Modulation of peripheral T cell responses by unconventional antigen-presenting cells: role of plasmacytoid dendritic cells in anti-tumor immunity and lymphatic endothelial cells in autoimmunity

249  Download (0)

Full text




Modulation of peripheral T cell responses by unconventional antigen-presenting cells: role of plasmacytoid dendritic cells in anti-tumor immunity and lymphatic endothelial cells in autoimmunity



The aim of this thesis was to characterize the role of plasmacytoid dendritic cells (pDCs) and lymphatic endothelial cells (LECs) in the modulation of peripheral T cell responses, with a particular focus on MHC class II-restricted antigen presentation. Depending on the immunological context, pDC MHCII-mediated antigen-presenting functions can be either tolerogenic or immunogenic. For instance, pDCs are maintained in a tolerogenic state by the tumor microenvironment. In the first part of this thesis, we asked the question whether tumor-associated pDCs could undergo a tolerogenic-to-immunogenic reprogramming following the intratumoral administration of CpG-B, a TLR9 ligand, along with a model MHC-II-restricted tumor antigenic peptide. LECs from lymph nodes (LN-LECs) were shown to impact peripheral CD8+ T cell responses, as antigen-presenting cells (APCs). Emerging evidence is in favor of a role for LN-LECs in CD4+ T cell tolerance to MHC-II-restricted antigens, although this phenomenon is still a matter of debate. In the second part of this thesis, we sought to determine the contribution of LN-LECs as MHC-II-restricted APCs [...]

HUMBERT, Marion. Modulation of peripheral T cell responses by unconventional

antigen-presenting cells: role of plasmacytoid dendritic cells in anti-tumor immunity and lymphatic endothelial cells in autoimmunity. Thèse de doctorat : Univ. Genève, 2019, no. Sc. 5308

DOI : 10.13097/archive-ouverte/unige:115554 URN : urn:nbn:ch:unige-1155544

Available at:

Disclaimer: layout of this document may differ from the published version.

1 / 1



Département de Biologie Cellulaire FACULTÉ DES SCIENCES Professeur Jean-Claude Martinou Département de Pathologie et Immunologie FACULTÉ DE MÉDECINE

Professeure Stéphanie Hugues

Modulation of peripheral T cell responses by unconventional antigen-presenting cells

Role of plasmacytoid dendritic cells in anti-tumor immunity and lymphatic endothelial cells in autoimmunity


présentée à la Faculté des Sciences de l’Université de Genève pour obtenir le grade de Docteur ès Sciences, mention Biologie


Marion HUMBERT de

Échirolles (France)

Thèse n° 5308

Atelier d’impression ReproMail Genève



À Valentina

À mes parents et à mon frère


« Toutes les grandes personnes ont d’abord été des enfants, mais peu d’entre elles s’en souviennent. »

“All grown-ups were once children, but only few of them remember it.”

Antoine de St Exupéry


« Tout le monde est un génie. Mais si vous jugez un poisson sur ses capacités à grimper à un arbre, il passera sa vie à croire qu’il est stupide. »

“Everybody is a genius. But if you judge a fish by its ability to climb a tree, it will live its whole life believing that it is stupid.”

Albert Einstein (attributed to)


« La seule voie qui offre quelque espoir d'un avenir meilleur pour toute l'humanité est celle de la coopération et du partenariat. »

“The only path that provides hope for a better future for all humanity is cooperation and partnership.”

Kofi Annan




A tightly regulated balance between immune activation and tolerance is required in order for the immune system to mount efficient immune responses without inducing adverse effects, such as autoimmunity. T cell responses, which play central roles in adaptive immunity, are modulated by antigen-presenting cells (APCs).

In addition to professional APCs, several cell types have the ability to cross-present antigens via major histocompatibility complex class I (MHC-I) to CD8+ T cells and/or to present antigens through MHC-II to CD4+ T cells, as unconventional APCs, leading to various outcomes on T cell responses, depending on the context and the type of APC. The aim of this thesis was to characterize the role of plasmacytoid dendritic cells (pDCs) and lymphatic endothelial cells (LECs), in the modulation of peripheral T cell responses, as unconventional APCs, with a particular focus on MHC-II-restricted antigen presentation.

Plasmacytoid DCs are professional producers of type I interferon and also possess the ability to present antigen to T cells. These cells are extremely plastic and, depending on the immunological context, their MHCII-mediated antigen-presenting functions can be either tolerogenic or immunogenic. For instance, pDCs are maintained in a tolerogenic state by the tumor microenvironment (TME). However, the power of pDCs that are not immersed in the TME can be harnessed to mount potent anti-tumor responses. In tumor-bearing mice, distal lymph node (LN) pDCs can be activated by a contralateral vaccination with the TLR9 ligand CpG-B, along with a model MHC-II-restricted tumor antigenic peptide, enhancing their MHC-II-mediated antigen-presenting functions and leading to anti-tumor immunity through Th17 cell priming. We asked the question whether tumor-associated pDCs could undergo a tolerogenic-to-immunogenic reprogramming following the intratumoral administration of the above-mentioned treatment.

Although it led to tumor growth control, this local treatment did not reverse the tolerogenic phenotype of pDCs. These cells remained refractory to the treatment and therefore did not contribute to its efficacy. On the contrary, the working model we propose rather involves cooperation between neutrophils, conventional DCs and T cells that leads to tumor growth control.

LECs, a subset of LN stromal cells (LNSCs), long thought to function as simple scaffolds, were recently shown to indirectly affect T cell responses in many ways. In addition, LN-LECs have the ability to directly impact peripheral T cell responses as unconventional APCs.

LN-LECs present MHC-I-restricted endogenously-expressed peripheral tissue-restricted antigens (PTAs) to CD8+ T cells, inducing their elimination by clonal deletion. Emerging evidence is in


vi phenomenon is still a matter of debate. We recently showed that elderly naïve mice, in which MHC-II expression was abrogated in LNSCs, presented signs of spontaneous autoimmunity.

Here, I report our recent findings regarding the contribution of LECs as MHC-II-restricted APCs to autoreactive CD4+ T cell responses in experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis.

The selective genetic ablation of MHC-II in LECs exacerbated disease severity. In contrast, the genetic enforcement of MHC-II-restricted myelin-derived peptide presentation in LECs led to delayed onset and dampened EAE severity, accompanied by a drastic decrease in the spinal cord CD4+ T cell infiltrate and a modulation of these cells towards a tolerogenic phenotype. The CD4+ T cell numbers and phenotype in the LNs draining the site of EAE immunization were unaffected, suggesting that this pathway may inhibit effector T cell responses, rather than the priming of naïve T cells in LNs. Our results highlight a role for LECs as unconventional tolerogenic APCs in EAE.

Altogether, our studies highlight important contributions of unconventional APCs in shaping peripheral T cell responses. Therefore, these unusual pathways need to be considered in the development of therapies aiming at modulating immune responses in disease development.




Afin de générer des réponses immunitaires efficaces tout en évitant des effets secondaires tels que l’auto-immunité, un équilibre entre activation et tolérance doit être finement régulé. Les réponses médiées par les lymphocytes T, qui jouent un rôle central dans l’immunité adaptative, sont modulées par les cellules présentatrices d’antigènes (CPA).

En plus des CPA professionnelles, plusieurs types de cellules ont la capacité de cross-présenter des antigènes par le complexe d’histocompatibilité majeur de classe I (CMH-I) aux lymphocytes T CD8+ et/ou de présenter des antigènes par le CMH-II aux lymphocytes T CD4+, en tant que CPA non-conventionnelles. Selon le contexte et le type de CPA, les conséquences sur les réponses lymphocytaires T sont variables.

L’objectif de cette thèse était de caractériser le rôle des cellules plasmacytoïdes dendritiques (pDC) et des cellules endothéliales lymphatiques (LEC), en tant que CPA non-conventionnelles, dans la modulation des réponses lymphocytaires T périphériques, avec un intérêt particulier pour la présentation d’antigènes restreinte par les molécules du CMH-II.

Les pDC sont des cellules sécrétrices d’interféron de type I professionnelles, qui ont également la capacité de présenter des antigènes aux lymphocytes T. Ces cellules ont des propriétés très plastiques et leurs fonctions de présentation d’antigènes restreinte par les molécules du CMH-II peuvent conduire à des effets tolérogènes ou immunogènes, selon le contexte.

Les pDCs associées aux tumeurs (TA-pDC) sont maintenues dans un état tolérogène par le micro-environnement tumoral (MET). Cependant, le potentiel immunogène des pDC qui ne sont pas immergées dans le MET peut être optimisé afin de générer des réponses immunitaires anti- tumorales efficaces. Dans des souris porteuses de tumeurs, les pDC des ganglions lymphatiques distaux peuvent être activées par une vaccination contralatérale avec du CpG-B, un ligand du TLR9, avec un peptide dérivé d’un antigène tumoral modèle présenté par les molécules du CMH- II. Cette vaccination augmente la capacité de présentation d’antigènes restreinte par les molécules du CMH-II par les pDC, conduisant à une réponse immunitaire anti-tumorale médiée par les lymphocytes Th17.

Dans la première partie de cette thèse, nous avons posé la question de savoir si les TA-pDC tolérogènes pouvaient subir une reprogrammation et adopter un phénotype immunogène après administration intra-tumorale du traitement mentionné ci-dessus. Bien qu’il induise une réduction de la croissance tumorale, ce traitement n’a pas donné lieu à une reprogrammation des TA-pDC.

Ces cellules restent réfractaires au traitement et ne contribuent pas à son efficacité. Au contraire, le modèle que nous proposons implique une coopération entre les neutrophiles, cellules


viii tumorale.

Il a été récemment démontré que les LECs, un sous-type de cellules stromales des ganglions lymphatiques (LNSCs), considérées pendant longtemps comme de simples éléments structurels, affectent les réponses lymphocytaires T périphériques de plusieurs manières. Les LECs des ganglions lymphatiques ont notamment un impact direct sur ces réponses, en tant que CPA non- conventionnelles. Les LEC des ganglions lymphatiques présentent des antigènes restreints aux tissus périphériques (PTA), exprimés de manière endogène, aux lymphocytes T CD8+ par le CMH-I, induisant la délétion clonale de ces derniers. De plus en plus de travaux sont en faveur d’un rôle des LNSC dans la tolérance périphérique envers les lymphocytes T CD4+ spécifiques de PTA restreints au CMH-II, même si ce sujet reste matière à débat. Notre groupe a récemment montré que les souris naïves âgées dans lesquelles l’expression du CMH-II est abrogée dans les LEC présentent des signes d’auto-immunité spontanée.

Dans la seconde partie de cette thèse, je décris nos résultats concernant la contribution des LEC en tant que CPA pour la présentation d’antigènes restreints au CMH-II dans la modulation des réponses médiées par les lymphocytes T CD4+ auto-réactifs dans l’encéphalomyélite auto- immune expérimentale (EAE), un modèle murin de sclérose en plaque. L’ablation génétique du CMH-II dans les LECs conduit à une exacerbation de la sévérité de l’EAE. Au contraire, lorsque l’on force, par modification génétique, la présentation d’un péptide dérivé de la myéline et restreint au CMH-II par les LECs, l’apparition de la maladie est retardée et son développement moins sévère. Ceci est accompagné par une réduction importante de l’infiltrat de lymphocytes T CD4+ dans la moëlle épinière et par une modulation de ces lymphocytes, conduisant à un phénotype tolérogène. Les comptes et le phénotype des lymphocytes T CD4+ ne sont, cependant, pas modifiés dans les ganglions lymphatiques drainant le site d’immunisation, suggérant que cette voie pourrait inhiber les réponses lymphocytaires T effectrices, plutôt que d’affecter l’activation des lymphocytes T naïfs dans les ganglions.

Ces résultats démontrent un rôle pour les LEC en tant que CPA non-conventionnelles tolérogènes dans l’EAE.

Globalement, cette thèse souligne une contribution importante des CPA non-conventionnelles dans la modulation des réponses lymphocytaires T périphériques. Par conséquent, ces voies inhabituelles doivent être prises en compte lors du développement de thérapies ayant pour but la modulation des réponses immunitaires.




I would like to express my deepest gratitude to Prof. Cornelia Halin (Zurich, Switzerland) and Prof. Vassili Soumelis (Paris, France) for accepting to evaluate my thesis. It is a great honor for me that you take time to be part of my jury.

I also wish to thank Prof. Jean-Claude Martinou for accepting to co-supervise and evaluate this thesis.

Of course, I would like to warmly thank Prof. Stéphanie Hugues. Steph, thank you for giving me the opportunity to work in your lab, for supervising and guiding me. Thanks as well for all the corrections of this long thesis! Thanks for trusting me for the writing of manuscripts and for giving me autonomy with experiments. Thank you as well for giving me the opportunity to write in reviews and to collaborate with other labs. I was always impressed by your scientific qualities, by your energy, and all the projects (scientific and others) that you take over. Finally, thanks for the lab dinners at your place or elsewhere, and for being understanding in tough moments.

I wish to sincerely thank Dr. Nathalie Bendriss-Vermare (Lyon, France) for our scientific discussions and her precious insights regarding the project on tumor-associated pDCs. She has been of great help on several points (pDCs, but also neutrophils, cDCs, etc…).

I also would like to sincerely thank Prof. Fabienne Tacchini-Cottier (Lausanne, Switzerland) for giving me technical advises that allowed me to optimize the experimental design for the in vitro study of neutrophils.

I wish to thank Prof. Taija Mäkinen (Uppsala, Sweden) and Prof. Ari Waisman (Mainz, Germany) for the Prox1-creERT2 and IiMOGfl/fl strains.

I would like to deeply thank Prof. Carlo Chizzolini and Prof. Monique Gannagé, my thesis godparents, as well as Prof. Dominique Soldati-Favre and Prof. Patrick Linder. Thank you for supporting me and helping me when I needed it most.

I also would like to thank Prof. Camilla Bellone and Prof. Doron Merkler for accepting to evaluate my “hors-thèse” manuscript.

I am thankful to Prof. Claire-Anne Siegrist, and to her whole lab, for their precious advises given during our joint lab meetings. In particular, a great thanks to Beatris, Elodie, Floriane, David and Maria, for their scientific and technical advises, but also for helping me in my numerous reagent and antibody hunts!

I also wish to thank Prof. Walter Reith, as well as his whole lab, for our joint lab meetings and their help. A big thanks to my dear catalan friend, Adrià, for your friendship, your kindness and your support.

I am thankful to and have very special thoughts for Isabelle. I did not know you very well, but I remember you as warm and always smiling, but also as very brave, with an impressive strength of character. I remember you as an admirable person… I will never forget this sentence you chose:

“Life is not about waiting for the storm to pass, it is about learning to dance in the rain”.


x Walter Ferlin for helping me in the achievement of the project on tumor-associated pDCs. Yalin, thank you for giving me advises regarding neutrophil experiments. Adama, thanks a lot for helping me in the experimental design of the in vitro study of neutrophils, as well as for your friendliness and support. Sylvain, thank you for the RNA-Seq computational analysis, for your rapidity, and for your patience with us going back and forth in your office, with our numerous questions. Walter, many thanks for critically reading and giving your opinion on the manuscript, and thank you for your warm welcome for our lab dinners!

I wish to thank the people from the iGE3 platform, for the RNA-seq, and people from the animal facility for their help, especially Jenny and the two Anthony.

I would like to warmly thank the schtroumpf team Jean-Pierre, Cécile and Grégory from the flow cytometry platform. I learned a tremendous amount of technical tricks regarding FACS with you, and you have been of great help for many things (fixing problems with the machines, or with analyses, helping to optimize antibody panels, spending hours sorting cells, etc…). I also really appreciated the nice atmosphere of the platform. Thanks a lot, you are amazing (even Greg’s weird jokes)!

Of course, I want to thank the Hugues’s lab. Collectively, many thanks fo all the help, especially with big experiments, for the “lab parties” and for the “chikichiki”.

To the former lab. Fernanda, although our “cohabitation” in the lab was very brief because you left just after I arrived, thank you for your advises. Leslie, many thanks for initiating the project on tumor-associated pDCs. Thank you for teaching techniques under the hood, at the bench and for analyzes, as well as for all the help. Thank you also for your kindness. A special thanks to Anjie. Thanks for your welcome on my first day in the lab, for your help, especially for teaching me techniques regarding EAE and genotyping. Most importantly, thank you for your moral support, for your friendship, and for the shared moments. Thanks for your sensitivity, for your dark humor, thank you as well for making me discover another Geneva, and also for providing me a roof. However, I will not thank you for going so far away, because I have missed you! Juan, who also left to faraway lands, thanks for your advises and for answering my theoretical and technical questions regarding a bit of everything, as well as for making me discover this delicious Spanish soup with ice cream and champagne. Carla, thank for replying my numerous questions and for all the help. Thanks for our political debates, for (real) lab parties you initiated, at your place or elsewhere, and thank you for your generosity.

To the « heart of the lab ». Dalito/Dalicious, a huge thanks to you for all the technical help. Thank you as well for our musical discussions under the hood, for your mini-concerts just for the lab, your (very) dark humor (cf. Anjie), for your politeness, your diplomacy and for being so cool. It was a real pleasure working with you, don’t ever change!

To the new lab. Olga, thanks for your help, for your little greek dishes and your amazing cooking skills, for your generosity and your funny expression (mais elle est énorme !), with a specific acknowledgement for your tee-shirts with the French-speaking sentences.

Camcam/Tranquillou, thanks for being the “guinea pig” allowing me to test my teaching skills!

Thank you, of course, for our collaboration and all the help, as well as for your refreshing honesty and spontaneity. Guillaume, thanks for your help and your support. Thank you for reading and giving your opinion on my paper, for reading my “hors-thèse” manuscript as a Neuroimmunology and stress “grand manitou”, and for the Nancy macarons! Laure, thank you for all the help, for replying all my questions, for reading my paper and giving your opinion to


xi or dinners.

I also would like to thank the students that were in the lab for various length of stay; thanks to Carla G. for your help with “lab parties”, thanks to Antoine for your delicious desserts, and thanks as well to Julien, Clara, Hugo et Mathilde. Finally, thanks to Déborah, Romane and Sonia, it was a pleasure supervising you for your internships.

I wish to thank the people working (scientists and administrative staff) in the PATIM department. Thanks for advises and ideas during progress reports, for protocol exchanges and technical advises. It was also nice exchanging with you, during department retreats, Christmas parties, Immunology day, PATIM happy hours, or in the CMU corridors. I want to thank some people in particular. Thanks to Jen, JF, Filippo and Aurélie, it was a pleasure sharing the little office with you, and particularly to Mahdia. Thank you for your support, your smile and your warmth, you will stay the mum of the office, even if you are on the other side of the wall now.

Thanks to Stéphane as well, for your kindness and your weird humor.

I would like to thank some of the people I met on the other side of rue Lombard; Laura, Lyssia et Natacha. Petit moineau, it was a pleasure being your lab neighbor. Lyssia, thank you for everything you taught me in the lab, and for your support and our discussions. Chacha, what would have I done without you? Thank you for your scientific and technical advises, as well as for the thesis writing. Thanks for being my running buddy, for our political and philosophical discussions, for your moral support, for always being there and for following me in CMU (I am sure all of this was planned!). Thanks as well to Pifou, for your joie de vivre, and for our debates about everything and anything.

I wish to thank my colleagues and friends from CMU.

My thoughts first go to Valentina. Vale, you will forever have a special place in my heart, and I am deeply thankful for the time we spent together.

I want to thank the PhD students I met for the selection rounds of the Biology-medicine program. A big thanks to Nico, Caroline, Claire, Vanessa, Amy, Lisa et Sunil. Time’s up, freezing cold, youth hostel, etc… So many things happened since then. We have laughed and cried together. I am really happy for sharing this “doctoral” period of my life with you. A particular thanks to Sunil and Amy. Thanks to both of you, for all the moments we shared together, and for always being there. There are so many things I want to thank you for that I don’t even know what to say!

Thank you as well to Lingzi, Aleksandra and Ebru.

Finally, I also want to thank Manon, Doro, Julie, Nico H., Damian, Loïc, Dani, Ines, Fatma, Marta, Soner, Hugo, Salva, Ronke, Aurélia, Anne-Laure, Alex, Piango, Tanja et Alex-le-grand, for the nice moments spent together in CMU, in café de la pointe, for TGIFs, pic-nics in perle du lac, etc..

I am thankful that I have met you all, and for being in this international atmosphere that enriched my life, opened my mind, widened my horizons and taught me to put things into perspective.

Thank you all: धन्यवाद, merci, dziękuję, danke, gracias, o ṣeun, grazie, ارك ش, Dankjewel,

謝謝, obrigado, σας ευχαριστώ, sağol, tualumba ! It is going to be really hard for me to say good bye to you guys.

I also would like to thank Clara, Karin, Julia, Tiphaine et Mirjam, who allowed me escaping from the thesis and the world of Biology PhD students from time to time.


xii through their support. Thanks a lot for many things, including your understanding for my chronic lack of availability. I will be very brief because I don’t really know how to express my gratitude to you.

To my dear old friends, many thanks for your friendship throughout all these years and your great support during my very long studies. I could write tones of pages about you, but I don’t think I need a thesis acknowledgement section for you to know how important you are to me. A huge thanks to Laëtitia, Gaëlle, Marie, Lise, Cécile et Julie-Anne.

To my extended family, thank you a lot for your support during all these years. We don’t see each other very often but it does not prevent me from thinking about you and appreciating the time spent together.

Last but not least, I want to dedicate this thesis to my parents and my brother.

Thanks to Sylvain. And, thanks to my parents, for your support, your love and everything you have done for me since I am a child.




Je souhaite exprimer ma profonde gratitude aux Prof. Cornelia Halin (Zurich, Suisse) et Prof.

Vassili Soumelis (Paris, France) d’avoir accepté d’évaluer ma thèse. C’est un honneur pour moi que vous preniez de votre temps pour faire partie de mon jury.

Je remercie également Prof. Jean-Claude Martinou d’avoir accepté de codiriger et d’évaluer cette thèse.

Bien entendu, je remercie très sincèrement Prof. Stéphanie Hugues. Steph, merci de m’avoir accueillie dans ton labo, de m’avoir encadrée et guidée, et d’avoir toujours été là pour la moindre question. Merci également pour toutes les corrections de cette longue thèse ! Merci de m’avoir fait confiance pour la rédaction des manuscrits et de m’avoir laissé de l’autonomie pour les expériences. Merci de m’avoir donné l’opportunité d’être impliquée dans la rédaction de revues, et également dans des collaborations avec d’autres labos. J’ai toujours été impressionnée par tes qualités en tant que scientifique, par ton énergie et ton dynamisme, et par la quantité de projets, scientifiques et autres, que tu mènes de front.

Finalement, merci pour les soirées labo chez toi ou ailleurs, et pour ta compréhension dans les moments difficiles.

Je voudrais vivement remercier Dr. Nathalie Bendriss-Vermare (Lyon, France), pour nos discussions et ses précieux conseils concernant le projet pDC associées aux tumeurs. Ils m’ont été d’une grande aide, sur beaucoup de points (pDC, mais aussi neutrophiles, cDC, etc…).

Je souhaite également remercier Prof. Fabienne Tacchini-Cottier (Lausanne, Suisse), pour ses conseils techniques qui m’ont permis d’optimiser le design des expériences pour l’étude des neutrophiles in vitro.

Je remercie aussi Prof. Taija Mäkinen (Uppsala, Suède) et Prof. Ari Waisman (Mayence, Allemagne) pour les souches Prox1-creERT2 et IiMOGfl/fl.

Je souhaite remercier Prof. Carlo Chizzolini et Prof. Monique Gannagé, qui ont parrainé ma thèse, ainsi que Prof. Dominique Soldati-Favre et Prof. Patrick Linder. Merci de m’avoir aidée et soutenue lorsque j’en ai eu besoin.

Je voudrais également remercier Prof. Camilla Bellone et Prof. Doron Merkler d’avoir accepté d’évaluer mon travail de hors-thèse.

Je remercie Prof. Claire-Anne Siegrist, et toute son équipe, pour leurs précieux conseils apportés lors de nos réunions communes. Un grand merci en particulier à Beatris, Elodie, Floriane, David et Maria, pour leurs conseils scientifiques et techniques, mais aussi de m’avoir aidée dans mes nombreuses chasses aux anticorps et autres réactifs !

Je remercie aussi Prof. Walter Reith, ainsi que toute son équipe, pour nos réunions en commun et pour leur aide. Un merci particulier à Adrià, mon cher ami catalan, pour ton amitié, ta gentillesse et ton soutien.

Je remercie et j’ai une pensée très particulière pour Isabelle. Je ne te connaissais pas très bien mais je garde de toi le souvenir d’une personne souriante et très chaleureuse, mais aussi très courageuse, avec une impressionnante force de vie. Une personne admirable… Je me rappellerai toujours de cette phrase que tu as choisie : « La vie, ce n’est pas d’attendre que l’orage passe, c’est d’apprendre à danser sous la pluie ».

Je souhaite remercier Dr. Yalin Eimre, Dr. Adama Sidibe, Dr. Sylvain Lemeille et Dr. Walter Ferlin de m’avoir aidée dans l’aboutissement du projet pDC associées aux tumeurs. Yalin, merci pour tes conseils concernant les neutrophiles. Adama, merci de m’avoir aidée dans le design des expériences pour l’étude des neutrophiles in vitro, et également pour tes encouragements et ta


xiv ta rapidité, et ta patience avec nos allées et venues dans ton bureau et nos multiples questions.

Walter, merci d’avoir lu et donné ton avis sur le manuscrit afin de l’améliorer, et merci pour ton accueil chaleureux lors de nos soirées de labo !

Je voudrais remercier le personnel de la plateforme iGE3, pour le RNA-seq, ainsi que le personnel de la zootechnie, en particulier Jenny et les deux Anthony, pour leur aide.

Je remercie très chaleureusement l’équipe des schtroumpfs Jean-Pierre, Cécile et Grégory de la plateforme de cytométrie en flux. J’ai énormément appris à vos côté au niveau technique, et vous avez été d’une immense aide que ce soit pour résoudre des problèmes avec les machines, pour optimiser des panels, pour les tris, pour des problèmes d’analyse, etc… J’ai aussi beaucoup apprécié l’ambiance bon enfant très agréable qui règne sur la plateforme. Merci mille fois, vous êtes géniaux (même les blagues douteuses de Greg) !

Bien entendu, je souhaite remercier le labo Hugues. D’une manière générale, merci pour l’aide apportée, surtout lors des grosses expériences, les « lab parties » et « chickichicki ».

A l’ ancienne équipe. Fernanda, même si notre « cohabitation » dans le labo a été très brève puisque tu es partie juste après mon arrivée, merci pour tes conseils. Leslie, merci d’avoir initié le projet pDC associées aux tumeurs, et de m’avoir formée sous la hotte, à la paillasse et pour les analyses, ainsi que pour toute l’aide que tu m’as apportée. Et merci également pour ta gentillesse. Un merci très particulier pour Anjie. Merci de m’avoir accueillie lors de mon premier jour au labo et pour l’aide que tu m’as apportée, notamment pour me former aux techniques en rapport avec l’EAE et les génotypages. Mais surtout, merci pour ton amitié et ton soutien moral. Merci pour ta sensibilité, ton engagement et ton humour noir, merci de m’avoir fait découvrir ta ville en tant que bonne Genevoise que tu es, et également de m’avoir fourni un toit. Pour autant, je ne te remercie pas d’être partie si loin, car tu m’as beaucoup manquée ! Juan, toi aussi parti vers des contrées lointaines, merci pour tes conseils et d’avoir répondu à mes questions théoriques et techniques concernant un peu tout et n’importe quoi. Merci de m’avoir fait découvrir cette fameuse soupe espagnole à la glace et au champagne ! Carla, merci d’avoir répondu à mes nombreuses questions et pour toute l’aide que tu m’as apportée. Merci pour nos débats politiques enflammés, les soirées que tu as initiées, chez toi ou ailleurs, et surtout, merci pour ta générosité.

To the « heart of the lab ». Dalito/Dalicious, un énorme merci à toi pour toute l’aide technique que tu m’as apportée. Merci également pour nos discussions musicales pendant les manips sous la hotte, pour tes mini-concerts rien que pour le labo, pour ton humour (très) noir (cf. Anjie), pour ta politesse, ta diplomatie, et ta décontraction. Ce fut un réel plaisir de travailler avec toi, ne change surtout pas !

A la nouvelle équipe. Olga, ma voisine de bureau pendant quelques temps, merci pour ton aide, pour tes petits plats grecques et tes grands talents culinaires, ta générosité, et tes expressions rigolotes (mais elle est énorme !), avec une mention spéciale pour tes tee-shirts francophones.

Camcam/Tranquillou, merci d’avoir été le cobaye m’ayant permis de « tester » mes compétences pédagogiques. Merci, bien sûr, pour notre collaboration et toute l’aide que tu m’as apportée, et pour ton honnêteté et ta spontanéité rafraîchissantes. Guillaume, merci pour ton aide et pour tes encouragements. Merci beaucoup d’avoir lu et donné ton avis sur mon papier, d’avoir passé du temps à lire mon manuscrit de hors-thèse, en tant que grand manitou de la Neuroimmunologie et du stress. Merci pour ton calme, tu es un peu la force tranquille du labo. Serait-ce l’âge ? (Attention, il s’agit d’une blague). Et merci pour les macarons de Nancy ! Laure, merci pour l’aide que tu m’as apportée, pour les réponses à mes questions, d’avoir lu mon papier et de m’avoir donné ton opinion afin de l’améliorer. Merci également pour ton accent ensoleillé du sud-ouest, et pour l’organisation de sorties de labo.

Je remercie également les étudiants de passage au labo pour de plus ou moins longues périodes, avec qui j’ai eu des échanges agréables ; merci à Carla G., pour ton aide lors des « lab parties », merci à Antoine, pour tes délicieux desserts et tes récits d’ailleurs, et merci également à


xv de vous encadrer lors de vos stages.

Je souhaite remercier l’ensemble du personnel (scientifique et administratif) du département de pathologie et immunologie. Merci pour les avis et idées qu’on a pu me donner lors des progress report, pour les dépannages de réactifs, les échanges de protocoles, les conseils techniques. J’ai eu également le plaisir d’échanger avec beaucoup d’entre vous, lors des retraites de département, soirées de Noël, Immunology day, PATIM happy hours ou, tout simplement, dans les couloirs et au « coin micro-onde ». Je souhaite remercier certaines personnes en particulier. Merci à Jen, JF, Filippo et Aurélie, ce fut un plaisir de partager ce petit bureau avec vous, et merci tout particulièrement à Mahdia. Je te remercie pour ton soutien, qui m’a fait beaucoup de bien. Toujours souriante, chaleureuse, à l’écoute et réconfortante, tu resteras la Maman du bureau, même si tu es passée de l’autre côté du mur. Merci à Stéphane pour ton dynamisme, ta sympathie et ton humour un peu spécial.

Je voudrais remercier profondément certaines personnes rencontrées de l’autre côté de la rue Lombard, à savoir Laura, Lyssia et Natacha. Petit moineau, ça a été un plaisir d’être ta voisine de labo. Lyssia, merci pour tout ce que tu m’as appris au niveau technique, et surtout, merci pour ton soutien, nos discussions et ton ouverture d’esprit. Chacha, mais qu’aurais-je été sans toi ? Merci pour tous les conseils que tu m’as donnés tant aux niveaux scientifique et technique, que pour la rédaction de la thèse. Merci d’avoir été ma comparse de course, pour nos discussions philosophiques et politiques, pour ton soutien moral, d’avoir toujours été présente, et de m’avoir suivie au CMU (je suis sûre que tout cela était prémédité !). Merci aussi à Pifou, pour ta joie de vivre et nos débats sans queue ni tête, à propos de plus ou moins tout et n’importe quoi.

Je tiens beaucoup à remercier les collègues et amis du CMU.

Mes premières pensées vont à Valentina. Vale, les mots me manquent… Tu garderas toujours une place spéciale dans mon cœur et je suis infiniment reconnaissante pour le temps précieux passé avec toi.

Je souhaite remercier les doctorants rencontrés lors des entretiens du programme Biologie- Médecine. Un grand merci à Nico, Caroline, Claire, Vanessa, Amy, Lisa et Sunil. Souvenirs souvenirs : time’s up, froid de canard, et auberge de jeunesse… Tant de choses ce sont passées depuis. On a ri et pleuré ensemble. Je suis contente d’avoir partagé cette période « doctorale » de ma vie avec vous. Un merci tout particulier à Sunil et à Amy. A vous deux, merci pour tous les moments partagés, et merci infiniment d’être là pour moi, j’ai tellement de choses pour lesquelles vous remercier que je ne sais plus quoi dire !

Merci beaucoup également à Lingzi, Aleksandra et Ebru.

Enfin, je remercie aussi, en espérant oublier personne, Manon, Doro, Julie, Nico H., Dani, Damian, Loïc, Ines, Fatma, Marta, Soner, Hugo, Salva, Ronke, Aurélia, Anne-Laure, Alex, Piango, Tanja et Alex-le-grand, pour les bons moments passés ensembles, au CMU, pendant les soirées au café de la pointe ou ailleurs, les TGIF, les pique-niques à la perle du lac, etc...

Je suis reconnaissante de vous avoir tous rencontrés et d’avoir été plongée dans cette ambiance internationale qui m’a beaucoup apporté, a enrichit ma vie, ouvert mon esprit, élargit mes horizons, appris à relativiser et à prendre du recul.

Merci à tous : धन्यवाद, dziękuję, danke, gracias, o ṣeun, grazie, ارك ش , Dankjewel, 謝謝, obrigado, σας ευχαριστώ, sağol, tualumba ! Ça va être dur de vous dire au revoir.

Je voudrais également remercier Clara, Karin, Julia, Tiphaine et Mirjam, qui m’ont permis de me sortir la tête du guidon et du monde des doctorants en Biologie, de temps en temps.


xvi cette thèse, par leur soutien. Merci pour beaucoup, beaucoup de choses, notamment votre

compréhension pour mon manque de disponibilité chronique. Je serai très brève car j’ai du mal à trouver mes mots pour vous exprimer ce que je ressens et vous remercier correctement.

A mes vieilles branches, merci infiniment pour votre amitié et pour votre soutien sans faille pendant mes longues études. Je pourrais écrire des pages et des pages sur vous ! Je vais donc être très brève pour ne pas m’embourber, je pense de toute manière ne pas avoir besoin de cette section pour que vous sachiez à quel point vous êtes importantes à mes yeux. Un énorme merci à, Laëtitia, Gaëlle, Marie, Lise, Cécile et Julie-Anne.

A ma famille élargie, merci beaucoup pour vos encouragements et pour votre soutien lors de toutes ces années. On ne se voit pas très souvent mais cela ne m’empêche pas de penser à vous, et d’apprécier les moments passés ensemble.

Enfin, je souhaite dédier cette thèse à mes parents et à mon frère.

Merci à Sylvain, mon frérot. Et enfin, merci à mes parents, merci pour tout, pour votre soutien, votre amour, et tout ce que vous avez fait pour moi depuis que je suis petite.

J’espère sincèrement que je n’oublie personne dans cette section « remerciements », qui revêt un caractère de moins en moins professionnel au fil des lignes, et dont la rédaction aura eu de véritables vertus thérapeutiques à mi-chemin, et dans la dernière ligne droite, dans l’écriture de cette thèse.




A2AR adenosine A2A receptor

Aire autoimmune regulator

APC antigen-presenting cell

BAD-LAMP brain and DC-associated lysosome-associated membrane protein

BBB blood-brain barrier

BCG bacillus Calmette-Guérin

BCR B cell receptor

BDCA blood dendritic cell antigen

BEC blood endothelial cell

BLMB Blood-leptomeningeal barrier

BM bone marrow

BST2 bone marrow stromal cell antigen 2 (also called PDCA-1)

CCL CC-chemokine Ligand

CCR CC-chemokine receptor

CD cluster of differentiation

cDC conventional dendritic cell

CDP common dendritic cell progenitor

CFA complete Freund's adjuvant

CIITA class II major histocompatibility complex transactivator

CLEC2 C-type lectin receptor 2

CLIP class II-associated Ii peptide

CLP common lymphoid progenitor

CNS central nervous system

CpG-B class B CpG oligodeoxynucleotides

CpG-ODN CpG oligodeoxynucleotides

CSF cerebrospinal fluid

cTEC cortical thymic epithelial cell

CTL cytotoxic T lymphocyte

CTLA-4 cytotoxic T-lymphocyte-associated protein 4

CXCL CXC-chemokine ligand

CXCR CXC-chemokine receptor

CyTOF cytometry by time-of-flight

DAMP danger-associated molecular pattern

DC dendritic cell

DCIR dendritic cell immunoreceptor

DC-SIGN DC-specific intercellular adhesion molecule-3-grabbing non-integrin Deaf1 deformed epidermal autoregulatory factor 1

DN double negative

DNC double negative cell

DP double positive

DPP-4 dipeptyl peptidase-4



EAE experimental autoimmune encephalomyelitis

EBV Epstein-Barr virus

EGC enteric glial cell

Eif4g3 eukaryotic translation initiation factor 4 gamma 3

ER endoplasmic reticulum

eTAC extrathymic Aire-expressing cell

FACS fluoresence-activated cell sorting

FAS-L first apoptosis signal ligand

FcγR Fcγ receptor

Fezf2 fez family zinc finger 2

FLT3L FMS-related tyrosine kinase 3 ligand

FRC fibroblastic reticular cell

GA glatiramer acetate

GFAP glial fibrillary acidic protein

GFP green fluorescent protein

GLOBOCAN global cancer incidence, mortality and prevalence GM-CSF granulocyte-macrophage colony-stimulating factor gp38 glycoprotein 38 (also called podoplanin or PDPN)

GvHD graft versus host disease

GWAS genome-wide association studies

HA Hemagglutinin

HEV high endothelial venule

HIV human immunodeficiency virus

HLA human leukocyte antigen

HVEM herpes virus entry mediator

ICAM-1 intercellular adhesion molecule 1

ICOS inducible T cell co-stimulator

ICOS-L inducible T cell co-stimulator ligand

Id2 inhibitor of DNA binding 2

IDO indoleamine 2,3-dioxygenase

IEC intestinal epithelial cell

iFABP intestinal fatty acid-binding protein

IFNAR interferon-α/β receptor

IFN-I (or III) type I (or III) interferon

IFN-γ interferon-γ

IFN-γR interferon-γ receptor

Ig Immunoglobulin

Ii invariant chain

IL interleukin

ILC innate lymphoid cell



K14 keratin 14

LAG-3 lymphocyte activation gene 3

LEC lymphatic endothelial cell

LFA-1 lymphocyte function-associated antigen 1

LN lymph node

LNSC lymph node stromal cell

LPS lipopolysaccharide

LSEC liver sinusoidal endothelial cell

Ltβr lymphotoxin β receptor

LV lymphatic vessel

Lyve-1 lymphatic vessel endothelial hyaluronan receptor 1

mAb monoclonal antibody

Mac-1 macrophage-1 antigen

MadCAM-1 mucosal vascular addressin cell adhesion molecule 1

MBP myelin basic protein

MDSC myeloid-derived suppressor cell

MHC major histocompatibility complex

MIIC MHC class II compartment

MIP-1β macrophage inflammatory protein 1β

MM multiple myeloma

moDC monocyte-derived dendritic cell

MOG myelin oligodendrocyte protein

MRI magnetic resonance imaging

MS multiple sclerosis

mTEC medullary thymic epithelial cell

Mtg16 myeloid translocation gene 16

MyD88 myeloid differentiation primary response gene 88

NET neutrophil extracellular trap

NF-κB nuclear factor-κB

NK natural killer

NSCLC non-small cell lung carcinoma

OVA ovalbumin

p promoter (of CIITA)

PAMP pathogen-associated molecular pattern

PBMC peripheral blood mononuclear cell

PCAM-1 platelet endothelial cell adhesion molecule 1 (also called CD31)

PD-1 programmed cell death 1

pDC plasmacytoid dendritic cell

PDCA-1 plasmacytoid dendritic cell antigen 1 (also called BST2)



PGE2 prostaglandin E2

PI3K phosphoinositide 3-kinase

PLP proteolipid protein

PP Peyer's Patches

PPMS primary progressive multiple sclerosis

Ppy pancreatic polypeptide

Prox-1 prospero homeobox protein 1

PRR pattern recognition receptor

PTA peripheral tissue-restricted antigen

PTPRS (or PTPRF) protein-tyrosine phosphatase receptor type S (or F) pTreg peripherally-induced regulatory T cell

PTX pertussis toxin

RANTES regulated on activation, normal T cell expressed and secreted

ROS reactive oxygen species

RRMS relapsing-remitting multiple sclerosis

S1P sphingosine-1-phosphate

S1PR1 sphingosine-1-phosphate receptor 1

SAND Sp100, AIRE-1, NucP41/75, DEAF1

Siglec-H sialic acid binding Ig-like lectin H

SLO secondary lymphoid organ

SNP single nucleotide polymorphism

SP simple positive

SPMS secondary progressive multiple sclerosis

TA tumor-associated

TAN tumor-associated neutrophils

TAP transporter associated with antigen processing TCF4 transcription factor 4 (also called E2-2)

TCM tumor-conditioned medium

TCR T cell receptor

TdLN tumor-draining lymph node

TEC thymic epithelial cell

TFH T follicular helper

TGF-β transforming growth factor-β

TGF-βR transforming growth factor-β receptor

Th T helper

TIL tumor-infiltrating lymphocyte

TLR toll-like receptor

TLS tertiary lymphoid structure

TME tumor microenvironment

TNF tumor necrosis factor

tOVA truncated ovalbumin

Tr1 type 1 regulatory T cell



Treg regulatory T cell

TSLP thymic stromal lymphopoietin

tTreg thymus-derived regulatory T cell

Tyr tyrosinase

UV ultra violet

VCAM-1 vascular cell adhesion molecule 1 VEGF-C vacular endothelial growth factor C

VEGFR-3 vascular endothelial growth factor receptor 3

VLA-4 very late antigen 4




I. INTRODUCTION ... 1 I.1. Preamble ... 1 I.2. The balance of the immune system ... 2 I.3. Antigen presentation... 3 I.3.a. Antigen presentation: mechanisms implicated ... 3 I.3.b. Professional antigen-presenting cells (APCs) ... 6 I.4. Thymic selection and central T cell tolerance ... 9 I.4.a. T cell receptor gene rearrangement and positive selection ... 9 I.4.b.Negative selection ...11 I.5. Peripheral T cell responses ...14 I.5.a. T cells: polarization and roles ...14 I.5.b. Peripheral T cell tolerance ...17 I.6. Unconventional antigen-presenting cells ...20 I.6.a. An overview of unconventional and semi-professional APCs ...20 I.6.b. Plasmacytoid dendritic cells (pDCs) ...23 I.6.b.i. Plasmacytoid dendritic cells: generalities ...23 I.6.b.ii. Ontogeny and heterogeneity of pDCs ...26 I.6.b.iii. Plasmacytoid DC functions independent of antigen presentation ...27 I.6.b.iv. Antigen-presenting functions of pDCs ...30 I.6.c. Lymphatic endothelial cells (LECs) ...38 I.6.c.i. Different subsets of lymph node stromal cells (LNSCs) ...38 I.6.c.ii. Ontogeny and development of LECs ...40 I.6.c.iii. Major types of LECs ...42 I.6.c.iv. Regulation of LN-LEC proliferation and survival ...44 I.6.c.v. LECs impact peripheral T cell responses through mechanisms independent of antigen presentation ...44 Antigen-presenting abilities of LECs: uptake of exogenous antigens and presentation to cells...48



xxiii III.1. Introduction (Chapter A) ...54 III.1.a. Tumor immunity ...54 III.1.a.i. Cancer and tumor immunity ...54 III.1.a.ii. Cancer immunotherapies ...57 III.1.b. Plasmacytoid DCs in tumor immunity ...60 III.1.b.i. pDCs in tumor immunity: Generalities ...60 III.1.b.ii. pDC innate functions in tumor immunity ...61 III.1.b.ii. pDC antigen-presenting functions in tumor immunity ...61 III.1.c. Specific aim (Chapter A) ...67 III.2. Results (Chapter A) ...69 III.3. Discussion (Chapter A) ...96

IV. CHAPTER B ... 112 IV.1. Introduction (Chapter B)... 112 IV.1.a. Multiple sclerosis and its animal model, EAE ... 112 IV.1.a.i. Multiple sclerosis ... 112 IV.1.a.ii. Causes ... 112 IV.1.a.iii. EAE model ... 115 IV.1.a.iv. Immunopathophysiology of MS and EAE ... 115 IV.1.a.v. MS therapies targeting the immune system ... 115 IV.1.b. Role of self-antigen presentation by LECs in autoimmunity ... 123 IV.1.b.i. Expression of peripheral tissue-restricted antigens by LECs ... 123 IV.1.b.ii. Impact of LEC presentation of endogenously-expressed PTAs on T cell responses ... 126 IV.1.b.iii Molecular pathways implicated in peripheral T cell tolerance mediated by LECs ... 129 IV.1.c. Specific aim (Chapter B) ... 130 IV.2. Results (Chapter B) ... 132 IV.3. Discussion (Chapter B) ... 153


VI. APPENDICES ... 166 VI.1. Appendix 1 (Humbert, Dubrot* & Hugues*, Front Immunol, 2016) ... 166 VI.2. Appendix 2 (Humbert & Hugues, Oncoimmunology, 2018) ... 180 VII. REFERENCES ... 184




Figure 1. Classical pathway for the presentation of exogenous antigens loaded onto MHC-II to

CD4+ T cells………...5

Figure 2. Professional antigen-presenting cells, based on the attribute definition………..8 Figure 3. Interaction of developing thymocytes with stromal cells in the thymus………...10 Figure 4. Thymic selection……….11 Figure 5. Negative selection and central T cell tolerance……….…...13 Figure 6. CD4+ T cell polarization……….…16 Figure 7. Co-stimulatory and co-inhibitory signals……….17 Figure 8. Peripheral T cell tolerance……….….19 Figure 9. The multiple functions of plasmacytoid dendritic cells………25 Figure 10. Specific location of the lymph node stromal cell subsets………....39 Figure 11. Antigen acquisition and presentation by lymphatic endothelial cells……….………..50 Figure 12. Anti-tumor immunity cycle………....57 Figure 13. A wide variety of cancer immunotherapies………58 Figure 14. Signaling pathways of type A and B CpG oligodeoxynucleotides in early and late endosomes in plasmacytoid dendritic cells………..65 Figure 15. Priming of Th17 cells by activated antigen-presenting plasmacytoid dendritic cells leads to tumor growth control: working model………...66 Figure 16. Can intratumoral administration of CpG-B along with tumor antigenic peptide reverse the tolerogenic phenotype of tumor-associated plasmacytoid dendritic cells?...68 Figure 17. Intratumoral administration of CpG-B and tumor antigenic peptide induces tumor cell death: working model……….…107 Figure 18. Role of antigen-presentation by lymph node stromal cells in peripheral T cell tolerance………...125 Figure 19. Antigen presentation-dependent role of lymph node stromal cells in peripheral T cell responses……….….126




I.1. Preamble

The present thesis aims at understanding the role of unconventional antigen presenting cells (APCs) in the modulation of peripheral T cell responses, in particular the role of two different cell types studied in distinct immunological contexts, therefore necessitating two chapters.

Chapter A analyzes the role of plasmacytoid dendritic cells (pDCs), in anti-tumor immunity, while Chapter B investigates the role of lymphatic endothelial cells (LECs), in the context of autoimmunity. Both chapters are focused on antigen-presenting functions, in particular restricted to major histocompatibility complex class II (MHC-II), and its impact on CD4+ T cell responses.

A general introduction first summarizes our current knowledge on antigen presentation and T cells responses, and provides an overview of unconventional APCs, with a description of pDCs and LECs.

This general section is followed by two specific introductions; Chapter A (pDCs in tumors) and Chapter B (LECs in autoimmunity).



I.2. The balance of the immune system

From Janeways’s Immunobiology (Murphy et al., 2008)

The immune system is constituted of two branches, namely, innate and adaptive immunity, and aims at protecting the organism against infection and other harms, including tumors and damaged cells. In addition, this highly evolved system self-regulates, in order to prevent adverse effects, such as autoimmunity. Therefore, a tightly regulated balance between immune activation and tolerance is required.

An immune response typically starts with the activation of the innate immune system, which proceeds to a first discrimination between self and non-self. If the innate immune response is not sufficient to eradicate a pathogen, a - highly specific - adaptive immune response can be initiated.

Innate immunity

APCs, such as dendritic cells (DCs) and macrophages, and some other immune cells, express pattern recognition receptors (PRRs) that sense pathogen- or damage-associated molecular patterns (PAMPs or DAMPs). DCs are considered as a bridge linking innate and adaptive immunity. If an adaptive immune response is initiated, it is “polarized”, depending on the type of PAMPs/DAMPs that have been recognized by the innate immune system, in order to induce an adequate response.

Adaptive immunity

The adaptive immune system comprises two arms; a T cell-mediated immunity, which will be described in the next sections, and a humoral immunity, which involves B lymphocytes.

Extremely briefly, when activated, B cells differentiate into plasma cells that produce antibodies, constituting the humoral immune response, which protects the extracellular space.



I.3. Antigen presentation

I.3.a. Antigen presentation: mechanims implicated

T cell development, described in the next section, occurs in the thymus and generates a vast repertoire of naïve CD4+ and CD8+ T cells (Klein et al., 2014; Takaba and Takayanagi, 2017).

When fully mature, these cells exit the thymus, enter the circulation and can reach the secondary lymphoid organs (SLOs), among which lymph nodes (LNs), where they can be primed (Fu et al., 2016).

The specificity of T cells is encoded by their T cell receptor (TCR). In order to be activated, the TCR must recognize its cognate antigenic peptide bound to MHC molecules; MHC-I for CD8+ T cells and MHC-II for CD4+ T cells, allowing a tight control of T cell responses (Benvenuti, 2016;

Murphy et al., 2008). These peptide/MHC complexes are presented by APCs to naïve T cells, in the SLOs, structures that favour the encounter of naïve T cells with APCs having acquired antigens (Murphy et al., 2008).

Naïve T cell priming takes place in the presence of three integrated signals provided by APCs, the interface between the APC and the T cell being called the “immunological synapse” (Benvenuti, 2016). Signal 1 corresponds to the engagement of the TCR with the above-mentionned peptide/MHC complex, ensuring the specificity of the activation. Signal 2 is the ligation of co- stimulatory molecules, such as CD80/CD86 and CD40, expressed by APCs, with CD28 and CD40-L expressed by T cells, respectively. Signal 3 is the pattern of cytokines produced by APCs, which polarizes the T cell response. Signals 2 and 3 translate the state of activation of APCs by DAMPs or PAMPs, leading to the polarization of the T cell response, which is described later in this introduction (Benvenuti, 2016; Carbo et al., 2014). While signal 1 is strictly required, signal 1 in the absence of signals 2 and 3 leads to peripheral T cell tolerance (Baldwin and Hogquist, 2007;

Iberg et al., 2017).

Once naïve T cells have been primed in the SLOs, they can migrate to the tissue from which their cognate antigen has been acquired (Fu et al., 2016).

Presentation of antigens loaded onto MHC-I to CD8+ T cells

With the exception of erythrocytes, all cell types express MHC-I in order to present endogenous antigens, including intracellular pathogen and tumor antigens, enabling the recognition of these cells by CD8+ T cells in tissues, and their subsequent killing (Neefjes et al., 2011). Briefly, the classical antigen-processing pathway for the presentation of endogenous antigens to CD8+ T cells encompasses the degradation of antigens by the proteasome in the cytosol, and the translocation



of generated peptides into the endoplasmic reticulum (ER) through transporter associated with antigen processing (TAP), where they are loaded onto MHC-I (Neefjes et al., 2011). Alternative antigen-processing pathways for MHC-I also exist but will not be described here (Oliveira and van Hall, 2015).

Nonetheless, APCs have the ability to internalize, process and present exogenous antigens loaded onto MHC-I to CD8+ T cell, a mechanism called “cross-presentation”, for which multiple pathways of antigen-processing have been described (Adiko et al., 2015; Joffre et al., 2012). In the TAP-dependent cytosolic pathways, exogenous antigens, after phagocytosis, are either exported to the cytosol, degraded by the proteasome and loaded onto MHC-I in the ER, or they are re- imported into the phagosome and loaded onto MHC-I (Gutierrez-Martinez et al., 2015; Joffre et al., 2012). Fusion between the ER and the phagosome with subsequent loading into the mix compartment has also been described (Guermonprez et al., 2003; Gutierrez-Martinez et al., 2015). The vacuolar pathway (TAP-independent) involves the degradation of antigens and the loading on MHC-I directly in the phagosome (Joffre et al., 2012).

Presentation of antigens loaded onto MHC-II to CD4+ T cells

In contrary to MHC-I, MHC-II expression, which is regulated by the master regulator Class II MHC complex transactivator (CIITA), is restricted to APCs (Kambayashi and Laufer, 2014;

Reith et al., 2005). The classical pathway for the presentation of exogenous antigens to CD4+ T cells through MHC-II, depicted in Fig. 1, involves the assembly of MHC-II molecules in the ER, where they form a complex with the invariant chain (Ii). The complex is then transported to the MHC class II compartment (MIIC), where Ii and the internalized exogenous antigens are degraded by MIIC-resident proteases (Neefjes et al., 2011; Roche and Furuta, 2015). The MHC- II peptide-binding groove is normally hidden by Class II-associated Ii peptide (CLIP), a fragment from Ii. With the help of a chaperone, called human leukocyte antigen (HLA)-DM in human and H2-M in mouse, CLIP is exchanged with the antigenic peptide, which is finally loaded onto MHC-II. MHC-II molecules are subsequently transported to the plasma membrane, where they can present the peptide to CD4+ T cells (Neefjes et al., 2011; Roche and Furuta, 2015).

Non-classical pathways of MHC-II loading for the presentation of endogenous antigens to CD4+ T cells also have been described, involving autophagy as well as non-autophagic pathways (Leung, 2015; Munz, 2015; Roche and Furuta, 2015). It is for example the case for intracellular viral antigens in infected APCs, or for the presentation of endogenously-expressed self-antigens by thymic epithelial cells (TECs), which use macroautophagy (Anderson and Takahama, 2012;

Klein et al., 2009; Veerappan Ganesan and Eisenlohr, 2017).


5 Figure 1. Classical pathway for the presentation of exogenous antigens loaded onto MHC-II to CD4+ T cells.

Major histocompatibility complex class II (MHC-II) is assembled in the endoplasmic reticulum (ER), where it forms a complex with Ii, the invariant chain. This complex is transported via the Golgi to the MHC-II compartment (MIIC), through the plasma membrane or directly. Ii and the exogenous antigens are degraded in MIIC by proteases. Class II-associated Ii peptide (CLIP), a fragment from Ii, hides the MHC-II peptide-binding groove, until it is exchanged with an antigenic peptide by the chaperone HLA- DM, in human (or H2-M in mice). Subsequently, MHC-II molecules are transported to the plasma membrane where they can present the peptide to CD4+ T cells.

APC, antigen-presenting cell; TCR, T cell receptor.

Adapted from Neefjes et al., Nat Rev Immunol, 2011 (Neefjes et al., 2011).




Related subjects :