• Aucun résultat trouvé

Two novel Rickettsia species of soft ticks in North Africa: ‘Candidatus Rickettsia africaseptentrionalis’ and ‘Candidatus Rickettsia mauretanica’

N/A
N/A
Protected

Academic year: 2021

Partager "Two novel Rickettsia species of soft ticks in North Africa: ‘Candidatus Rickettsia africaseptentrionalis’ and ‘Candidatus Rickettsia mauretanica’"

Copied!
22
0
0

Texte intégral

(1)

HAL Id: hal-03001768

https://hal.archives-ouvertes.fr/hal-03001768

Submitted on 18 Nov 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Two novel Rickettsia species of soft ticks in North

Africa: ‘Candidatus Rickettsia africaseptentrionalis’ and

‘Candidatus Rickettsia mauretanica’

Marie Buysse, Olivier Duron

To cite this version:

Marie Buysse, Olivier Duron. Two novel Rickettsia species of soft ticks in North Africa: ‘Candida-tus Rickettsia africaseptentrionalis’ and ‘Candida‘Candida-tus Rickettsia mauretanica’. Ticks and Tick-Borne Diseases, 2020, 11 (3), pp.101376. �10.1016/j.ttbdis.2020.101376�. �hal-03001768�

(2)

1

Two novel Rickettsia species of soft ticks in North Africa: ‘Candidatus

1

Rickettsia africaseptentrioalis’ and ‘Candidatus Rickettsia mauretaniae’

2 3

Marie Buysse1 and Olivier Duron1* 4

5

1 Laboratoire Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle 6

(MIVEGEC), Centre National de la Recherche Scientifique (CNRS) - Institut pour la 7

Recherche et le Développement (IRD) - Université de Montpellier (UM), 911 Avenue 8

Agropolis, F-34394 Montpellier, France 9

* Correspondence: olivier.duron@ird.fr 10

(3)

2

Abstract

11

Rickettsia are obligate intracellular bacteria often associated with hard ticks but more rarely 12

with soft ticks. In this study, we detected two putative novel Rickettsia species in three soft 13

species from North Africa: Ornithodoros occidentalis from Morocco, Ornithodoros erraticus 14

from Algeria and Ornithodoros normandi from Tunisia. We characterized these two novel 15

Rickettsia species on the basis of comparative DNA sequence analyses and phylogenetics of 16

four genes (gltA, 16S rRNA, coxA and ompB). These Rickettsia, provisionally named 17

‘Candidatus Rickettsia africaseptentrioalis’ and ‘Candidatus Rickettsia mauretaniae’, differed 18

in nucleotide sequence from those of other Rickettsia species by 0.14–21.43% depending on 19

the gene examined. Phylogenetics further showed that the two novel Rickettsia species are 20

closely related to each other and represent sister taxa to R. hoogstraalii, R. felis and R. 21

asemboensis within the transitional Rickettsia group. While Ornithodoros host species of 22

‘Candidatus Rickettsia africaseptentrioalis’ and ‘Candidatus Rickettsia mauretaniae’ are 23

among the most common soft ticks to bite humans, their pathogenicity remains to be 24 investigated. 25 26 Key words 27

Soft ticks; Ornithodoros; Rickettsia; North Africa 28

(4)

3

1. Introduction

29

Members of the genus Rickettsia are obligate intracellular bacteria infecting eukaryotes. There 30

are currently more than 30 recognized species but the advent of multilocus sequence typing 31

(MLST) and molecular phylogenetics has recently led to the description of several new 32

putative species (Labruna, 2009; Parola et al., 2005; Weinert, 2015; Weinert et al., 2009). 33

Nowadays, the best known Rickettsia species are the causative agents of severe diseases in 34

humans and other mammals, including Rocky Mountain spotted fever and epidemic typhus 35

(Parola et al., 2005; Perlman et al., 2006; Weinert, 2015). These Rickettsia species are all 36

associated with blood-feeding arthropods (ticks, mites, lice and fleas) which widely transmit 37

infections to vertebrates. However, not all Rickettsia are pathogens since many are 38

exclusively found in arthropods (e.g., ladybirds, spiders and book lice) in which they undergo 39

maternal (transovarial) transmission to offspring (Behar et al., 2010; Gottlieb et al., 2006; 40

Perlman et al., 2006; Weinert et al., 2009), as exemplified with R. buchneri in the blacklegged 41

tick Ixodes scapularis (Kurtti et al., 2015). 42

43

In recent years, Rickettsia spp. have been discovered in a diverse range of hosts, but hard ticks 44

(Ixodid) remain undoubtedly among the main arthropod hosts (Labruna, 2009; Perlman et al., 45

2006; Weinert et al., 2015, 2009). By contrast, only a few Rickettsia have been reported from 46

few soft ticks (Argasid): this includes R. bellii and R. hoogstraalii, which are both regularly 47

identified in Argas spp. and Ornithodoros spp., but also the R. wissemanii, R. nicoyana, R. 48

lusitianiae and undetermined species, which are known only from a few Ornithodoros and 49

Argas species (Duh et al., 2010; Duron et al., 2018; Hornok et al., 2019; Milhano et al., 2014; 50

Moreira-Soto et al., 2017; Sánchez-Montes et al., 2016; Tahir et al., 2016; Yan et al., 2019). 51

In a recent study, Duron et al. (2017) examined a collection of 26 soft tick species and 52

detected infection by Rickettsia in one Argas and 15 Ornithodoros species. While some of 53

these Rickettsia infections were not assigned to known species, examination of gltA 54

(5)

4 phylogeny showed that most of them were closely related to R. lusitianiae and R. bellii

55

(Duron et al., 2017). 56

57

In this paper, we report on the discovery of two putative new species of Rickettsia in nymphs 58

of three soft tick species from North Africa: O. occidentalis from Morocco, O. erraticus from 59

Algeria and O. normandi from Tunisia. We used MLST gene sequences, including gltA, coxA, 60

ompB and 16S rRNA, and phylogenetics for the description of these infections. We further 61

examined their genetic proximity with known Rickettsia species and strains. 62

63

2. Materials and Methods

64

2.1. Tick DNA collection 65

Our preliminary examination of the gltA Rickettsia sequences obtained from soft ticks by 66

Duron et al. (2017) showed that six sequences (GenBank accession numbers: O. erraticus, 67

KY678045; O. normandi, KY678051; O. occidentalis, pending) cannot be assigned to known 68

Rickettsia species and strains, as we detailed below in the Results section. These six gltA 69

Rickettsia sequences were obtained from nymphs of O. occidentalis from Morocco (locality 70

Fez, 2010: n=3; locality Taza, 2010: n=1), O. erraticus from Algeria (locality Taher, 2010: 71

n=1) and O. normandi from Tunisia (locality Bizerte, 2010: n=1). The two most distant 72

localities (Fez and Bizerte) are approximately 1000 km apart. These six nymphs were 73

primarily collected through the examination of rodent burrows (Trape et al., 2013). They were 74

further individually washed in three sterile water baths, air dried and collected in sterile 75

microtubes. DNA was individually crushed by shaking with a bead beater (mixer mill 76

MM301, Qiagen, Hilden, Germany), and then DNA was isolated and purified using the 77

DNeasy Blood and Tissue Extraction Kit (Qiagen) following the manufacturer’s instructions 78

as described in Trape et al., 2013. 79

(6)

5 2.2. Molecular typing

81

DNA templates of the six nymphs mentioned above were used for Rickettsia molecular 82

typing. Along with the gltA gene already sequenced, we amplified three other genes, 16S 83

rRNA, coxA, ompB, using nested or nested PCR assays (Table 1). The use of semi-84

nested or nested PCR was efficient at decreasing the probability of contamination from 85

unwanted amplification products (false positives). To prevent possible contamination, 86

different parts of this process were physically separated from one another, in entirely separate 87

rooms. All amplicons were also sequenced to control for false positive amplifications. Gene 88

features, primers and PCR conditions are detailed in Table 1. 89

90

Semi-nested and nested PCR amplifications were performed as follows: the first PCR run 91

with the external primers was performed in a 10 μL volume containing ca. 20 ng of genomic 92

DNA, 3 mM of each dNTP (Thermo Scientific), 8 mM of MgCl2 (Roche Diagnostics), 3 μM 93

of each primer, 1 μL of 10X PCR buffer (Roche Diagnostics), and 0.5 U of Taq DNA 94

polymerase (Roche Diagnostics). A 1μL aliquot of the PCR product from the first reaction 95

was then used as a template for the second round of amplification. The second PCR was 96

performed in a total volume of 25 μL and contained 8 mM of each dNTP (Thermo Scientific), 97

10 mM of MgCl2 (ThermoScientific), 7.5 μM of each of the internal primers, 2.5 μL of 10X 98

PCR buffer (Thermo Scientific), and 1.25 U of Taq DNA polymerase (Thermo Scientific). All 99

PCR amplifications were performed under the following conditions: initial denaturation at 100

93°C for 3 min, 35 cycles of denaturation (93°C, 30 s), annealing (Tm=52–56°C, depending 101

on primers, 30 s), extension (72°C, 1 min), and a final extension at 72°C for 5 min. Known 102

positive and negative individuals were used as controls in each PCR assay. All PCR products 103

were visualized with electrophoresis in a 1.5% agarose gel. Positive PCR products were 104

purified and sequenced in both directions (EUROFINS). The chromatograms were manually 105

inspected and cleaned with CHROMAS LITE 106

(7)

6 (http://www.technelysium.com.au/chromas_lite.html) and sequence alignments were done 107

using CLUSTALW (Thompson et al., 2003), both implemented in MEGA (Tamura et al., 108

2007). Novel nucleotide sequences have been deposited in the GenBank nucleotide database 109

(Accession numbers: ‘Candidatus Rickettsia africaseptentrioalis’, gltA [pending], 16S rRNA 110

[pending], coxA [pending] and ompB [pending]; ‘Candidatus Rickettsia mauretaniae’, gltA 111

[pending], 16S rRNA [pending], coxA [pending] and ompB [pending]). 112

113

2.3. Molecular phylogenetics 114

The GBLOCKS program (Castresana, 2000) with default parameters was used to remove 115

poorly aligned positions and to obtain unambiguous sequence alignments. All sequence 116

alignments were also checked for putative recombinant regions using the RDP3 computer 117

analysis package (Martin et al., 2010). Given a set of aligned nucleotide sequences, RDP3 can 118

rapidly analyze these with a range of powerful non-parametric recombination detection 119

methods, including the GENECONV (Sawyer, 1999) and RDP (Martin and Rybicki, 2000). 120

Phylogenetic relationships were evaluated between Rickettsia strains using gltA, 16S rRNA, 121

coxA and ompB gene sequences. In addition to the sequences produced in this study, 122

additional Rickettsia sequences, representative of the diversity in the genus and available from 123

GenBank, were also used. The evolutionary models most closely fitting the sequence data 124

were determined using Akaike information criterion with the MEGA program (Tamura et al., 125

2007). Phylogenetic analyses were based on maximum likelihood (ML) analyses. A ML 126

heuristic search, using a starting tree obtained by neighbor-joining, was conducted and clade 127

robustness was further assessed by bootstrap analysis using 1,000 replicates in MEGA 128 (Tamura et al., 2007). 129 130 3. Results 131

3.1. Multilocus typing of Rickettsia 132

(8)

7 The diversity of Rickettsia in O. occidentalis, O. erraticus and O. normandi was examined 133

using gltA (589 bp), 16S rRNA (729 bp), coxA (562 bp) and ompB (672 bp) gene sequences. 134

The Rickettsia 16S rRNA, coxA and ompB genes were amplified and sequenced here from all 135

tick DNA templates (n=6), while all the gltA gene sequences were already available in 136

GenBank from Duron et al. (2017). All sequences were easily readable without double peaks, 137

indicating a confident degree of primer specificity for Rickettsia PCR amplifications. All 138

these sequences belong unambiguously to the Rickettsia genus as described below. 139

140

On the basis of DNA sequences, we characterized one to three distinct alleles depending on 141

the Rickettsia gene (Table 2), including three alleles for gltA (98.3–99.66% pairwise 142

nucleotide identity), one for 16S rRNA, two for coxA (99.29% pairwise nucleotide identity) 143

and three for ompB (98.08–99.68% pairwise nucleotide identity). Overall, the allelic variation 144

at the five gene markers led to the identification of three different Rickettsia genotypes (A, B 145

and C hereafter): the A genotype was found in O. erraticus (n=1), the B genotype in O. 146

normandi (n=1), while the C genotype was shared by all O. occidentalis specimens (n=4) 147

(Table 2). None of these three genotypes showed 100% nucleotide identity at the four gene 148

markers with other Rickettsia species and strains available in GenBank, including other 149

Rickettsia spp. previously documented in soft ticks (i.e., R. bellii, R. hoogstraalii, R. 150

wissemanii, R. nicoyana and R. lusitianiae; Table 3). In terms of nucleotide identity, the 151

closest Rickettsia species of the A, B and C Rickettsia genotypes are R. felis, R. asemboensis, 152

R. hoogstraalii, R. senegalensis and R. lusitianiae, which all belong to the transitional 153

Rickettsia group (Table 3). If compared together, the A, B and C genotypes showed a 154

substantial nucleotide divergence at the four gene sequences examined but they had a better 155

pairwise nucleotide identity with each other than with any other Rickettsia species and strains 156

(Table 3). 157

(9)

8 3.2. Phylogenetics of Rickettsia

159

Maximum-likelihood (ML) analyses were further used to examine the evolutionary 160

relationships of the A, B and C Rickettsia genotypes of O. occidentalis, O. erraticus and O. 161

normandi with 38 other Rickettsia species, including other known Rickettsia from soft ticks. 162

We observed no sign of recombination in the data set: (i) the comparison between Rickettsia 163

gltA, 16S rRNA, coxA and ompB single gene phylogenies revealed the same phylogenetic 164

branching (Figure 1A–D) and (ii) the analysis of concatenated sequences did not detect 165

significant recombination events between the Rickettsia sequences used in the ML analyses 166

(all P>0.10 for the GENECONV and RDP recombination-detection tests). The single gltA, 167

16S rRNA, coxA and ompB gene phylogenies and concatenated phylogeny consistently 168

showed that the A, B and C Rickettsia genotypes of O. occidentalis, O. erraticus and O. 169

normandi are markedly divergent to known Rickettsia species and strains (Figures 1A–D and 170

2). The A and B Rickettsia genotypes clustered together, suggesting that they belong to the 171

same species, while the C Rickettsia genotype belongs to a distinct, albeit close, species. 172

These two putative species are phylogenetically related to but divergent from some other 173

Rickettsia species belonging to the transitional phylogenetic group. It clustered within a 174

robust monophyletic clade including other Rickettsia species reported from soft ticks, R. 175

hoogstraalii and R. lusitianiae, and Rickettsia reported from fleas, R. felis, R. senegalensis 176

and R. asemboensis (Figures 1A–D and 2). 177

178

4. Discussion

179

While only a few Rickettsia species have been reported from soft ticks (Duh et al., 2010; 180

Duron et al., 2018; Hornok et al., 2019; Milhano et al., 2014; Moreira-Soto et al., 2017; 181

Sánchez-Montes et al., 2016; Tahir et al., 2016; Yan et al., 2019), in this study we identified 182

two novel Rickettsia species in soft tick Ornithodoros species from North Africa. The MLST 183

of four gene fragments fulfills the criteria usually used to designate new Rickettsia species 184

(10)

9 (e.g. Anstead and Chilton, 2013; Milhano et al., 2014; Moreira-Soto et al., 2017; Tahir et al., 185

2016; Turebekov et al., 2019): their allelic profiles, showing a substantial magnitude of 186

difference, are unique relative to all recognized and putative species within the Rickettsia 187

genus. On account of its distinct genetic and phylogenetic traits described, we propose the 188

designation ‘Candidatus Rickettsia africaseptentrioalis’ (a'fri.ca sep.ten.tri.o'a.lis, referring to 189

North Africa where the organism was isolated) for the species found in O. erraticus (A 190

Rickettsia genotype) and O. normandi (B Rickettsia genotype), and ‘Candidatus Rickettsia 191

mauretaniae’ (ma.o.re.'ta.njae, referring to Mauretania [a region in the ancient Maghreb 192

during Antiquity] where the organism was isolated) for the species found in O. occidentalis 193

(C Rickettsia genotype). Interestingly, the MLST data set also indicated the presence of at 194

least two clearly distinct genotypes of ‘Candidatus R. africaseptentrioalis’, one present in O. 195

erraticus from Algeria and the other in O. normandi from Tunisia. These localities are more 196

than 350 km apart, suggesting that a greater diversity of ‘Candidatus R. africaseptentrioalis’ 197

genotypes may circulate across North Africa. 198

199

The soft ticks O. occidentalis, O. erraticus and O. normandi all belong to the O. erraticus 200

species complex. While small mammals are the most common hosts of these species, they are 201

also among the most common soft ticks to bite humans (Trape et al., 2013). Two of these 202

ticks, O. occidentalis and O. normandi, are known to be only from North Africa, but O. 203

erraticus is more widespread and is reported from many Mediterranean regions, including the 204

Iberian Peninsula in Europe and the Middle East. These Ornithodoros species commonly 205

carry the relapsing fever agents Borrelia crocidurae and Borrelia hispanica and the African 206

swine fever viruses (Boinas et al., 2011; Trape et al., 2013), but they have never been found to 207

carry a pathogenic Rickettsia. In this context, whether or not ‘Candidatus Rickettsia 208

africaseptentrioalis’ and ‘Candidatus Rickettsia mauretaniae’ are potential human pathogens 209

is a question worthy of interest. These two novel species belong the transitional phylogenetic 210

(11)

10 group of Rickettsia and are closely related to R. asemboensis: this Rickettsia species was 211

described in 2013 in fleas and was latter reported in ticks (Troyo et al., 2016). Its pathogenesis 212

in vertebrate hosts is unknown (Jiang et al., 2013). Another close relative is R. felis which is 213

the causative agent of flea-borne spotted fever. This cosmopolitan pathogen, first described as 214

a human pathogen from the United States in 1991, is now considered a common cause of 215

fever in Africa (Brown and Macaluso, 2016). However, at least one R. felis strain, called LSU, 216

is a non-infectious maternally inherited symbiont inducing parthenogenesis in book lice 217

(Behar et al., 2010; Gillespie et al., 2014). This last example clearly shows that not all 218

Rickettsia of the transitional phylogenetic group are pathogens. Because the pathogenicity of 219

‘Candidatus Rickettsia africaseptentrioalis’ and ‘Candidatus Rickettsia mauretaniae’ is still 220

unknown, considering these species as important pathogens might be premature. As pointed 221

out by Labruna and Walker (2014), the current view in rickettsiology has a strong 222

anthropocentric bias and tends to describe all novel Rickettsia species as pathogenic forms. In 223

many arthropods (e.g., ladybirds, spiders and book lice, but also ticks), Rickettsia are non-224

pathogenic and undergo exclusive maternal transmission to offspring, which functions as both 225

mutualist and reproductive manipulator (Bonnet et al., 2017; Perlman et al., 2006; Weinert, 226

2015; Weinert et al., 2009). As a result, the putative pathogenicity of ‘Candidatus Rickettsia 227

africaseptentrioalis’ and ‘Candidatus Rickettsia mauretaniae’ should be the aim of further 228

studies before a definitive decision is reached on this effect. 229

230

Competing interests

231

The authors declare that they have no competing interests. 232

233

Acknowledgments

234

We are grateful to Céline Arnathau, Georges Diatta, Patrick Durand, François Renaud, Jean-235

François Trape and Laurence Vial for help at different stages of this work. We also 236

(12)

11 acknowledge useful discussions with members of the French group Tiques et Maladies à 237

Tiques (TMT). Financial support was provided by recurrent funding from the Centre National 238

de la Recherche Scientifique (CNRS) and Institut de Recherche pour le Développement 239 (IRD). 240 241 References 242

Anstead, C.A., Chilton, N.B., 2013. A Novel Rickettsia Species Detected in Vole Ticks 243

(Ixodes angustus) from Western Canada. Appl. Environ. Microbiol. 79, 7583–7589. 244

https://doi.org/10.1128/AEM.02286-13 245

Behar, A., McCormick, L.J., Perlman, S.J., 2010. Rickettsia felis Infection in a Common 246

Household Insect Pest, Liposcelis bostrychophila (Psocoptera: Liposcelidae). Appl. 247

Environ. Microbiol. 76, 2280–2285. https://doi.org/10.1128/AEM.00026-10 248

Boinas, F.S., Wilson, A.J., Hutchings, G.H., Martins, C., Dixon, L.J., 2011. The persistence 249

of African swine fever virus in field-infected Ornithodoros erraticus during the ASF 250

endemic period in Portugal. PLoS One 6. https://doi.org/10.1371/journal.pone.0020383 251

Bonnet, S.I., Binetruy, F., Hernandez, A.M., Duron, O., 2017. The Tick Microbiome: Why 252

Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission. 253

Front. Cell. Infect. Microbiol. 7. https://doi.org/10.3389/fcimb.2017.00236 254

Brown, L.D., Macaluso, K.R., 2016. Rickettsia felis, an Emerging Flea-Borne Rickettsiosis. 255

Curr. Trop. Med. Reports 3, 27–39. https://doi.org/10.1007/s40475-016-0070-6 256

Castresana, J., 2000. Selection of Conserved Blocks from Multiple Alignments for Their Use 257

in Phylogenetic Analysis. Mol. Biol. Evol. 17, 540–552. 258

https://doi.org/10.1093/oxfordjournals.molbev.a026334 259

Duh, D., Punda-Polic, V., Avsic-Zupanc, T., Bouyer, D., Walker, D.H., Popov, V.L., 260

Jelovsek, M., Gracner, M., Trilar, T., Bradaric, N., Kurtti, T.J., Strus, J., 2010. Rickettsia 261

hoogstraalii sp. nov., isolated from hard- and soft-bodied ticks. Int. J. Syst. Evol. 262

(13)

12 Microbiol. 60, 977–984. https://doi.org/10.1099/ijs.0.011049-0

263

Duron, O., Binetruy, F., Noel, V., Cremaschi, J., McCoy, K., Arnathau, C., Plantard, O., 264

Goolsby, J., Perez De Leon, A.A., Heylen, D.J.A., Raoul Van Oosten, A., Gottlieb, Y., 265

Baneth, G., Guglielmone, A.A., Estrada-Pena, A., Opara, M.N., Zenner, L., Vavre, F., 266

Chevillon, C., 2017. Evolutionary changes in symbiont community structure in ticks. 267

Mol. Ecol. 26, 2905–2921. https://doi.org/10.1111/mec.14094 268

Duron, O., Morel, O., Noël, V., Buysse, M., Binetruy, F., Lancelot, R., Loire, E., Ménard, C., 269

Bouchez, O., Vavre, F., Vial, L., 2018. Tick-Bacteria Mutualism Depends on B Vitamin 270

Synthesis Pathways. Curr. Biol. 28, 1–7. https://doi.org/10.1016/j.cub.2018.04.038 271

Gillespie, J.J., Drisco, T.P., Verhoeve, V.I., Utsuki, T., Husseneder, C., Chouljenko, V.N., 272

Azad, A.F., MacAluso, K.R., 2014. Genomic Diversification in Strains of Rickettsia felis 273

Isolated from Different Arthropods. Genome Biol. Evol. 7, 35–56. 274

https://doi.org/10.1093/gbe/evu262 275

Gottlieb, Y., Ghanim, M., Chiel, E., Gerling, D., Portnoy, V., Steinberg, S., Tzuri, G., 276

Horowitz, R.A., Belausov, E., Mozes-daube, N., Kontsedalov, S., Gershon, M., Gal, S., 277

Katzir, N., Zchori-fein, E., 2006. Identification and Localization of a Rickettsia sp. in 278

Bemisia tabaci (Homoptera: Aleyrodidae). Appl. Environ. Microbiol. 72, 3646–3652. 279

https://doi.org/10.1128/AEM.72.5.3646 280

Hornok, S., Szoke, K., Meli, M.L., Sandor, A.D., Gorfol, T., Estok, P., Wang, Y., Tu, V.T., 281

Kovats, D., Boldogh, S.A., Corduneanu, A., Sulyok, K.M., Gyuranecz, M., Kontschan, 282

J., Takacs, N., Halajian, A., Epis, S., Hofmann-Lehmann, R., 2019. Molecular detection 283

of vector-borne bacteria in bat ticks (Acari: Ixodidae, Argasidae) from eight countries of 284

the Old and New Worlds. Parasit. Vectors 12, 1–7. https://doi.org/10.1186/s13071-019-285

3303-4 286

Jiang, J., Maina, A.N., Knobel, D.L., Cleaveland, S., Laudisoit, A., Wamburu, K., Ogola, E., 287

Parola, P., Breiman, R.F., Njenga, M.K., Richards, A.L., 2013. Molecular detection of 288

(14)

13 Rickettsia felis and Candidatus Rickettsia Asemboensis in Fleas from Human Habitats, 289

Asembo, Kenya . Vector-Borne Zoonotic Dis. 13, 550–558. 290

https://doi.org/10.1089/vbz.2012.1123 291

Kurtti, T.J., Felsheim, R.F., Burkhardt, N.Y., Oliver, J.D., Heu, C.C., Munderloh, U.G., 2015. 292

Rickettsia buchneri sp. nov., a rickettsial endosymbiont of the blacklegged tick Ixodes 293

scapularis. Int. J. Syst. Evol. Microbiol. 65, 965–970. 294

https://doi.org/10.1099/ijs.0.000047 295

Labruna, M.B., 2009. Ecology of Rickettsia in South America, in: Hechemy, K.E., Brouqui, 296

P., Samuel, J.E., Raoult, D.A. (Eds.), Fifth International Conference on Rickettsiae and 297

Rickettsial Diseases. Blackwell Publishing, Marseille, France, pp. 156–165. 298

Labruna, M.B., Walker, D.H., 2014. Rickettsia felis and Changing Paradigms about 299

Pathogenic Rickettsia. Emerg. Infect. Dis. 20, 1768–1769. 300

https://doi.org/10.3201/eid2010.131797 301

Martin, D., Rybicki, E., 2000. RDP: detection of recombination amongst aligned sequences. 302

Bioinformatics 16, 562–563. https://doi.org/10.1093/bioinformatics/16.6.562 303

Martin, D.P., Lemey, P., Lott, M., Moulton, V., Posada, D., Lefeuvre, P., 2010. RDP3: A 304

flexible and fast computer program for analyzing recombination. Bioinformatics 26, 305

2462–2463. https://doi.org/10.1093/bioinformatics/btq467 306

Milhano, N., Palma, M., Marcili, A., Núncio, M.S., de Carvalho, I.L., De Sousa, R., 2014. 307

Rickettsia lusitaniae sp. nov. isolated from the soft tick Ornithodoros erraticus (Acarina: 308

Argasidae). Comp. Immunol. Microbiol. Infect. Dis. 37, 189–193. 309

https://doi.org/10.1016/j.cimid.2014.01.006 310

Moreira-Soto, R.D., Moreira-Soto, A., Corrales-Aguilar, E., Calderón-Arguedas, Ó., Troyo, 311

A., 2017. ‘Candidatus Rickettsia nicoyana’: A novel Rickettsia species isolated from 312

Ornithodoros knoxjonesi in Costa Rica. Ticks Tick. Borne. Dis. 8, 532–536. 313

https://doi.org/10.1016/j.ttbdis.2017.02.015 314

(15)

14 Parola, P., Paddock, C.D., Raoult, D., 2005. Tick-Borne Rickettsioses around the World: 315

Emerging Diseases Challenging Old Concepts. Clin. Microbiol. Rev. 18, 719–756. 316

https://doi.org/10.1128/CMR.18.4.719-756.2005 317

Perlman, S.J., Hunter, M.S., Zchori-Fein, E., 2006. The emerging diversity of Rickettsia. 318

Proc. R. Soc. B 273, 2097–2106. https://doi.org/10.1098/rspb.2006.3541 319

Sánchez-Montes, S., Guzmán-Cornejo, C., Martínez-Nájera, Y., Becker, I., Venzal, J.M., 320

Labruna, M.B., 2016. Rickettsia lusitaniae associated with Ornithodoros yumatensis 321

(Acari: Argasidae) from two caves in Yucatan, Mexico. Ticks Tick. Borne. Dis. 7, 1097– 322

1101. https://doi.org/10.1016/j.ttbdis.2016.09.003 323

Sawyer, S.A., 1999. GENECONV: A computer package for the statistical detection of gene 324

conversion. Distrib. by author, Dep. Math. Washingt. Univ. St. Louis. Available at http:// 325

www.math.wustl.edu/~sawy. 326

Tahir, D., Socolovschi, C., Marié, J. Lou, Ganay, G., Berenger, J.M., Bompar, J.M., Blanchet, 327

D., Cheuret, M., Mediannikov, O., Raoult, D., Davoust, B., Parola, P., 2016. New 328

Rickettsia species in soft ticks Ornithodoros hasei collected from bats in French Guiana. 329

Ticks Tick. Borne. Dis. 7, 1089–1096. https://doi.org/10.1016/j.ttbdis.2016.09.004 330

Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: Molecular Evolutionary Genetics 331

Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol. 24, 1596–1599. 332

https://doi.org/10.1093/molbev/msm092 333

Thompson, J.D., Gibson, T.J., Higgins, D.G., 2003. Multiple Sequence Alignment Using 334

ClustalW and ClustalX. Curr. Protoc. Bioinforma. 2.3.1-2.3.22. 335

https://doi.org/10.1002/0471250953.bi0203s00 336

Trape, J.F., Diatta, G., Arnathau, C., Bitam, I., Sarih, M., Belghyti, D., Bouattour, A., 337

Elguero, E., Vial, L., Mané, Y., Baldé, C., Pugnolle, F., Chauvancy, G., Mahé, G., 338

Granjon, L., Duplantier, J.M., Durand, P., Renaud, F., 2013. The Epidemiology and 339

Geographic Distribution of Relapsing Fever Borreliosis in West and North Africa, with a 340

(16)

15 Review of the Ornithodoros erraticus Complex (Acari: Ixodida). PLoS One 8.

341

https://doi.org/10.1371/journal.pone.0078473 342

Troyo, A., Moreira-Soto, R.D., Calderon-Arguedas, Ó., Mata-Somarribas, C., Ortiz-Tello, J., 343

Barbieri, A.R.M., Avendaño, A., Vargas-Castro, L.E., Labruna, M.B., Hun, L., Taylor, 344

L., 2016. Detection of rickettsiae in fleas and ticks from areas of Costa Rica with history 345

of spotted fever group rickettsioses. Ticks Tick. Borne. Dis. 7, 1128–1134. 346

https://doi.org/10.1016/j.ttbdis.2016.08.009 347

Turebekov, N., Abdiyeva, K., Yegemberdiyeva, R., Dmitrovsky, A., Yeraliyeva, L., 348

Shapiyeva, Z., Amirbekov, A., Oradova, A., Kachiyeva, Z., Ziyadina, L., Hoelscher, M., 349

Froeschl, G., Dobler, G., Zinner, J., Frey, S., Essbauer, S., 2019. Prevalence of Rickettsia 350

species in ticks including identification of unknown species in two regions in 351

Kazakhstan. Parasites and Vectors 12, 1–16. https://doi.org/10.1186/s13071-019-3440-9 352

Weinert, L.A., 2015. The diversity and phylogeny of Rickettsia, in: Morand, S., Krasnov, 353

B.R., Littlewood, D.T.J. (Eds.), Parasite Diversity and Diversification, Evolutionary 354

Ecology Meets Phylogenetics. University Printing House Cambridge, pp. 150-. 355

Weinert, L.A., Araujo-Jnr, E. V., Ahmed, M.Z., Welch, J.J., 2015. The incidence of bacterial 356

endosymbionts in terrestrial arthropods. Proc. R. Soc. B 282. 357

https://doi.org/10.1098/rspb.2015.0249 358

Weinert, L.A., Werren, J.H., Aebi, A., Stone, G.N., Jiggins, F.M., 2009. Evolution and 359

diversity of Rickettsia bacteria. BMC Biol. 7, 1–15. https://doi.org/10.1186/1741-7007-360

7-6 361

Yan, P., Qiu, Z., Zhang, T., Li, Y., Wang, W., Li, M., Yu, Z., Liu, J., 2019. Microbial 362

diversity in the tick Argas japonicus (Acari: Argasidae) with a focus on Rickettsia 363

pathogens. Med. Vet. Entomol. 327–335. https://doi.org/10.1111/mve.12373 364

(17)

16

Table 1. Genes and primers used for Rickettsia sequencing.

366

Gene Hypothetical product Primers (5'-3') Tm Fragment size Reference

16S rRNA Small ribosomal R16SF1 CGTGGGAATCTGCCCATCAG 55°C Semi-nested PCR assay: This study

unit R16SF2 CGCTGATGGATGAGCCCGCGTC 1st round PCR: R16SF1/R16SR1: 854bp

R16SR1 GGTGGTYGCGGATCGCAGAG 2nd round PCR: R16SF2/R16SR1: 772bp

gltA Citrate synthase RgltAF1 CCTATGGCTATTATGCTTGCGGC 56°C Semi-nested PCR assay: Duron et al. 2017

RgltAF2 GGTTCTCTTTCKGCATTTTATCC 1st round PCR: RgltAF1/RgltAR1: 664bp

RgltAR1 CTTGAAGCTATCGCTCTTAAAGATG 2nd round PCR: RgltAF2/RgltAR1: 637bp

ompB Outer membrane RompBF1 GGCTGGACCTGAAGCTGGAGC 52°C Nested PCR assay: This study

protein RompBF2 GTTGCTGCAGGTGACGAAGCTG 1st round PCR: RompBF1/RompBR2: 834bp

RompBR1 GTCCATCTAACTGAGACTGAG 2nd round PCR: RompBF2:RompBR1: 715bp

RompBR2 GCATCAGGTCTTATGCTTGCAC

coxA Cytochrome C RcoxAF2 CCYGATATGGCATTTCCACGCC 55°C Semi-nested PCR assay: This study

oxydase subunit I RcoxAR1 ATCGTATGGGCTCACCATATGT 1st round PCR: RcoxAF2/RcoxAR2: 886bp

RcoxAR2 AAGCACCGAGCGACATCGTA 2nd round PCR: RcoxAF2/RcoxAR1: 607bp

(18)

17

Table 2. Sequence profiles of the four genes (16S rRNA, gltA, coxA and ompB) in the three Rickettsia genotypes (A–B: ‘Candidatus Rickettsia

368

africaseptentrioalis’; C: ‘Candidatus Rickettsia mauretaniae’) identified in this study. Letters a–c represent the different alleles at each gene locus. n, 369

number of specimens by each Rickettsia genotype. 370

Rickettsia genes

Rickettsia host species (n) 16S rRNA gltA ompB coxA Rickettsia haplotypes

Ornithodoros erraticus (n=1) a a a a A

Ornithodoros normandi (n=1) a b b a B

Ornithodoros occidentalis (n=4) a c c c C

(19)

18

Table 3. Sequence similarity of the 16S rRNA, gltA, coxA and ompB gene sequences of the three Rickettsia genotypes (A–B: ‘Candidatus Rickettsia

372

africaseptentrioalis’; C: ‘Candidatus Rickettsia mauretaniae’) detected in O. erraticus, O. normandi and Ornithodoros occidentalis to those of closely 373

related Rickettsia species or Rickettsia species of other soft tick species available in GenBank. 374

Gene Rickettsia (Genbank accession no.) % Sequence similarity

Rickettsia of O. erraticus Rickettsia of O. normandi Rickettsia of O. occidentalis

16s rRNA R. lusitaniae _ _ _ R. asemboensis (JWSW00000000) 99.73 (727 of 729bp) 99.73 (727 of 729bp) 99.73 (727 of 729bp) R. felis (CP000053) 99.86 (728 of 729bp) 99.86 (728 of 729bp) 99.86 (728 of 729bp) R. hoogstraalii (CCXM00000000) 99.86 (728 of 729bp) 99.86 (728 of 729bp) 99.86 (728 of 729bp) R. wissemanii (LT558851) 99.45 (725 of 729bp) 99.45 (725 of 729bp) 99.45 (725 of 729bp) R. nicoyana (KX228147) 99.59 (726 of 729bp) 99.59 (726 of 729bp) 99.59 (726 of 729bp) R. bellii (CP000849) 99.04 (722 of 729bp) 99.04 (722 of 729bp) 99.04 (722 of 729bp) gltA R. lusitaniae (JQ771933) 97.96 (577 of 589bp) 97.62 (575 of 589bp) 97.28 (573 of 589bp) R. asemboensis (JWSW00000000) 97.28 (573 of 589bp) 96.94 (571 of 589bp) 96.60 (569 of 589bp) R. felis (CP000053) 96.43 (568 of 589bp) 96.10 (566 of 589bp) 95.76 (564 of 589bp) R. hoogstraalii (CCXM00000000) 96.77 (570 of 589bp) 96.43 (568 of 589bp) 96.10 (566 of 589bp) R. wissemanii (LT558852) 92.36 (544 of 589bp) 92.02 (542 of 589bp) 92.02 (542 of 589bp) R. nicoyana (KX228143) 92.36 (544 of 589bp) 92.02 (542 of 589bp) 92.02 (542 of 589bp) R. bellii (CP000849) 85.91 (506 of 589bp) 85.74 (505 of 589bp) 85.57 (504 of 589bp) ompB R. lusitaniae _ _ _ R. asemboensis (JWSW00000000) 98.07 (659 of 672bp) 97.92 (658 of 672bp) 97.32 (654 of 672pb) R. felis (CP000053) 98.07 (659 of 672bp) 97.92 (658 of 672bp) 97.17 (653 of 672pb) R. hoogstraalii (CCXM00000000) 98.51 (662 of 672bp) 98.36 (661 of 672bp) 97.62 (656 of 672pb) R. wissemanii (LT558854) 97.44 (304 of 312bp) 97.12 (303 of 312bp) 97.12 (303 of 312pb) R. nicoyana _ _ _

(20)

19 R. bellii (CP000849) 78.87 (530 of 672bp) 78.72 (529 of 672bp) 78.57 (528 of 672pb) coxA R. lusitaniae _ _ _ R. asemboensis (JWSW00000000) 96.62 (543 of 562pb) 96.62 (543 of 562pb) 95.91 (539 of 562pb) R. felis (CP000053) 95.73 (538 of 562pb) 95.73 (538 of 562pb) 95.02 (534 of 562pb) R. hoogstraalii (CCXM00000000) 95.91 (539 of 562pb) 95.91 (539 of 562pb) 95.19 (535 of 562pb) R. wissemanii _ _ _ R. nicoyana _ _ _ R. bellii (CP000849) 86.83 (488 of 562pb) 86.83 (488 of 562pb) 86.83 (488 of 562pb) 375

(21)

20

Figure legends

376

Fig. 1. Phylogeny of Rickettsia constructed using maximum-likelihood (ML) estimations

377

based on (A) gltA gene sequences (589 unambiguously aligned nucleotide sites; best-fit 378

approximation for the evolutionary model: GTR + G+I); (B) 16S rRNA sequences (729 379

unambiguously aligned nucleotide sites; best-fit approximation for the evolutionary model: 380

HKY+G+I); (C) coxA gene sequences (562 unambiguously aligned nucleotide sites; best-fit 381

approximation for the evolutionary model: GTR + G+I); (D) ompB gene sequences (672 382

unambiguously aligned nucleotide sites; best-fit approximation for the evolutionary model: 383

GTR + G). Circles indicate Rickettsia species found in soft ticks (black circles: sequences 384

from Rickettsia characterized in this study from Ornithodoros occidentalis, O. erraticus and 385

O. normandi; white circles: sequences from Rickettsia characterized from other tick species 386

and available in GenBank). Sequences from representative Rickettsia groups, species and 387

strains available in GenBank were also added to the analysis. The grey boxes delineate the 388

different Rickettsia groups (their names are indicated in upper case). Bacterial name, host 389

species and GenBank accession numbers are shown on the tree. Branch numbers indicate 390

percentage bootstrap support for major branches (1000 replicates; only bootstrap values >70% 391

are shown). The scale bar is in units of substitution/site. 392

393

Fig. 2. Phylogeny of Rickettsia constructed using maximum-likelihood (ML) estimations

394

based on concatenated gltA, 16S rRNA, coxA and ompB sequences (2552 unambiguously 395

aligned nucleotide sites; best-fit approximation for the evolutionary model: GTR + G+I). 396

Circles indicate Rickettsia species found in soft ticks (black circles: sequences from Rickettsia 397

characterized in this study from Ornithodoros occidentalis, O. erraticus and O. normandi; 398

white circles: sequences from Rickettsia characterized from other tick species and available in 399

GenBank). Sequences from representative Rickettsia groups, species and strains available in 400

GenBank were also added to the analysis. The grey boxes delineate the different Rickettsia 401

(22)

21 groups (their names are indicated in upper case). Bacterial name, host species and GenBank 402

accession numbers are shown on the tree. Branch numbers indicate percentage bootstrap 403

support for major branches (1000 replicates; only bootstrap values >70% are shown). The 404

scale bar is in units of substitution/site. 405

Références

Documents relatifs

La Rickettsiose !::ovine à Rickettsïa bovis a été découverte en 1936 par Donatien et Lestoquard, chez des bovins sur lesquels avaient été placées des tiques du genre

est mise en évidence, les recherches ne sont pas poussées plus loin, d'autant' que les rickettsies des monocytes peuvent être extrêmement rares dans un

distinguer les connecteurs adverbiaux qui se comportent comme par contre — pour lesquels le Principe 2 doit obligatoirement être adopté — de ceux qui se comportent comme ensuite

They are generated in the bone marrow, the primary B-cell production site, from common lymphoid progenitor cells which are CD34+, but lineage negative (lin ÿ ), implying that they

März, in der Mattinen, Brig, bestehend unter dem Vorsitze des Altalpenvogtes Alfons Borter, Ried-Brig, verbeiständet vom Al- penschreiber Joseph Schmidhalter, Ried-Brig, und

Figure 2 illustrates the decrease of PB contamination in wastewater between 2010 and 2016. These results link the changes in consumption practices to the contamination of

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The macroscopic stress  a is determined by the volume concentration  of the drops in the suspension, by the angle  of the drop deviation from the applied field H and by