• Aucun résultat trouvé

Logarithmic corrections and universal amplitude ratios in the 4-state Potts model

N/A
N/A
Protected

Academic year: 2021

Partager "Logarithmic corrections and universal amplitude ratios in the 4-state Potts model"

Copied!
16
0
0

Texte intégral

(1)

HAL Id: hal-00164633

https://hal.archives-ouvertes.fr/hal-00164633

Preprint submitted on 22 Jul 2007

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Logarithmic corrections and universal amplitude ratios

in the 4-state Potts model

Bertrand Berche, Paolo Butera, Lev Shchur

To cite this version:

Bertrand Berche, Paolo Butera, Lev Shchur. Logarithmic corrections and universal amplitude ratios

in the 4-state Potts model. 2007. �hal-00164633�

(2)

hal-00164633, version 1 - 22 Jul 2007

B.Ber he 1 ,P.Butera 2 ,L.N.Sh hur 3 1

Lab oratoire dePhysique desMateriaux,UniversiteHenriPoin are,Nan yI,

BP239,F-54506Vanduvre lesNan y Cedex,Fran e

ber helpm.u-nan y.fr 2

IstitutoNazionaledi Fisi aNu leare,UniversitaMilano-Bi o a, Piazzadelle

S ienze 3,20126,Milano,Italia

paolo.buteramib.infn.it 3

LandauInstitute forTheoreti alPhysi s,Russian A ademyofS ien es,

Chernogolovka 142432,Russia

levlandau.a .ru

Summary. Monte Carloand series expansion data forthe energy, sp e i heat,

magnetisation and sus eptibili ty ofthe 4-statePotts mo del in thevi inity ofthe

riti al p oint areanalysed. Therole of logarithmi orre tions is dis ussed.

Esti-matesofuniversal ratios A+=A , += L,

T = L andR + aregiven. July23, 2007 1 Introdu tion

Thestudyof riti alphenomenaandphasetransitionsisatraditionalsubje t

of statisti alphysi s whi h hasknownits \mo dernage", sin e p owerful

ap-proa heshaveb eendevelop ed(renormalizationgroup, onformalinvarian e,

sophisti ated simulationalgorithms, ...). Simpli edmo delsattra ted alot

of attention. Thisis essentially due to asp e ta ular prop ertyof ontinuous

phase transitions at their riti al p oint,s ale invarian e, whi h leads to an

extreme robustnessof somequantities,like the riti alexp onentswhi h are

thusreferred to as universalquantities.Only very general prop erties (spa e

or spin dimension,symmetry,range of intera tion, ...) determine the

uni-versality lass. This makesthe theoryof riti al phenomenaaveryeÆ ient

and predi tive to ol: As so on as one knows the general hara teristi s of a

physi alsystemfromgeneral symmetryarguments,itisp ossibleinprin iple

topredi texa tlythe\shap e"ofthesingularitieswhi haredevelop edatthe

riti al p oint.The term\exa t" is here understo o d rigorously,for example

atwo-dimensionalsystem withthesymmetries ofan Ising mo del,should it

b eamagnet,analloyoranythingelse,willexhibitadivergingsus eptibility

 jT T

j

7=4

(see asket h inFig.1) withthe pre isevalue7=4 forthe

exp onent.

On a theoreti al ground, the major two-dimensional problems (Ising

(3)

0.7

0.8

0.9

1

1.1

1.2

1.3

T / T

c

0

30

60

90

120

150

χ = Γ

+

τ

−γ

χ = Γ

|τ|

−γ

τ > 0

τ < 0

0

Fig.1. Typi alb ehaviourofthesus eptibili tyatase ondorderphasetransition.

Thequantities =

0

and += areuniversal.

XY mo del,Heisenb erg mo del and so on)are essentially solved at least for

their riti al singularities (when a se ond-order phase transition is indeed

present), but riti al exp onents are not the only universal quantities at a

riti al p oint. The universal hara ter of appropriate ombinations of

rit-i al amplitudes[1℄ is also an imp ortant predi tion of s aling theory but in

some asesthese ombinationsremainun ompletelydeterminedandsubje t

to ontroversies.

The Potts mo del [2,3℄, as one of the paradigmati mo dels exhibiting

ontinuous phase transitions is a go o d frame to onsider the question of

universal ombinations of amplitudes. The universality lass of the Potts

mo del at its riti al p oint is parametrized by the numb er of states q . The

two-dimensionalPotts mo delwith three and four states an b e exp

erimen-tally realized as strongly hemisorb ed atomi adsorbates on metalli

sur-fa esatsub-monolayer on entrations[4℄.Although riti alexp onents ould

b e measuredquitea urately foradsorb ed sub-monolayers, on rmingthat

thesesystemsa tuallyb elongtothethree-state[5℄ortothefour-statePotts

mo del lasses [6℄,it isunlikelythat the lowtemp erature LEED results an

b e pushed [7℄ to determine also the riti al amplitudes. Therefore, the

nu-meri alanalysis of these mo delsis the onlyavailableto olto he k analyti

predi tions.

The riti alamplitudesand riti alexp onents des rib ethe b ehaviour of

themagnetizationm,thesus eptibility,thesp e i heatC andthe

orre-lationlength foraspinsysteminzeroexternal eld

4

inthevi inityofthe

riti alp oint

(4)

M()B ( ) ;  <0; (1) ()  jj ; (2)  T () T ( ) ;  <0; (3) C() A  jj ; (4) ()  0 jj  : (5)

Here  istheredu ed temp erature =(T T

)=T andthelab elsrefer to

thehigh-temp erature and low-temp eraturesides ofthe riti al temp erature

T

. For the Potts mo delswith q >2 atransverse sus eptibility 

T

an b e

de ned inthelow-temp eraturephase

5 .

Criti alexp onentsareknown exa tlyfor2DPottsmo del[8{11℄through

therelationx



=(1 )= tothethermals aling dimension

x  = 1+y 2 y (6)

andtherelationx



= = to themagneti s alingdimension

x  = 1 y 2 4(2 y ) ; (7)

where the parameter y is related to the numb er of states q of the Potts

variablebytheexpression

os  y 2 = 1 2 p q (8)

The entral hargeofthe orresp onding onformal eldtheoryisalsosimply

expressed [9℄intermsofy =1 3y 2 2 y : (9)

Analyti alestimatesof riti alamplituderatiosfortheq -statePottsmo

d-elswithq=1,2,3,and4werere entlyobtainedbyDel noandCardy[12℄.

Theyusedthetwo-dimensionals attering eldtheoryofChimandZamolo

d- hikov[13℄andestimatedthe entral harge =0:985for4-statePottsmo del,

forwhi htheexa tlyknownvalueis =1.Rep ortingtheseapproximate

val-uesin(9), one an al ulatethes alingdimensionsfrom(6)-(7)andgetthe

valuesx



=0:13016andx



=0:577,tob e omparedresp e tivelytotheexa t

values1=8and1=2.Thedis repan yisaround4and15p er ent,

emphasiz-ingthediÆ ultyoftheq=4 ase (togiveanidea,inthe aseofthe3-state

Pottsmo del,asimilaranalysisleadstoaverygo o dagreementwithlessthan

one p er ent deviation).

Theuniversalsus eptibilityamplituderatios

+ = L and T = L werealso

al ulatedin[12℄and[14℄.The gures obtainedarethefollowing,

5

Inthefollowing wewill useequallythenotations

L

(5)

q=3: + = L =13:848; T = L =0:327; (10) q=4: + = L =4:013; T = L =0:129: (11)

These results have b een on rmed numeri ally inthe ase q=3by several

groups, + = L 10and T = L

0:333(7)inRef.[14℄(MonteCarlo(MC)

simulations), +

= L

=141inRef.[15℄(MCandseriesexpansion(SE)data)

andquitere ently, theseresultswere on rmedandsubstantiallyimproved,

+ = L = 13:83(9), T = L

= 0:325(2), by Enting and Guttmann [16℄who

analysednewlongerseriesexpansions.

The 4-state Potts mo del was also studied through MC simulations in

Ref.[14℄,buttheauthors onsideredthattheirdatawerenot on lusive.

An-other MC ontribution isrep orted byCaselle,et al[17℄,

+ =

L

=3:14(70),

and Enting andGuttmann[16℄also analysedSE data for the4-state Potts

mo delandfound

+ = L =3:5(4), T = L =0:11(4)inrelativelygo o d

agree-mentwith the predi tions of [12℄and [14℄. The situationthus seems to b e

lear,althoughtheuseofthelogarithmi orre tionsinthe ttingpro edure

ofMCdatawasquestioned,e.g.in[16℄:[Caselleetal℄estimatesdepend

rit-i ally on the assumed form of the sub-dominant terms, and on the further

assumptionthattheother sub-dominantterms,whi hin ludepowersof

loga-rithms,powersoflogarithmsoflogarithmset , anallbenegle ted.Wedoubt

that thisis true.

Let us re all that the existen e of logarithmi orre tions to s aling in

the 4-state Potts mo del was p ointedout inthe pioneering works ofCardy,

Nauenb erg and S alapino[18,19℄,where a set of non-linear RG equations

wereprop osed.Theirdis ussionwaslaterextendedbySalasandSokal[20℄.

Generi ally,the logarithmi orre tions app ear as orre tions tos aling.

We mentionedab ove that inthevi inityof a riti alp oint,asus eptibility

for example diverges like () 

 jj

. This is true, but this singular

b ehaviour anb esup erimp osedtoaregularsignal(e.g.D

0 +D

1

jj+:::),and

theleadingsingularb ehaviouritselfneeds tob e orre tedwhenwe onsider

thephysi alquantityawayfromthetransitiontemp erature. Theexpression

for()thentakes aformwhi h anb e ome\terri ":

()=D 0 +D 1 jj+::: regularba kground + jj (1+ leadingsingularity +a (1) jj  +a (2) jj 2 +::: leading orre tions +a 0 (1) jj  0 +a 0 (2) jj 2 0 +:::next orre tions +b (1) jj+b (2) jj 2 +:::) analyti orre tions ( lnjj) ?   1+/ ln( lnjj) lnjj  ::: logarithmi orre tions

Togetherwith theamplitudeand exp onent asso iatedto theleading

singu-larity, and ,app ear orre tionstos alingduetothepresen eofirrelevant

s aling elds(a (n) and,a 0 (n) and 0

,...),analyti orre tionsdueto non-(n)

(6)

orre tions (/ and ?,...).These logarithmi o eÆ ientsmayhavedi erent

origins(see e.g.inRef.[1℄ andreferen es therein). They an b e due to the

upp er riti al dimension,to p oles inthe expansion of regular and singular

amplitudes, or to thepresen e of marginals aling elds. The4-state Potts

mo delb elongsto thislatter ategory.

Someofthe quantities indi atedab ove are universal.This isthe ase of

theexp onentsaswellasofmany ombinationsof o eÆ ients.Inthepresent

pap erweareinterestedintheamplitudeoftheleadingsingularterm,butits

pre isedetermination anb ea e tedbytheformofthe orre tions.Weshall

b e on ernedwiththefollowinguniversal ombinationsof riti alamplitudes

A + A ; + L ; T L ; R + C = A + + B 2 : (12)

We present, for the 4-state Potts mo del, more a urate Monte Carlo data

supplementedbyareanalysisoftheextendedseriesmadeavailablebyEnting

and Guttmann[16℄and we address thefollowingquestion: Isit p ossible to

devise somepro edure in whi h therole of these logarithmi orre tions is

prop erlytakenintoa ount?

2 Amplitudesand universal ombinations

Thes alinghyp othesisstatesthatthesingularpartofthefreeenergydensity

anb ewrittenintermsofthedeviationfromthe riti alp oint, =(T T

)=T andh=H H , f sing (;h)=b D F  (  b y ; h b yh h) (13) whereF 

(x;y )isauniversalfun tion(a tuallythereisoneuniversalfun tion

forea hside >0or <0ofthe riti alp oint)and 

and

h

are\metri

fa tors"whi h ontainallthenonuniversalasp e tsofthe riti alb ehaviour.

Disthespa edimension.Letusstressthatthefun tionsF



areuniversalin

thesensethatsomedetailsofthemo delareirrelevant(e.g.the o ordination

numb erofthelatti e(solongasitremains nite),thepresen eofnextnearest

neighb ourintera tions,et ) but they dep end ontheb oundary onditionsor

the shap e of the system. The metri fa tors on the other hand dep end on

these details,and theuniversal ombinationsareobtainedwhen themetri

fa torsareeliminatedfromsome ombinations.

The onne tion with s aling relations an b e shown with an

exam-ple. From Eq. (13), we also dedu e similar homogeneous expressions for

the magnetization, M(;h) = b D +y h  h M 

(x;y ) and the sus eptibility,

(;h) =b D +2y h  2 h X  (x;y ).The hoi e b=(  jj) 1=y  and h=0leads

(forexampleb elowthetransitiontemp erature)forthefollowing ombination

(7)

C(;0)(;0) m 2 (;0) jj 2 (  jj) 2 2 C (1;0)X (1;0) M 2 (1;0) R: (14)

The prefa tor takes the value 1 thanks to the well known s aling

rela-tion b etween riti al exp onents +2 + = 2. Thus it follows that the

ab ove ombinationisauniversalnumber.Fromthede nitionof

magnetiza-tion, sp e i heat and sus eptibility amplitudesin zero magneti eld,e.g.

M(;0) =jj D y h y  h M (1;0) B jj

by virtueof Eq. (1), this universal

numb er is in fa t a ombination of amplitudes, R  A =B

2

. We have

similaruniversal ombinationsab ove the riti altemp erature or asso iated

toother s alingrelations.

3 RG approa h for the Potts model and logarithmi

orre tions at q =4

Letusremindthattheq -statePottsmo delisanextensionoftheusuallatti e

Ising mo delin whi h thesite variabless

i

(abusively alled spins) an have

q di erent values,s

i

=0;1;::: q 1but the nearest neighb ourintera tion

energy JÆ

s i

;s j

only takes two p ossible values, e.g. J and 0 dep ending

whethertheneighb ouringspinsareinthesamestateornot.TheHamiltonian

ofthemo delreadsas

H= J X hiji Æ s i s j : (15)

Attheearly timesofreal-spa erenormalization,theappli ationto thepure

Potts mo delled to somediÆ ulties: theimp ossibilityto a e t a parti ular

valuefor the spin of a ell after de imation due to a to o large numb er of

states (see Fig.2).

_

_

_

_

_

_

_

+

+

+

+

+

+

_

_

+

0 6

4

5

5

1

3

2

6

6

6

7 7

7

7

0

0

0

0

3

5

5

5

4

4

2

2

6

? ?

+ +

+

+ +

+

_ _

_

_

_

_

_

+ +

+

+

+

+

+

1

1

1

1 1

1

Fig.2. De imationofspinblo ksfortheIsingmo del(left)andhigh-qPottsmo del

(right).Inthe latter ase,the state ofmany ells annot b e de ided by asimple

majorityrule.

(8)

to study anannealed disordered mo del.The RGequations satis ed by the

mo del,writtenintermsoftherelevantthermalandmagneti elds andh,

with orresp ondingRGeigenvaluesy



andy

h

,andthemarginaldilution eld

, aregivenby d dlnb =y  , dh dlnb =y h h, d dlnb =q q

,whereb isthelength

res aling fa tor and l = lnb.When q >q

, the dilution eld is relevant

(and the phase transition is of rst order), while in the regime q < q

,

is irrelevant and the system exhibits a se ond-order phase transition. The

ase q=q

is marginal.This pi tureis qualitatively orre t,and infa t the

riti al value of the numb er of states whi h dis riminates b etween the two

regimes is q

=4.In theq dire tion,q

=4app ears as theend of aline of

xed p ointswhere logarithmi orre tions are exp e ted. Atq

=4,theRG

equationswereextendedbyCardy, Nauenb erg andS alapino(CNS)[18,19℄

and then bySalas and Sokal(SS) [20℄.As aresult of the oupling b etween

thedilution eld ,and andh,they wereled tonon-linearequations,

d dlnb =(y  +y  ); (16) dh dlnb =(y h +y h )h; (17) d dlnb =g ( ): (18)

Thefun tiong ( ) mayb e Taylorexpanded, g ( )=y

2 2 (1+ y 3 y 2 +:::).

A ounting for marginalityof the dilution eld, there is no linear term at

q=4.Comparingto theavailableresults (forexampletheexpressionofthe

latentheatforqq

byBaxter[21℄orthedenNijsandPearson's onje tures

fortheRGeigenvaluesforqq

[10,11℄),theparameterswerefoundtotake

the values y  = 3=(4 ),y h = 1=(16 ),y 2 = 1= and y 3 = 1=(2 2 ),

whiletherelevants aling dimensionsarey

 = 1 =3=2andy h =15=8.

The xed p ointis at  = h = 0. Starting from initial onditions , h,

therelevant elds growexp onentiallywithl upto some =O (1),h=O (1)

outside the riti al region.Noti e alsothat the marginal eld remains of

orderofitsinitialvalue, O (

0

).Inzeromagneti eld,undera hangeof

lengths ale,thesingularpartofthefreeenergydensitytransformsa ording

to f( 0 ;)=e D l f( ;1): (19)

SolvingEqs.(16-18)leads to

l= 1 y  ln + y  y  y 2 ln  0 G( 0 ; )  ; (20)

(forbrevitywewilldenote=1=y

 = 2 3 ,= y  y  y 2 = 1 2 ).NotethatG( 0 ; )

wouldtakethevalue1inRef.[19℄andthevalue

y 2+y 3 y 2 +y 3 0 inRef.[20℄.We

(9)

f(; 0 )= D   0 y 2 +y 3 0 y 2+y 3  D  f(1; ): (21)

A similar expression would b e obtained if the magneti eld h were also

in luded. Theotherthermo dynami prop erties followfromderivatives with

resp e t to the s aling elds. The quantity b etween parentheses is the only

one wherethelogtermsarehiddeninthe4-statePotts mo del,andthus we

mayinferthatnotonlytheleading logterms,butallthe logtermshidden in

the dependen e on the marginal dilution elddisapp ear inthe onveniently

de nede e tiveratios

6

.Nowwe pro eedbyiterationsofEq.(20),and

even-tuallywe getforthefull orre tion to s alingvariabletheheavyexpression

0 G( 0 ; )= onst( lnjj) | {z } CNS  1+ 3 4 ln( lnjj) lnjj  1 3 4 ln( lnjj) lnjj  1 | {z } 1+ 3 2 ln( lnjj) lnjj inSS   1+ 3 4 1 ( lnjj)    1+ onst lnjj +O  1 lnjj 2  | {z } F( lnjj) (22)

where CNS and SS refer to the results previously obtained in the

litera-ture [18{20℄and F( lnjj)istheonlyfa tor wherenon universalityenters

throughthedilution eld

0

.Thisallowstowritedowntheb ehaviourofthe

magnetizationforexample

M()=B jj 1=12 ( lnjj) 1=8  1+ 3 4 ln( lnjj) lnjj   1 3 4 ln( lnjj) lnjj  1  1+ 3 4 1 lnjj  F( lnjj) # 1=8 : (23) 4 Numeri al te hniques

IntheMonte Carlosimulationswe usetheWol algorithm[22℄forstudying

square latti es of linear size L (b etween L = 20 and L = 200) with p

eri-o di b oundary onditions.Startingfromanorderedstate,we letthesystem

equilibrate in 10

5

steps measuredby the numb er of ipp ed Wol lusters.

The averagesare omputed over 10

6 |10

7

steps. Therandom numb ers are

pro du ed byan ex lusive-XOR ombinationof twoshift-registergenerators

with the taps (9689,471) and(4423,1393),whi h are known [23℄to b e safe

fortheWol algorithm.

Theorderparameterofami rostateM(t) isevaluatedduringthe

simula-tionsas

(10)

M= m q 1 ; (24) whereN m

isthenumb erofsitesiwiths i

=matthetimetofthesimulation

andm2[0;1;:::;(q 1)℄isthespinvalueofthemajorityofthesites.N =L

2

isthetotalnumb erofspins.ThethermalaverageisdenotedM =hMi.Thus,

thelongitudinalsus eptibilityinthelow-temp eraturephase ismeasuredby

the u tuationofthemajorityofthespins

 L = (hN 2 m i hN m i 2 ) (25)

andthe transverse sus eptibilityis de nedinthe low-temp eraturephase as

the u tuationsof theminorityofthespins

 T = (q 1) X 6=m (hN 2  i hN  i 2 ); (26)

while inthehigh-temp erature phase 

+

is givenbythe u tuations inallq

states,  + = q q 1 X =0 (hN 2  i hN  i 2 ); (27) where N 

is the numb er of sites with the spinin thestate . Theinternal

energy densityof ami rostateis al ulatedas

E= 1 N X hiji Æ s i s j (28)

its ensemble average denoted as E = hEi and the sp e i heat p er spin

measurestheenergy u tuations,

C= 2 E  = 2 hE 2 i hEi 2  : (29)

Our MC study of the riti al amplitudes is supplemented by an

anal-ysis of the high-temp erature (HT) and low-temp erature (LT) expansions

for q = 4 re ently al ulated through remarkably high orders by Enting,

Guttmannand oworkers [16,24℄.In termsof these series, we an ompute

the e e tive riti al amplitudes for the sus eptibilities and the

magnetiza-tion and extrap olatethem bythe urrent resummationte hniques, namely

simplePadeapproximants(PA)anddi erentialapproximants(DA)prop erly

biasedwith theexa tly known riti altemp eraturesand riti alexp onents.

TheLTexpansions,expressed intermsofthevariablez=exp( ), extend

throughz

59

forthelongitudinalsus eptibilityandthroughz

47

inthe ase of

the transverse sus eptibility. The magnetizationand energy expansions

ex-tend through z

43

. The HT expansion is omputed in termsof thevariable

v=(1 z)=(1+(q 1)z).Thesus eptibilityexpansionhasb een omputed

(11)

5 Analysis of the magnetizationbehaviour

For thesake ofsimpli ation ofthe notations, we group allthe terms

on-taining logs in Eq. (22) into a single fun tion H( lnjj) = E( lnjj)

F( lnjj)where E( lnjj)=  ( lnjj)  1+ 3 4 ln( lnjj) lnjj    1 3 4 ln( lnjj) lnjj  1  1+ 3 4 1 lnjj  # : (30)

Thefun tionE ontainsallleadinglogarithmswithuniversal o eÆ ients,it

is known exa tly while the fun tion F needs to b e tted. We thus obtain

a losedexpression for the dominantlogarithmi orre tions whi h is more

suitablethanpreviouslyprop osed formsto des rib eanobservable(Obs.) in

thetemp eraturerangea essibleinanumeri alstudy:

Obs:()'Ampl:jj



H

( lnjj)(1+Corr:terms); (31)

Corr:terms=ajj

2=3

+b



jj+:::; (32)

whereand℄areexp onentswhi hdep endontheobservable onsidered,and

takethevalues1=12and 1=8resp e tivelyinthe aseofthemagnetization.

Herewestressthatthein lusionofa orre tioninjj

2=3

seemstob ene essary

a ording to previous work of Joy e on the Baxter-Wu mo del [25,26℄ (of

4-state Potts mo del universality lass), where the magnetization is shown

to ob ey an expression of the form M() = B jj

1=12 (1+ onstjj 2=3 + onst 0 jj 4=3

). The exp onent 2=3 omes out from the onformal s aling

dimensionsofDotsenkoandFateev[9℄,anditspresen eisneededinorderto

a ountforthenumeri alresults (see alsoRef.[27℄).Caselle et al.[17℄also

onsideredjj 2=3

termto tthemagnetization.Here wealso allowin lusion

of a linear orre tion in b



jj to a ount for p ossible nonlinearities of the

relevants aling elds[1℄.Thenextterminjj

4=3

willb eforgotten.

In Fig. 3 we plot e e tive magnetization amplitudes B

eff

() vs jj 2=3

.

Fromtheavailabledataforthemagnetization,wede nethefollowing

quan-tities, B CNS ()=M()jj 1=12 ( lnjj) 1=8 ; (33) B SS ()=M()jj 1=12 ( lnjj) 1=8  1 3 16 ln( lnjj) lnjj  1 ; (34) B E ()=M()jj 1=12 E 1=8 ( lnjj); (35)

whi hareexp e tedtob ehave a ording tothe orre tionsto s aling

B (1+ajj

2=3

(12)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

|τ|

2/3

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

B

eff

(

τ

)

no log

CNS

SS

E(- ln |

τ|

)

1 + a|

τ

|

2/3

1 + a|

τ|

2/3

+

b|

τ

|

region of fit including a and b coefficients

Fig.3. E e tiveamplitudes(fromMCdata)asdedu edfromdi erentassumptions

forthelogarithmi orre tions.Symb ols orresp ondtoMCdata,dashedand

dotted-dashedlines are tsasexplained inthetext.

Thenumeri alresults areshown inFig.3.Fromb ottomto topthevarious

symb ols indi ate the e e tive amplitudes with "no-log" at all, then with

the CNS and the SS orre tions and nally the e e tive amplitude where

theknownuniversallogarithmi termshaveb eenin luded.Thedashedlines

orresp ond to arough determinationofthe orre tions to s aling in luding

only the terms in ajj

2=3

in the limitjj ! 0, and the dot-dashed lines

in lude also the terms in bjj.From this plot, we dedu e that none of the

threee e tive amplitudes inEqs.(33-35) an be orre tly ttedby Eq.(36),

sin e the o eÆ ients of the orre tion terms (e.g. the o eÆ ient a whi h is

estimated dire tly by the slop eat smalljj values) stronglydep end on the

rangeof t.This undesirabledep enden e of the o eÆ ients onthewidth of

thetemp eraturewindowisshowninthe rstsixlinesoftable1.

In order to improve the quality of the ts, one has to take into

a - ountthe orre tionfun tionF( lnjj)andtoextra tane e tive fun tion

F eff

( lnjj)whi hmimi stherealoneinthe onvenienttemp eraturerange.

Thisisdoneby ttingB

eff

()toamore ompli atedexpression,

B (1+ajj 2=3 +b  jj+:::)  1+ C 1 lnjj + C 2 ln( lnjj) ( lnjj) 2  1=8 ; (37)

whi hmeansthatwein ludethe orre tionstos alingandthenonuniversal

fun tionfun tionF( lnjj)takingtheapproximateexpression

F eff ( lnjj)'  1+ C 1 + C 2 ln( lnjj) 2  1 : (38)

(13)

Table 1.Fits ofthe e e tiveamplitudeofthemagnetization. Beff() jj 2=3 -window B a b BCNS() [0;0:15℄ 1:07 0:98 0:94 [0;0:45℄ 1:05 0:66 0:29 B S S () [0;0:15℄ 1:11 0:77 0:56 [0;0:45℄ 1:10 0:45 0:06 B E () [0;0:15℄ 1:14 0:47 0:16 [0;0:45℄ 1:13 0:25 0:27 B E F () [0;0:15℄ 1:16 0:20 0:02 [0;0:45℄ 1:16 0:18 0:02

Whileaandbare o eÆ ientsof orre tionstos alingduetoirrelevantop

era-tors,C

1

andC

2

aree e tive o eÆ ientsoflogarithmi termswhi h,inagiven

temp eraturerange,mimi aslowly onvergentseriesoflogarithmi terms

de-p endingonanonuniversaldilution eld.Therefore,we exp e tthatdi erent

ts made indi erent temp erature windowswillpro du e di erent values of

C 1

and C

2

while a and b (and of ourse also the magnetizationamplitude

B )should b erelativelylessin uen ed bythewindowrange.The hoi e of

valuesforC

1

andC

2

isthuspartiallyarbitraryandthevaluesquotedshould

b esp e i edtogetherwiththetemp eraturewindowwherethey are

appropri-ate.In thefollowing,weobtainC

1 ' 0:76and C 2 ' 0:52inthewindow jj 2=3

2[0;0:35℄,whi hyieldsanamplitudeB '1:157.Theresultingaand

b o eÆ ients now app ear very stable. This is he ked in Fig. 4 where the

quantity B EF ()=M()jj 1=12 [E( lnjj)F( lnjj)℄ 1=8 (39)

is rep orted toghether with the previous urves and tted as indi ated in

table1.Asanindep endenttest,we addtheSEdatawhi haresup erimp osed

to the MC data at small values of jj only for this latter assumption of

e e tive amplitude.

Eventually,ourapproa h on rmsexpressionEq.(23)forthe

magnetiza-tion, withthefun tionF( lnjj)giveninEq. (38)andtheparameters C

1

and C

2

given ab ove forthe appropriatetemp erature window.Nevertheless,

wehave to stress that thedi erente e tive amplitudesshouldallrea h the

sameamplitudeB inthelimitjj!0,sin eB

CNS ()isinfa tan approx-imationof B SS (), whi h is an approximationof B E (), whi h eventually approximatesB EF

().Anattemptofillustrationofthisb ehaviourisshown

inFig.5wheredottedlines(whi hareonlyguidesfortheeyes)all onverge

towardsthe uniquevalueB '1:157.Here we stress that we have deleted

thep ointsofSEdatawhi hareto o losetothe riti alp oint,sin etheseries

are no longer reliable b e ause the urrent extrap olation pro edures are in

prin ipleunabletoapproximatethe ompli atedstru ture ofthesingularity

(14)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

|τ|

2/3

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

B

eff

(

τ

)

no log

CNS

SS

E(- ln |

τ|

)

E(- ln|

τ

|)

x F(- ln|

τ|

)

1 + a|

τ

|

2/3

1 + a|

τ|

2/3

+

b|

τ

|

region of fit including a and b coefficients

Fig.4. E e tiveamplitudes(fromMCandSEdata)asdedu edfromdi erent

as-sumptionsforthelogarithmi orre tions.Theupp er urves orresp ondtoB

E F ()

andthethi ksolid linestoSEdata.

0

0.05

0.1

|τ|

2/3

1

1.05

1.1

1.15

B

eff

(

τ

)

B

CNS

B

SS

B

E

B

EF

guide for the eyes

1 + a|

τ|

2/3

+

b|

τ

|

Fig.5. Zo omofthee e tive amplitudesin thevi inity of the riti al p oint. MC

data(symb ols)andSEdata(thi ksolid lines).

6 Universal ombinations for the 4-state Potts model

and on lusions

The other quantities an b e analyzed along the samelines. The imp ortant

(15)

era-tures aleandthustheremainingfreedomfortheotherphysi alquantitiesin

Eq. (31)is onlythrough theleadingamplitudeandthe o eÆ ientsofjj

2=3

andjj-termsinthe orre tionsplusp ossiblytheba kgroundterms.Itisstill

a ompli ated task to p erformthis analysis,but the urrent results for the

universal ombinationsmentionedintheintro du tionapp earinthefollowing

table.

Table 2. Roughestimate oftheuniversal ombinations ofthe riti al amplitudes

inthe4-statePottsmo del.

A + =A + = L T = L R + C sour e 1: a 4:013 0:129 0:0204 [12,14℄ 3:14(70) 0:021(5) [17℄ 3:5(4) 0:11(4) [16℄ 1:00(1) 6:7(4) 0:161(3) 0:0307(2) here a

exa tresultfromduality

Our work is "one more" ontribution to the study of this problem and

brings someanswers, but also raisesnewquestions. Indeed,ourresults

dis-agreewithpreviousestimates,butwe annot laimforsurethatourestimates

aremorereliablethanthoseofotherauthors.Whatisextremely learisthat

thegroupswhostudied numeri allyuniversal ombinationsofamplitudesin

the4 statePottsmo delallnoti edtheextremediÆ ultytotakeintoa ount

prop erlythelogarithmi terms.Web elievethatourproto olisself- onsistent

inthesense that our riterionis to obtainarelative stabilityofthe

orre -tiontos aling o eÆ ients.Theresultsthatwerep orthere,althougharough

estimatewhi h allsfordeep er analysis,rea h areasonable on den elevel.

If this is indeedthe ase,one should identifythe reason of the dis repan y

fromthetheoreti alpredi tionsofCardyandDel no.Inthe on lusion,and

in afo otnote of one of their pap ers, Del no et al[14℄ (p.533)explain that

theirresults aresensitive totherelativenormalizationof theorderand

dis-order op erator formfa tors whi h ould b e the origin of sometroubles for

the ratios + = L andR C

. This p ossible explanationseems nevertheless to

b e ruledout (as mentionedby Enting and Guttmannalready) by the very

go o dagreementb etweenthetheoreti alpredi tionsandallnumeri alstudies

(b othMC andSE) inthe ase ofthe3-state Potts mo del.Eventuallyletus

mentionthatthetwo-kinkapproximationusedbyCardyandDel noisexa t

forq=2(Isingmo del)and quitego o dforq=3,but probablyquestionable

lose to the marginal ase q ! 4. As a on lusion, we are afraid that this

(16)

A knowledgements

Dis ussions with A. Zamolo d hikov,V. Ple hko, W. Janke and M. Henkel,

anda orresp onden e withJ.CardyandJ.Salaswerevery helpful.

LNSis grateful to the Statisti al Physi s group of the UniversityHenri

Poin are Nan y 1 and to the Theoreti al group of the University Milano{

Bi o a for the kind hospitality. Finan ial supp ort fromthe twin resear h

programb etween theLandauInstituteandtheE oleNormaleSuperieurede

ParisandRussianFoundationforBasi Resear h arealsoa knowledged.

Referen es

1. V.Privman, P.C.Hohenb erg,A. Aharony:Universal riti al-p oint amplitude

relations. In:Phase Transitions and Criti alPhenomena,vol. 14, ed.by C.

Domb,J.L.Leb owitz(A ademi ,NewYork1991)pp1{134

2. R.B.Potts:Pro .Camb.Phil.So .48,106(1952)

3. F.Y.Wu:Rev.Mo d.Phys.54,235(1982)

4. M.SokolowskiandH.Pfn ur:Phys.Rev.Lett.49,7716(1994)

5. Y.Nakajima,C.Voges,T.Nagao,S.Hasegawa,G.KlosandH. Pfn ur:Phys.

Rev.B55,8129(1997)

6. C.VogesandH.Pfn ur:Phys.Rev.B57,3345(1998)

7. H.Pfn ur:private ommuni ation

8. B.Nienhuis:J.Stat.Phys.34,731(1984);B.Nienhuis:Two-dimensional

rit-i alphenomenaandtheCoulombgas.In:PhaseTransitionsandCriti al

Phe-nomena,vol.11,ed.byC.Domb,J.L.Leb owitz(A ademi ,NewYork1987)

9. Vl.S.DotsenkoandV.A.Fateev:Nu l.Phys.B240[FS12℄,312(1984)

10. M.P.M.denNijs:J.Phys.A12,1857(1979)

11. R.B.Pearson:Phys.Rev.B22,2579(1980)

12. G.Del noandJ.L.Cardy:Nu l.Phys.B519,551(1998)

13. L.ChimandA.B.Zamolo d hikov: Int.J.Mo d.Phys.A7,5317 (1992)

14. G.Del no,G.T.BarkemaandJ.L.Cardy:Nu l.Phys.B565,521(2000)

15. L.N.Sh hur,P.Butera,andB.Ber he:Nu l.Phys.B620,579(2002)

16. I.G.EntingandA.J.Guttmann:Physi aA 321,90(2003)

17. M.Caselle,R.Tateo,andS.Vin i:Nu l.Phys.B562,549(1999)

18. M.Nauenb ergab dD.J.S alapino: Phys.Rev.Lett.44,837(1980)

19. J.L.Cardy,N.Nauenb erg andD.J.S alapino:Phys.Rev B22,2560(1980)

20. J.SalasandA.Sokal: J.Stat.Phys.88,567(1997)

21. R.J.Baxter:J.Phys.C6,445(1973)

22. U.Wol :Phys.Rev.Lett.62,361(1989)

23. L.N.Sh hur:Comp.Phys.Comm.121-122,83(1999)

24. K.M.Briggs,I.G.Enting, andA.J.Guttmann:J.Phys.A27,1503(1994)

25. G.S.Joy e:Pro .R.So .Lond.A343,45(1975)

26. G.S.Joy e:Pro .R.So .Lond.A345,277(1975)

Références

Documents relatifs

Quantum Hamiltonian formulation of the q-state Potts model : weak-coupling

We compute these terms in the entropy associated to the horizon of a magnetically charged extremal black hole in AdS 4 × S 7 using the quantum entropy function and discuss

- Monte Carlo (MC) and series expansion (SE) data for the energy, specific heat, magne- tization and susceptibility of the two-dimensional 4-state Potts model in the vicinity of

Phase diagrams in the (t, t~) space for the antiferromagnetic Ising model on Sierpinski carpets with central cutouts: (a) within XY recursion relations; (b) within YX

The RG flow diagram associated with the three-dimensional Ising model in the (tB, ts, p) space is described in figure 3. Three phases are observed characterised by trivial..

mulation of the n - 0 limit of the In +1) state Potts model in field theory for the large order behaviour of the perturbative expansion, we generalise their technique to all.. n

The scaling factor in (1.4) is here to normalize the L 2 -norm of v to be the same as the L 2 -norm of γ, and is of no influence regarding the statement, in view of Remark 1.1. To

We have analyzed the general structure of the scalar sector of logarithmic CFT underlying the critical point of the Potts model in arbitrary dimension, and a remarkable feature of