• Aucun résultat trouvé

List of Figures

N/A
N/A
Protected

Academic year: 2021

Partager "List of Figures"

Copied!
5
0
0

Texte intégral

(1)

Contents

Abstract ix

Acknowledgments xi

Author’s contribution xiii

Published papers . . . xiii

Submitted papers . . . xiii

List of Figures xvi List of Tables xviii Nomenclature xix Foreword 1 Introduction 3 1 Theory and methods 7 1.1 Introduction . . . 8

1.2 Inverse approach . . . 8

1.3 Data . . . 9

1.4 Maximum entropy principle . . . 10

1.5 Relation of maxent models to other approaches. . . 12

1.6 Entropy. . . 13

1.7 Variational methods . . . 15

1.8 Most probable state and fluctuations . . . 18

1.9 Testing the order of maxent models . . . 19

1.10 Equilibrium . . . 20

(2)

Contents

2.5 Distribution of the pairwise influences . . . 52

2.6 Conclusion . . . 56

3 Market structure explained by pairwise interactions 57 3.1 Introduction . . . 59

3.2 The model . . . 59

3.3 Order-disorder transition . . . 60

3.4 Dynamics of interactions . . . 62

3.5 Link to the graph-theoretic approach . . . 63

3.6 Conclusion . . . 68

4 A statistical perspective on criticality in financial markets 71 4.1 Introduction . . . 73

4.2 Criticality. . . 74

4.3 Why criticality is important . . . 75

4.4 Practical recipe . . . 76

4.5 Signatures of criticality . . . 77

4.6 Sampling indices and stock exchanges . . . 78

4.7 Results . . . 80

4.8 Link to maximum entropy models . . . 87

4.9 Discussion . . . 89

5 Predicting trend reversals using market instantaneous state 93 5.1 Introduction . . . 95

5.2 Collective states . . . 96

5.3 Results . . . 98

5.4 Noise and comparison to artificial networks. . . 103

5.5 Simultaneous trend reversals . . . 105

5.6 Conclusion . . . 105

Appendices 109 5.A Cleaning the data . . . 109

5.B Regularized pseudo-maximum likelihood . . . 109

5.C Confusion matrix . . . 109

5.D Dichotomized Gaussian model . . . 110

6 General conclusion 111 6.1 Introduction . . . 112

6.2 The Brock-Durlauf model . . . 112

6.3 Conclusion . . . 119

6.4 Perspectives . . . 119

Bibliography 121

(3)

List of Figures

0.1 Cumulative distribution of the log-returns. . . 3

0.2 Thought-line . . . 5

0.3 Tag cloud. . . 6

1.1 Direct and inverse approaches. . . 8

1.2 Utility function as log-likelihood . . . 9

1.3 Correlations induced by common influences. . . 11

1.4 Markov networks . . . 13

1.5 Entropy of a coin toss . . . 14

1.6 Projection and KLD . . . 16

1.7 Mutual information . . . 19

1.8 Statistical dependencies . . . 20

1.9 Equilibrium approximations . . . 23

1.10 Idealized city . . . 25

1.11 Monte Carlo estimation of the consensus . . . 25

1.12 Asymptotic and equilibrium solutions . . . 26

1.13 Entropy-utility relation . . . 29

1.14 Power-law . . . 30

1.15 Kolmogorov-Smirnov statistics and max-lik estimator . . . 31

1.16 Assets tree . . . 32

1.17 Length of a assets tree through time . . . 32

1.18 Entropy of independent signs . . . 34

1.19 Rate function for a Gaussian sample mean. . . 35

1.20 LDT, LLN and CLT . . . 37

1.21 Laplace approximation . . . 39

2.1 Indices eigen-mode . . . 45

2.2 Multi-information distribution . . . 46

2.3 Multi-information vs the number of stocks . . . 47

(4)

List of Figures

3.6 Determinant of the influence matrix . . . 64

3.7 Length of the Dow Jones assets tree. . . 64

3.8 The Dow Jones assets tree . . . 65

3.9 Clusters of the Dow Jones . . . 66

3.10 Clusters of the DAX. . . 66

3.11 Matrix maps . . . 67

3.12 Degree distribution . . . 67

3.13 Clusters of the SP100 . . . 68

3.14 Diagonal influences (large version) . . . 69

3.15 Entropy during crises (large version) . . . 69

4.1 Distributions of the net consensus for different interaction strengths. . . 74

4.2 The variances of the orientation and of the utility as a function ofT . . . 75

4.3 The mean orientation as a function of the scaling parameter . . . 75

4.4 Multi-information of an idealized city . . . 76

4.5 Schematic illustration of the pdf rescaling . . . 78

4.6 Statistical significance of data sets. . . 80

4.7 Statistical significance of the Dow Jones data set . . . 81

4.8 Variance of the log-likelihood . . . 81

4.9 The critical scaling parameter vs correlations . . . 82

4.10 Value of the critical scaling parameter (indices) . . . 82

4.11 Value of the critical scaling parameter (Dow Jones) . . . 82

4.12 Value of the critical scaling parameter (different time-windows) . . . 83

4.13 KLD between the critical and the scaled distributions . . . 84

4.14 Frequencies of correlation coefficients . . . 84

4.15 Testing the power-law hypothesis. . . 85

4.16 Empirical pdf of the MLE estimator . . . 86

4.17 Shannon entropy vs the opposite of the log-likelihood . . . 86

4.18 Linearity of the entropy (simulation) . . . 87

4.19 Evolution of the critical scaling parameter . . . 87

4.20 Order-disorder transition? . . . 89

4.21 The variances of the overlap parameter and of the log-likelihood . . . 90

4.22 Critical value of the scaling parameter (GARCH and MCMC) . . . 90

4.23 The relative size of clusters. . . 92

5.1 Cross-correlogram . . . 97

5.2 Predicted series . . . 98

5.3 ROC curves for European indices . . . 99

5.4 Accuracy . . . 99

5.5 Mean ROC curves for the Dow Jones (daily). . . 100

5.6 Mean ROC curves for the Dow Jones (min) . . . 101

5.7 Accuracy vs system size . . . 101

5.8 Testing the dependence on the testing block length . . . 102

5.9 Accuracy as a function of length of the testing block . . . 102

5.10 Testing the dependence on the distance of the testing block . . . 102

5.11 Accuracy vs the distance between the learning and testing blocks . . . 103

5.12 Accuracy pmf . . . 103

5.13 Schematic representation of noise level estimation in parameters inference . . . 104

5.14 The distributions of simultaneous trend reversals . . . 106

5.15 Comparison of empirical and theoretical PMF of simultaneous reversals . . . 106

5.16 Confusion matrix . . . 110

6.1 BD partition function . . . 115

6.2 Mean consensus pdf for different values ofβ . . . 116

6.3 φ(m)for heterogenous social networks. . . 116

6.4 The evolution of the mean consensus . . . 118

6.5 Thought-line, step∞ . . . 119

(5)

List of Tables

1.1 Multi-information criterion . . . 21

1.2 Correspondence with the LDT. . . 33

2.1 Noise quantification in influences estimation . . . 53

4.1 Statistical test of power-law hypothesis . . . 85

5.1 Quantification of the noise in influences inference . . . 104

5.2 Quantification of the reconstruction error . . . 105

5.3 Comparison of artificial accuracy and AUC to real accuracy and AUC . . . 105

5.4 Confusion matrix, a short example . . . 110

Références

Documents relatifs

The main finding of this research is that, network selection tool is able to provide the best architecture that should be configured on the basis of given criteria (number

Finally, although speculative, one could postulate that decreased miR-146a in RRMS myeloid cells may signal the beginning of progressive disease towards SPMS, where higher levels

Anthropological literature and oral testimony assert that Inuit gender did not traditionally fit within a binary framework. Men’s and women’s social roles were

 She  concludes  that  Prince’s  Christian  background—her  Moravian   connection—is  authentic... mentioned,  but  only

Beck described TDD as a novel approach to software development, where the programmer must first write a test that fails before writing a single line of production code [4]..

1) Conducted a regional flood frequency analysis based the on L-moments index-flood procedure for Labrador and the Island of Newfoundland, respectively. 3) Developed

In this work, a carboxyl-substituted TTFV compound 16 (Figure 2.4) was synthe- sized as a redox-active organic ligand for coordination with zinc ions to pursue micro-

PYY can influence the regulation of body weight and energy homeostasis. Body weight is a key factor in determining bone density. Previou s studies have shown that