L. observed upper limits on 0311 as a function ofm~ are shown in Fig.2(b)for three values of312, together with the exclusion region obtained from the D0 experiment [7]. The limits derived here are extended to a higher mass region than was available at D0,

Events / 50 GeV

10-2

10-1

1 10 102

103

104 Instrumental

WW/WZ (650 GeV) ν∼τ

Z’(700 GeV) Data 2010

Total Bkg.

Top ττ

* γ Z/

= 7 TeV s

Ldt = 35 pb-1

ATLAS

[GeV]

µ

me

0 100 200 300 400 500 600 700 800 900 1000

Data/SM

0 1 2

FIG. 1 (color online). Observed and predicted e invariant mass distributions. Signal simulations are shown for m~¼ 650 GeV (0311¼0:11 and312¼0:07) and mZ0¼700 GeV.

The ratio plot at the bottom includes only statistical uncertain- ties.

TABLE I. Estimated backgrounds in the selected sample, to- gether with the observed event yield.

Process Number of events

Z=! 547

tt 579

WW 13:41:7

Single top 4:60:9

WZ 0:790:11

Instrumental background 33þ3010

Total background 163þ3418

Data 160

(5)

even though the limits are worse than those obtained by the D0 Collaboration in the low mass region due to limited statistics.

A similar method is used to set limits on the LFVZ0-like vector boson, by using only events withme>400 GeV. After finding no events in the data, the 95% C.L. upper limits on ðpp!Z0Þ BRðZ0 !eÞare set, as shown in Fig.3. The expected limit is the same as the observed limit because the median background event count expectation is also zero. For aZ0 with a mass of 700 GeV (1 TeV), the limit on the cross section times branching ratio is 0.175 (0.183) pb. This result improves upon previous CDF limits by probing a higher mass range ofZ0-like vector particles.

In conclusion, a search has been performed for a heavy particle decaying into the e final state by using pp

collision data at ffiffiffi ps

¼7 TeV recorded by the ATLAS detector. The data are found to be consistent with the SM prediction. Exclusions are placed on two representative models at 95% C.L. In an RPV supersymmetric model, tau sneutrinos with a mass below 0.75 TeV are excluded, assuming single coupling dominance and coupling values 0311 ¼0:11and 312¼0:07. Higher values of the RPV coupling are also excluded as a function ofm~. In an LFV model, extra Z0-like gauge bosons are excluded with a cross section times branching ratio above 0.183 pb, assum- ing mZ0 ¼1 TeV. These results extend to higher mass RPV sneutrinos and LFV Z’s than previous constraints from the Tevatron.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina;

YerPhI, Armenia; ARC, Australia; BMWF, Austria;

ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN;

CONICYT, Chile; CAS, MOST, and NSFC, China;

COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; ARTEMIS, European Union;

IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, The Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR;

MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan;

TAEK, Turkey; STFC, the Royal Society and Leverhulme

[GeV]

mZ’

700 800 900 1000

) [pb]µ eBR(Z’× Z’) (ppσ

0 0.1 0.2 0.3 0.4 0.5 0.6

Observed Limit Expected Limit

σ

± 1 Expected Limit

σ

± 2 Expected Limit

Ldt = 35 pb-1

= 7 TeV s ATLAS

FIG. 3 (color online). The observed 95% C.L. upper limits on ðpp!Z0Þ BRðZ0!eÞ. The expected limits are also shown together with the 1and2 standard deviation uncer- tainty bands. The1 and2 uncertainty bands cannot reach below the expectation due to the same reason as in Fig.2(a).

[GeV]

ν∼τ

m

100 200 300 400 500 600 700 800 900 1000 )[pb]µeτν∼ BR(×)τν∼(ppσ

10-1

1 10 102

= 0.07 λ312 = 0.11,

311 λ Theory

= 0.05 λ312 = 0.10,

311 λ Theory Observed Limit Expected Limit σ

±1 Expected Limit

σ

±2 Expected Limit

Ldt = 35 pb-1

= 7 TeV s ATLAS

(a)

[GeV]

ν∼τ

m

100 200 300 400 500 600 700 800

311λ

10-3

10-2

10-1

= 0.07 λ312

= 0.05 λ312

= 0.01 λ312

= 0.07(D0@Tevatron) λ312

Ldt = 35 pb-1

= 7 TeV s ATLAS

(b)

FIG. 2 (color online). (a) The observed 95% C.L. upper limits on ðpp!~Þ BRð~!eÞ as a function of m~. The expected limits are also shown together with the 1 and 2 standard deviation uncertainty bands. The theoretical cross sec- tions for0311¼0:11,312¼0:07and0311¼0:10,312¼0:05 are also shown. Forme>400 GeV, the total SM background is 0:670:19, and the median of number of events expected from pseudoexperiments is 0; therefore, the 1 and 2 uncer- tainty bands cannot reach below this expectation. (b) The 95%

C.L. upper limits on the0311coupling as a function ofm~ for three values of312. Regions above the three curves represent ranges of 0311 values that are excluded. These results are compared to the exclusion region obtained from the D0 experiment.

(6)

Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC- IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (The Netherlands), PIC (Spain), ASGC (Taiwan), RAL (United Kingdom), and BNL (USA) and in the Tier-2 facilities worldwide.

[1] R. Barbieret al.,Phys. Rep.420, 1 (2005).

[2] B. Murakami,Phys. Rev. D65, 055003 (2002).

[3] D. Acostaet al.(CDF Collaboration),Phys. Rev. Lett.91, 171602 (2003).

[4] A. Abulenciaet al.(CDF Collaboration),Phys. Rev. Lett.

96, 211802 (2006).

[5] T. Aaltonen et al.(CDF Collaboration),Phys. Rev. Lett.

105, 191801 (2010).

[6] V. M. Abazovet al. (D0 Collaboration),Phys. Rev. Lett.

100, 241803 (2008).

[7] V. M. Abazovet al. (D0 Collaboration),Phys. Rev. Lett.

105, 191802 (2010).

[8] G. Aad et al. (ATLAS Collaboration),JINST3, S08003 (2008).

[9] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of the detector and thezaxis along the beam pipe. Thex axis points from the interaction point to the center of the LHC ring, and theyaxis points upward. Cylindrical coordinates ðr; Þ are used in the transverse plane, being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle as ¼ lntanð=2Þ.

[10] G. Aadet al.(ATLAS Collaboration),Eur. Phys. J. C71, 1630 (2011).

[11] G. Aad et al. (ATLAS Collaboration), J. High Energy Phys. 12 (2010) 060.

[12] M. Cacciari, G. P. Salam, and G. Soyez,J. High Energy Phys. 04 (2008) 063.

[13] S. Agostinelli et al. (GEANT4 Collaboration), Nucl.

Instrum. Methods Phys. Res., Sect. A506, 250 (2003).

[14] G. Aadet al.(ATLAS Collaboration),Eur. Phys. J. C70, 823 (2010).

[15] ATLAS Collaboration, Report No. ATL-PHYS-PUB- 2010-002.

[16] T. Sjostrand, S. Mrenna, and P. Z. Skands,J. High Energy Phys. 05 (2006) 026.

[17] P. Nason,J. High Energy Phys. 11 (2004) 040; S. Frixione, P. Nason, and C. Oleari,J. High Energy Phys. 11 (2007) 070; S. Frixione, P. Nason, and G. Ridolfi,J. High Energy Phys. 09 (2007) 126.

[18] J. Alwallet al.,J. High Energy Phys. 09 (2007) 028.

[19] S. Frixione and B. R. Webber,J. High Energy Phys. 06 (2002) 029; S. Frixione, E. Laenen, and P. Motylinski,J.

High Energy Phys. 03 (2006) 092; S. Frixione et al.,J.

High Energy Phys. 07 (2008) 029.

[20] G. Marchesiniet al.,Comput. Phys. Commun. 67, 465 (1992); G. Corcellaet al.,J. High Energy Phys. 01 (2001) 010.

[21] K. Melnikov and F. Petriello,Phys. Rev. D 74, 114017 (2006).

[22] R. Boncianiet al.,Nucl. Phys.B529, 424 (1998).

[23] J. Campbell, R. Ellis, and D. Rainwater,Phys. Rev. D68, 094021 (2003).

[24] P. Langacker,Rev. Mod. Phys.81, 1199 (2009).

[25] S. Morettiet al.,J. High Energy Phys. 04 (2002) 028.

[26] S.-M. Wanget al.,Phys. Rev. D74, 057902 (2006); S. M.

Wanget al.,Chin. Phys. Lett.25, 58 (2008).

[27] R. Hamberg, W. L. van Neerven, and T. Matsuura,Nucl.

Phys.B359, 343 (1991).

[28] J. Heinrich and L. Lyons,Annu. Rev. Nucl. Part. Sci.57, 145 (2007).

G. Aad,48B. Abbott,111J. Abdallah,11A. A. Abdelalim,49A. Abdesselam,118O. Abdinov,10B. Abi,112M. Abolins,88 H. Abramowicz,153H. Abreu,115E. Acerbi,89a,89bB. S. Acharya,164a,164bD. L. Adams,24T. N. Addy,56 J. Adelman,175M. Aderholz,99S. Adomeit,98P. Adragna,75T. Adye,129S. Aefsky,22J. A. Aguilar-Saavedra,124b,b

M. Aharrouche,81S. P. Ahlen,21F. Ahles,48A. Ahmad,148M. Ahsan,40G. Aielli,133a,133bT. Akdogan,18a T. P. A. A˚ kesson,79G. Akimoto,155A. V. Akimov,94A. Akiyama,67M. S. Alam,1M. A. Alam,76S. Albrand,55 M. Aleksa,29I. N. Aleksandrov,65F. Alessandria,89aC. Alexa,25aG. Alexander,153G. Alexandre,49T. Alexopoulos,9

M. Alhroob,20M. Aliev,15G. Alimonti,89aJ. Alison,120M. Aliyev,10P. P. Allport,73S. E. Allwood-Spiers,53 J. Almond,82A. Aloisio,102a,102bR. Alon,171A. Alonso,79M. G. Alviggi,102a,102bK. Amako,66P. Amaral,29 C. Amelung,22V. V. Ammosov,128A. Amorim,124a,cG. Amoro´s,167N. Amram,153C. Anastopoulos,139T. Andeen,34

C. F. Anders,20K. J. Anderson,30A. Andreazza,89a,89bV. Andrei,58aM-L. Andrieux,55X. S. Anduaga,70 A. Angerami,34F. Anghinolfi,29N. Anjos,124aA. Annovi,47A. Antonaki,8M. Antonelli,47S. Antonelli,19a,19b A. Antonov,96J. Antos,144bF. Anulli,132aS. Aoun,83L. Aperio Bella,4R. Apolle,118G. Arabidze,88I. Aracena,143

Y. Arai,66A. T. H. Arce,44J. P. Archambault,28S. Arfaoui,29,dJ-F. Arguin,14E. Arik,18a,aM. Arik,18a A. J. Armbruster,87O. Arnaez,81C. Arnault,115A. Artamonov,95G. Artoni,132a,132bD. Arutinov,20S. Asai,155 R. Asfandiyarov,172S. Ask,27B. A˚ sman,146a,146bL. Asquith,5K. Assamagan,24A. Astbury,169A. Astvatsatourov,52

G. Atoian,175B. Aubert,4B. Auerbach,175E. Auge,115K. Augsten,127M. Aurousseau,145aN. Austin,73 R. Avramidou,9D. Axen,168C. Ay,54G. Azuelos,93,eY. Azuma,155M. A. Baak,29G. Baccaglioni,89a

(7)

C. Bacci,134a,134bA. M. Bach,14H. Bachacou,136K. Bachas,29G. Bachy,29M. Backes,49M. Backhaus,20 E. Badescu,25aP. Bagnaia,132a,132bS. Bahinipati,2Y. Bai,32aD. C. Bailey,158T. Bain,158J. T. Baines,129 O. K. Baker,175M. D. Baker,24S. Baker,77F. Baltasar Dos Santos Pedrosa,29E. Banas,38P. Banerjee,93 Sw. Banerjee,169D. Banfi,29A. Bangert,137V. Bansal,169H. S. Bansil,17L. Barak,171S. P. Baranov,94A. Barashkou,65 A. Barbaro Galtieri,14T. Barber,27E. L. Barberio,86D. Barberis,50a,50bM. Barbero,20D. Y. Bardin,65T. Barillari,99 M. Barisonzi,174T. Barklow,143N. Barlow,27B. M. Barnett,129R. M. Barnett,14A. Baroncelli,134aA. J. Barr,118

F. Barreiro,80J. Barreiro Guimara˜es da Costa,57P. Barrillon,115R. Bartoldus,143A. E. Barton,71D. Bartsch,20 V. Bartsch,149R. L. Bates,53L. Batkova,144aJ. R. Batley,27A. Battaglia,16M. Battistin,29G. Battistoni,89a F. Bauer,136H. S. Bawa,143,fB. Beare,158T. Beau,78P. H. Beauchemin,118R. Beccherle,50aP. Bechtle,41H. P. Beck,16 M. Beckingham,48K. H. Becks,174A. J. Beddall,18cA. Beddall,18cS. Bedikian,175V. A. Bednyakov,65C. P. Bee,83

M. Begel,24S. Behar Harpaz,152P. K. Behera,63M. Beimforde,99C. Belanger-Champagne,166P. J. Bell,49 W. H. Bell,49G. Bella,153L. Bellagamba,19aF. Bellina,29M. Bellomo,119aA. Belloni,57O. Beloborodova,107 K. Belotskiy,96O. Beltramello,29S. Ben Ami,152O. Benary,153D. Benchekroun,135aC. Benchouk,83M. Bendel,81

B. H. Benedict,163N. Benekos,165Y. Benhammou,153D. P. Benjamin,44M. Benoit,115J. R. Bensinger,22 K. Benslama,130S. Bentvelsen,105D. Berge,29E. Bergeaas Kuutmann,41N. Berger,4F. Berghaus,169E. Berglund,49 J. Beringer,14K. Bernardet,83P. Bernat,77R. Bernhard,48C. Bernius,24T. Berry,76A. Bertin,19a,19bF. Bertinelli,29 F. Bertolucci,122a,122bM. I. Besana,89a,89bN. Besson,136S. Bethke,99W. Bhimji,45R. M. Bianchi,29M. Bianco,72a,72b

O. Biebel,98S. P. Bieniek,77J. Biesiada,14M. Biglietti,134a,134bH. Bilokon,47M. Bindi,19a,19bS. Binet,115 A. Bingul,18cC. Bini,132a,132bC. Biscarat,177U. Bitenc,48K. M. Black,21R. E. Blair,5J.-B. Blanchard,115 G. Blanchot,29C. Blocker,22J. Blocki,38A. Blondel,49W. Blum,81U. Blumenschein,54G. J. Bobbink,105 V. B. Bobrovnikov,107S. S. Bocchetta,79A. Bocci,44C. R. Boddy,118M. Boehler,41J. Boek,174N. Boelaert,35

S. Bo¨ser,77J. A. Bogaerts,29A. Bogdanchikov,107A. Bogouch,90,aC. Bohm,146aV. Boisvert,76T. Bold,163,g V. Boldea,25aM. Bona,75V. G. Bondarenko,96M. Boonekamp,136G. Boorman,76C. N. Booth,139P. Booth,139

S. Bordoni,78C. Borer,16A. Borisov,128G. Borissov,71I. Borjanovic,12aS. Borroni,132a,132bK. Bos,105 D. Boscherini,19aM. Bosman,11H. Boterenbrood,105D. Botterill,129J. Bouchami,93J. Boudreau,123 E. V. Bouhova-Thacker,71C. Boulahouache,123C. Bourdarios,115N. Bousson,83A. Boveia,30J. Boyd,29

I. R. Boyko,65N. I. Bozhko,128I. Bozovic-Jelisavcic,12bJ. Bracinik,17A. Braem,29P. Branchini,134a G. W. Brandenburg,57A. Brandt,7G. Brandt,15O. Brandt,54U. Bratzler,156B. Brau,84J. E. Brau,114H. M. Braun,174 B. Brelier,158J. Bremer,29R. Brenner,166S. Bressler,152D. Breton,115N. D. Brett,118D. Britton,53F. M. Brochu,27

I. Brock,20R. Brock,88T. J. Brodbeck,71E. Brodet,153F. Broggi,89aC. Bromberg,88G. Brooijmans,34 W. K. Brooks,31bG. Brown,82E. Brubaker,30P. A. Bruckman de Renstrom,38D. Bruncko,144bR. Bruneliere,48 S. Brunet,61A. Bruni,19aG. Bruni,19aM. Bruschi,19aT. Buanes,13F. Bucci,49J. Buchanan,118N. J. Buchanan,2 P. Buchholz,141R. M. Buckingham,118A. G. Buckley,45S. I. Buda,25aI. A. Budagov,65B. Budick,108V. Bu¨scher,81 L. Bugge,117D. Buira-Clark,118E. J. Buis,105O. Bulekov,96M. Bunse,42T. Buran,117H. Burckhart,29S. Burdin,73

T. Burgess,13S. Burke,129E. Busato,33P. Bussey,53C. P. Buszello,166F. Butin,29B. Butler,143J. M. Butler,21 C. M. Buttar,53J. M. Butterworth,77W. Buttinger,27T. Byatt,77S. Cabrera Urba´n,167D. Caforio,19a,19bO. Cakir,3a P. Calafiura,14G. Calderini,78P. Calfayan,98R. Calkins,106L. P. Caloba,23aR. Caloi,132a,132bD. Calvet,33S. Calvet,33

R. Camacho Toro,33A. Camard,78P. Camarri,133a,133bM. Cambiaghi,119a,119bD. Cameron,117J. Cammin,20 S. Campana,29M. Campanelli,77V. Canale,102a,102bF. Canelli,30A. Canepa,159aJ. Cantero,80L. Capasso,102a,102b

M. D. M. Capeans Garrido,29I. Caprini,25aM. Caprini,25aD. Capriotti,99M. Capua,36a,36bR. Caputo,148 C. Caramarcu,25aR. Cardarelli,133aT. Carli,29G. Carlino,102aL. Carminati,89a,89bB. Caron,159aS. Caron,48

C. Carpentieri,48G. D. Carrillo Montoya,172A. A. Carter,75J. R. Carter,27J. Carvalho,124a,hD. Casadei,108 M. P. Casado,11M. Cascella,122a,122bC. Caso,50a,50b,aA. M. Castaneda Hernandez,172E. Castaneda-Miranda,172 V. Castillo Gimenez,167N. F. Castro,124aG. Cataldi,72aF. Cataneo,29A. Catinaccio,29J. R. Catmore,71A. Cattai,29

G. Cattani,133a,133bS. Caughron,88D. Cauz,164a,164cA. Cavallari,132a,132bP. Cavalleri,78D. Cavalli,89a M. Cavalli-Sforza,11V. Cavasinni,122a,122bA. Cazzato,72a,72bF. Ceradini,134a,134bA. S. Cerqueira,23aA. Cerri,29

L. Cerrito,75F. Cerutti,47S. A. Cetin,18bF. Cevenini,102a,102bA. Chafaq,135aD. Chakraborty,106K. Chan,2 B. Chapleau,85J. D. Chapman,27J. W. Chapman,87E. Chareyre,78D. G. Charlton,17V. Chavda,82S. Cheatham,71

S. Chekanov,5S. V. Chekulaev,159aG. A. Chelkov,65M. A. Chelstowska,104C. Chen,64H. Chen,24L. Chen,2 S. Chen,32cT. Chen,32cX. Chen,172S. Cheng,32aA. Cheplakov,65V. F. Chepurnov,65R. Cherkaoui El Moursli,135e

V. Chernyatin,24E. Cheu,6S. L. Cheung,158L. Chevalier,136G. Chiefari,102a,102bL. Chikovani,51J. T. Childers,58a

(8)

A. Chilingarov,71G. Chiodini,72aM. V. Chizhov,65G. Choudalakis,30S. Chouridou,137I. A. Christidi,77 A. Christov,48D. Chromek-Burckhart,29M. L. Chu,151J. Chudoba,125G. Ciapetti,132a,132bK. Ciba,37A. K. Ciftci,3a R. Ciftci,3aD. Cinca,33V. Cindro,74M. D. Ciobotaru,163C. Ciocca,19a,19bA. Ciocio,14M. Cirilli,87M. Ciubancan,25a

A. Clark,49P. J. Clark,45W. Cleland,123J. C. Clemens,83B. Clement,55C. Clement,146a,146bR. W. Clifft,129 Y. Coadou,83M. Cobal,164a,164cA. Coccaro,50a,50bJ. Cochran,64P. Coe,118J. G. Cogan,143J. Coggeshall,165 E. Cogneras,177C. D. Cojocaru,28J. Colas,4A. P. Colijn,105C. Collard,115N. J. Collins,17C. Collins-Tooth,53 J. Collot,55G. Colon,84G. Comune,88P. Conde Muin˜o,124aE. Coniavitis,118M. C. Conidi,11M. Consonni,104

S. Constantinescu,25aC. Conta,119a,119bF. Conventi,102a,iJ. Cook,29M. Cooke,14B. D. Cooper,77 A. M. Cooper-Sarkar,118N. J. Cooper-Smith,76K. Copic,34T. Cornelissen,50a,50bM. Corradi,19aF. Corriveau,85,j

A. Cortes-Gonzalez,165G. Cortiana,99G. Costa,89aM. J. Costa,167D. Costanzo,139T. Costin,30D. Coˆte´,29 R. Coura Torres,23aL. Courneyea,169G. Cowan,76C. Cowden,27B. E. Cox,82K. Cranmer,108F. Crescioli,122a,122b

M. Cristinziani,20G. Crosetti,36a,36bR. Crupi,72a,72bS. Cre´pe´-Renaudin,55C. Cuenca Almenar,175 T. Cuhadar Donszelmann,139S. Cuneo,50a,50bM. Curatolo,47C. J. Curtis,17P. Cwetanski,61H. Czirr,141

Z. Czyczula,117S. D’Auria,53M. D’Onofrio,73A. D’Orazio,132a,132bA. Da Rocha Gesualdi Mello,23a P. V. M. Da Silva,23aC. Da Via,82W. Dabrowski,37A. Dahlhoff,48T. Dai,87C. Dallapiccola,84S. J. Dallison,129,a

M. Dam,35M. Dameri,50a,50bD. S. Damiani,137H. O. Danielsson,29R. Dankers,105D. Dannheim,99V. Dao,49 G. Darbo,50aG. L. Darlea,25bC. Daum,105J. P. Dauvergne,29W. Davey,86T. Davidek,126N. Davidson,86 R. Davidson,71M. Davies,93A. R. Davison,77E. Dawe,142I. Dawson,139J. W. Dawson,5,aR. K. Daya,39K. De,7

R. de Asmundis,102aS. De Castro,19a,19bP. E. De Castro Faria Salgado,24S. De Cecco,78J. de Graat,98 N. De Groot,104P. de Jong,105C. De La Taille,115H. De la Torre,80B. De Lotto,164a,164cL. De Mora,71 L. De Nooij,105M. De Oliveira Branco,29D. De Pedis,132aP. de Saintignon,55A. De Salvo,132aU. De Sanctis,164a,164c

A. De Santo,149J. B. De Vivie De Regie,115S. Dean,77D. V. Dedovich,65J. Degenhardt,120M. Dehchar,118 M. Deile,98C. Del Papa,164a,164cJ. Del Peso,80T. Del Prete,122a,122bA. Dell’Acqua,29L. Dell’Asta,89a,89b M. Della Pietra,102a,iD. della Volpe,102a,102bM. Delmastro,29P. Delpierre,83N. Delruelle,29P. A. Delsart,55

C. Deluca,148S. Demers,175M. Demichev,65B. Demirkoz,11J. Deng,163S. P. Denisov,128D. Derendarz,38 J. E. Derkaoui,135dF. Derue,78P. Dervan,73K. Desch,20E. Devetak,148P. O. Deviveiros,158A. Dewhurst,129 B. DeWilde,148S. Dhaliwal,158R. Dhullipudi,24,kA. Di Ciaccio,133a,133bL. Di Ciaccio,4A. Di Girolamo,29 B. Di Girolamo,29S. Di Luise,134a,134bA. Di Mattia,88B. Di Micco,29R. Di Nardo,133a,133bA. Di Simone,133a,133b R. Di Sipio,19a,19bM. A. Diaz,31aF. Diblen,18cE. B. Diehl,87H. Dietl,99J. Dietrich,48T. A. Dietzsch,58aS. Diglio,115 K. Dindar Yagci,39J. Dingfelder,20C. Dionisi,132a,132bP. Dita,25aS. Dita,25aF. Dittus,29F. Djama,83R. Djilkibaev,108

T. Djobava,51M. A. B. do Vale,23aA. Do Valle Wemans,124aT. K. O. Doan,4M. Dobbs,85R. Dobinson,29,a D. Dobos,42E. Dobson,29M. Dobson,163J. Dodd,34O. B. Dogan,18a,aC. Doglioni,118T. Doherty,53Y. Doi,66,a

J. Dolejsi,126I. Dolenc,74Z. Dolezal,126B. A. Dolgoshein,96,aT. Dohmae,155M. Donadelli,23bM. Donega,120 J. Donini,55J. Dopke,29A. Doria,102aA. Dos Anjos,172M. Dosil,11A. Dotti,122a,122bM. T. Dova,70J. D. Dowell,17

A. D. Doxiadis,105A. T. Doyle,53Z. Drasal,126J. Drees,174N. Dressnandt,120H. Drevermann,29C. Driouichi,35 M. Dris,9J. G. Drohan,77J. Dubbert,99T. Dubbs,137S. Dube,14E. Duchovni,171G. Duckeck,98A. Dudarev,29 F. Dudziak,64M. Du¨hrssen,29I. P. Duerdoth,82L. Duflot,115M-A. Dufour,85M. Dunford,29H. Duran Yildiz,3b R. Duxfield,139M. Dwuznik,37F. Dydak,29D. Dzahini,55M. Du¨ren,52W. L. Ebenstein,44J. Ebke,98S. Eckert,48 S. Eckweiler,81K. Edmonds,81C. A. Edwards,76W. Ehrenfeld,41T. Ehrich,99T. Eifert,29G. Eigen,13K. Einsweiler,14

E. Eisenhandler,75T. Ekelof,166M. El Kacimi,4M. Ellert,166S. Elles,4F. Ellinghaus,81K. Ellis,75N. Ellis,29 J. Elmsheuser,98M. Elsing,29R. Ely,14D. Emeliyanov,129R. Engelmann,148A. Engl,98B. Epp,62A. Eppig,87 J. Erdmann,54A. Ereditato,16D. Eriksson,146aJ. Ernst,1M. Ernst,24J. Ernwein,136D. Errede,165S. Errede,165 E. Ertel,81M. Escalier,115C. Escobar,167X. Espinal Curull,11B. Esposito,47F. Etienne,83A. I. Etienvre,136 E. Etzion,153D. Evangelakou,54H. Evans,61L. Fabbri,19a,19bC. Fabre,29K. Facius,35R. M. Fakhrutdinov,128 S. Falciano,132aA. C. Falou,115Y. Fang,172M. Fanti,89a,89bA. Farbin,7A. Farilla,134aJ. Farley,148T. Farooque,158

S. M. Farrington,118P. Farthouat,29D. Fasching,172P. Fassnacht,29D. Fassouliotis,8B. Fatholahzadeh,158 A. Favareto,89a,89bL. Fayard,115S. Fazio,36a,36bR. Febbraro,33P. Federic,144aO. L. Fedin,121I. Fedorko,29 W. Fedorko,88M. Fehling-Kaschek,48L. Feligioni,83D. Fellmann,5C. U. Felzmann,86C. Feng,32dE. J. Feng,30

A. B. Fenyuk,128J. Ferencei,144bJ. Ferland,93B. Fernandes,124a,cW. Fernando,109S. Ferrag,53J. Ferrando,118 V. Ferrara,41A. Ferrari,166P. Ferrari,105R. Ferrari,119aA. Ferrer,167M. L. Ferrer,47D. Ferrere,49C. Ferretti,87 A. Ferretto Parodi,50a,50bM. Fiascaris,30F. Fiedler,81A. Filipcˇicˇ,74A. Filippas,9F. Filthaut,104M. Fincke-Keeler,169

Références

Documents relatifs

76 Department of Physics and Astronomy, University College London, London, United Kingdom. 77 Laboratoire de Physique Nucle´aire et de Hautes Energies, UPMC and

No event is found in the signal region, leading to an upper limit on the production cross section at 95% confidence level of 1.6/ϵ  fb for Dirac magnetic monopoles with the minimum

77 Department of Physics and Astronomy, University College London, London, United Kingdom. 78 Laboratoire de Physique Nucle´aire et de Hautes Energies, UPMC and

77 Department of Physics and Astronomy, University College London, London, United Kingdom. 78 Laboratoire de Physique Nucle´aire et de Hautes Energies, UPMC and

Table 10 Measurements of the visible cross section and peak specific luminosity for all algorithms that have been calibrated using the vdM scan data for each of the three beam

77 Department of Physics and Astronomy, University College London, London, United Kingdom. 78 Laboratoire de Physique Nucle´aire et de Hautes Energies, UPMC and

We search for an excess of events with an electron or muon, at least five jets (one identified as due to a b or c quark), and an imbalance of transverse momentum by using data from

Due to the tighter requirements on control regions for the electron channel background estimation, this method also suffers from a limited number of events in data and simulation