• Aucun résultat trouvé

Logarithmic corrections to entropy of magnetically charged AdS 4 black holes

N/A
N/A
Protected

Academic year: 2021

Partager "Logarithmic corrections to entropy of magnetically charged AdS 4 black holes"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: hal-01591923

https://hal.sorbonne-universite.fr/hal-01591923

Submitted on 22 Sep 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Logarithmic corrections to entropy of magnetically charged AdS 4 black holes

Imtak Jeon, Shailesh Lal

To cite this version:

Imtak Jeon, Shailesh Lal. Logarithmic corrections to entropy of magnetically charged AdS 4 black

holes. Physics Letters B, Elsevier, 2017, �10.1016/j.physletb.2017.09.026�. �hal-01591923�

(2)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

1 66

2 67

3 68

4 69

5 70

6 71

7 72

8 73

9 74

10 75

11 76

12 77

13 78

14 79

15 80

16 81

17 82

18 83

19 84

20 85

21 86

22 87

23 88

24 89

25 90

26 91

27 92

28 93

29 94

30 95

31 96

32 97

33 98

34 99

35 100

36 101

37 102

38 103

39 104

40 105

41 106

42 107

43 108

44 109

45 110

46 111

47 112

48 113

49 114

50 115

51 116

52 117

53 118

54 119

55 120

56 121

57 122

58 123

59 124

60 125

61 126

62 127

63 128

64 129

65 130

Logarithmic corrections to entropy of magnetically charged AdS 4 black holes

Imtak Jeon

a

, Shailesh Lal

b

aHarish-ChandraResearchInstitute,ChhatnagRoad,Jhusi,Allahabad211019,India bLPTHE–UMR7589,UPMCParis06,SorbonneUniversités,Paris75005,France

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received25August2017 Accepted12September2017 Availableonlinexxxx Editor:M.Cvetiˇc

Keywords:

Stringtheory

AdS/CFTcorrespondence Blackholes

Quantumentropy AdSblackhole Logarithmiccorrections

Logarithmictermsarequantumcorrections toblackholeentropydeterminedcompletelyfromclassical data,thusprovidingastrongcheckforcandidatetheoriesofquantumgravitypurelyfromphysicsinthe infrared.We computethesetermsintheentropyassociatedtothe horizonofamagneticallycharged extremal black hole inAdS4×S7 usingthe quantum entropyfunction and discussthe possibility of matchingagainstrecentlyderivedmicroscopicexpressions.

©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

ProvidingamicroscopicinterpretationtotheBekensteinHawk- ing formula in the context of certain classes of supersymmetric extremal black holes in flat space has been a main success of stringtheoryasatheoryofquantumgravity[1–6].Theexpression forthemicroscopicentropyobtainedbyexplicitenumerationand countingofblackholemicrostatesinthesecasescontainsthearea lawastheleadingformula,butalsocontainshigher-derivativeand quantumcorrectionstoit.Wereferthereaderto [7]forareview ofthesedevelopmentsaswell asmoreexhaustivereferences.Im- portantly, since extremalblack holes expectedlypossess an AdS2 factorinthe nearhorizongeometry, onemay usetheAdS2/CFT1 correspondencetoprovideanalternative,butequivalent,definition ofthequantum entropy ofextremalblack holes instringtheory.

Thisproposalisknown asthequantum entropyfunction,andfor extremalblackholescarryingcharges

q

qi[8,9],

dhor

q

exp

i

qid

θ A

iθ

f inite

AdS2

,

(1)

where dhor is the full quantum degeneracy associated with the blackholehorizon,and

A

iθ isthecomponentoftheith gaugefield

E-mailaddress:shailesh.hri@gmail.com(S. Lal).

alongthe boundaryofthe AdS2.Inthispicturetheentropyasso- ciatedtothehorizondegreesoffreedomofanextremalblackhole isessentially thefreeenergycorresponding tothepartition func- tion (1). The superscript ‘finite’ reminds us that the quantity on the righthandside of(1)isnaively divergent duetothe infinite volume of AdS2 but this divergence may be regulated in accor- dancewithgeneralprinciplesoftheAdS/CFTcorrespondenceand a cutoff-insensitive finite partextracted, whichis then identified todhor [8–10].The pathintegraliscarriedout overallfieldsthat asymptote to the black hole near horizon geometry. In the con- textofsupersymmetricextremalblackholesinflatspace,thishas beenevaluatedusingsaddlepointtechniques[10–14,16,17]aswell as supersymmetriclocalization [18–24] and the answer matched withmicroscopic results whereveravailable. Importantly, even in the cases where thefull microscopic formulais unavailable, this quantitymaybeevaluated atleastusingsaddle-pointmethodsto gainsomeinsightintothefullmicroscopicformula[13,17].

Incontrast,thesituationforentropycomputationsforextremal blackholesinAdSspaceisrelativelyinitsinfancy.WhiletheWald entropy[25]associatedtothehorizonmaybecomputedforsuch blackholesusingforexampletheentropyfunctionformalism,the quantum correctionstoit are still unknown.1 Inthissituation, it

1 RecentlythequantumentropyofthetopologicalblackholeinAdS4hasbeen computedusingsupersymmetriclocalization[26],buildingontheanalysisof[27],

https://doi.org/10.1016/j.physletb.2017.09.026

0370-2693/©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

JID:PLB AID:33173 /SCO Doctopic: Theory [m5Gv1.3; v1.222; Prn:20/09/2017; 14:35] P.2 (1-5)

2 I. Jeon, S. Lal / Physics Letters B•••(••••)••••••

1 66

2 67

3 68

4 69

5 70

6 71

7 72

8 73

9 74

10 75

11 76

12 77

13 78

14 79

15 80

16 81

17 82

18 83

19 84

20 85

21 86

22 87

23 88

24 89

25 90

26 91

27 92

28 93

29 94

30 95

31 96

32 97

33 98

34 99

35 100

36 101

37 102

38 103

39 104

40 105

41 106

42 107

43 108

44 109

45 110

46 111

47 112

48 113

49 114

50 115

51 116

52 117

53 118

54 119

55 120

56 121

57 122

58 123

59 124

60 125

61 126

62 127

63 128

64 129

65 130

wouldclearlybeofinteresttoevaluate(1)forsuchblackholesto obtainthe setofquantum correctionsto theWaldformula. Such computations are further motivatedby the recent proposal fora microscopic computation of a CFT3 index argued to capture the quantumentropyofanAdS4 extremalblackhole[29].

In this note we will focus on the computation of (1) in the semi-classicalapproximationwheretheeventhorizonoftheblack holehas a large length scale a associated withit. In thecase of extremal black holes in flat space, this large length scale arises whenthe chargesof theblack holeare takento be large. Inthe presentcaseofAdSblackholes,thiscorrespondstotakingthe rank N ofthegaugegroupinthedualCFTtobelarge,whilethecharges themselvesarenotscaled.

One saddle-point of the path integral (1) is the black hole’s near-horizongeometryitself.Byevaluatingtheon-shellactionon thisfieldconfiguration,itispossibletoshowthat[8,9]

dhor

eSWald

SB H

=

lndhor

SWald

.

(2) Hencethequantumentropyfunctionproducesastheleadingcon- tribution, Wald’s formula for the entropy of the horizon. In this note, we will considersubleading correctionsof the formlna to thisformula,i.e.

SB H

=

SWald

+

clna

+ . . . ,

(3)

where c is a coefficient which depends on the details of the quantum gravity that the black hole is embedded in. Forexam- ple,thesame four-dimensionalblackholewhichis aquarter-BPS black hole in

N =

4 supergravity may be embedded as a one- eighthBPS blackholein

N =

8 supergravity andwhilethelead- ing Bekenstein–Hawking answer is the same for the black hole, the log terms computed in both theories are different [12], and matchwiththemicroscopiccomputationscarriedoutrespectively in

N =

4 and

N =

8 stringcompactifications.Thismatchingisan importanttestoftheconsistencyofthequantumentropyfunction proposal.

The main reasonwhy the logterm is an important contribu- tiontothe microscopicformulaisthatit isagenuinelyquantum correction tothe BekensteinHawking formula, butisdetermined completely fromone-loop fluctuationsof massless fields of two- derivate supergravity, which essentially constitute the IR data of theblackhole.2 Toseethis, letusrecallsome elementsofascal- ing argument presented in[15]. Consider the

-loop free energy foratheorydefinedonaD dimensionalbackgroundwithalength scaleaassociatedwithit.AtypicalFeynmangraphcontributingto thisquantitywouldscaleas(see[15]fordetails)

(PD2)(−1)a(D2)(1)

a/

dDk

˜

k

˜

22F

k

˜

,

(4)

wherek

˜ =

kaand

{

k

}

are theloopmomenta,andF isafunction whichapproaches1 atlargevalues ofits arguments.Byfocusing on the regime where all loop momenta are of the same order, andworking at large k,

˜

we see that a lna termarises fromthe k

˜

22D terminthe 1˜

k expansionof F atlargek,

˜

andthefull a dependenceofthistermis

tofindacompletematchwiththecorrespondingmicroscopicexpression.Wethank JunNianforhelpfulcorrespondenceregardingthis.Wealsonotethatthequantum entropyofAdS4hyperbolicblackholeswasstudiedin[28].

2 Theterm‘massless’hastobecarefullydefinedoncurvedmanifolds.Themore precisestatementisthattheeigenvaluesofthekineticoperatorshouldscaleasa12, whichishowtheeigenvaluesofthekineticoperatoroveramasslessscalar,− wouldscale.

1 a

(D−2)(−1)

lna

,

(5)

which ishighlysuppressed inthelargea limit unless

=

1.This verifies the above claim that only one-loop fluctuationsgive rise to the logterm. Further, by considering differentscaling regimes where various subsetsof loop momenta scale to be much larger thantherest,onemayverifythefactthatonlythetwoderivative sector ofmasslessfieldscontributestothelogterm.However,we do not do sohere andinstead referthe readerto [15] for those details.

Therefore,asarguedearlier,thelogtermmayberegardedasan IRprobeofthemicroscopictheory,inthesensethatanyputative microscopicdescriptionoftheblackholemustcorrectlyreproduce notonlytheleadingBekensteinHawkingarealaw,butalsothelog correctiontoit.

In this note we shall compute the log term for a class of magnetically charged extremal black holes which asymptote to AdS4

×

S7 for which a complete expression for the microscopic entropy has recently been computed via the computation of a topologically twisted indexin ABJMtheory [29].We omitdetails of the microscopic formula, referring the reader to [29] as well asthecompanionpapers[30,31].Further,theonlyfeaturesofthe nearhorizongeometrywhichshallbe relevanttousarethatitis AdS2

×

S2

×

S7 wherethe S7isbundledoverthe S2 andthatthe AdS2,S2 andS7haveacommonlengthscaleaassociatedtothem.

Thatis,the metricover thefull 11dimensionalnearhorizonge- ometrycanbebroughttotheformgμν

=

a2g(μν0)wherethemetric g(0)andthecoordinatesareaindependent.

Further the S2 has S O

(

3

)

isometry, while the S7 has U

(

1

)

4 isometry.Theseinputssufficeforthemacroscopiccomputationof the logtermasa prediction forthemicroscopic formulaof [29].

Weshallfinallydiscussafewaspectsoftheproposedmatch.3 De- tailsofthefullblackholesolutionarereviewedin[29].

2. Thelogtermfromthequantumentropyfunction

Wewillnowdescribehowthelogtermmaybeextractedfrom the pathintegral(1).Todoso, itisusefultophrasetheproblem more generally. In particular, we consider a theory in D dimen- sions,withadynamicalfield

,admittingasaddle-pointwhichis abackgroundwithlengthscalea.

Z

[

]

= D

e1h¯S[]

.

(6) Then,asarguedfromEquation(4),toextracttheterminthefree energy proportional to lna, it is sufficient to concentrate on the one-loop partition function ofthetheory.The techniquesforthis analysisare well-known andwe referthe readerto[14,38,16,17]

foraccountsofhowthesecomputationsarecarriedout.Firstly,the one-looppartitionfunctionisthengivenby

Z

1−

=

det

O

12

· ( Z

zero

)

n0

,

(7) wheredet

O

isthedeterminantof

O

evaluatedoveritsnon-zero modes, n0 is the number of zero modes of

O

, and

Z

zero is the residualzero-modeintegral.Therefore

ln

Z

1−

= −

1

2ln det

O +

n0ln

Z

zero

.

(8) The final result is that the coefficient of the lna term in the freeenergycomputedaboutthissaddle-pointdependson K

(

t

;

0

)

,

3 Whilethisdraftwasbeingreadiedforsubmission,welearnedof[32]where thiscomparisonhasbeencarriedoutinanumericalschemetofindamismatch.

(4)

1 66

2 67

3 68

4 69

5 70

6 71

7 72

8 73

9 74

10 75

11 76

12 77

13 78

14 79

15 80

16 81

17 82

18 83

19 84

20 85

21 86

22 87

23 88

24 89

25 90

26 91

27 92

28 93

29 94

30 95

31 96

32 97

33 98

34 99

35 100

36 101

37 102

38 103

39 104

40 105

41 106

42 107

43 108

44 109

45 110

46 111

47 112

48 113

49 114

50 115

51 116

52 117

53 118

54 119

55 120

56 121

57 122

58 123

59 124

60 125

61 126

62 127

63 128

64 129

65 130

which is the t0 coefficient of the heat kernel expansion of the kineticoperator

O

aboutthissaddle-point, and

β

,whichdeter- mineshowthe zeromodecontribution

Z

zero tothe pathintegral scaleswitha.

Z

zero

=

aβ

Z ˆ

zero

,

(9) where

Z ˆ

zero doesnotscale witha.We eventuallyobtain thefor- mula

ln

Z

1−

=

K

(

t

;

0

)

lna

+

1

)

n0lna

.

(10) Itiswell known thatin odd-dimensionalspacetimes, K

(

0

;

t

) =

0 andhencewehavetheformula

ln

Z

1−

=

1

)

n0lna

.

(11)

The extension to the case of multiple fields

{ }

having zero modesisapparent.

ln

Z

1−

=

φ∈{}

β

φ

1

nφ0lna

,

(12)

wherenφ0 isthenumberofzeromodesofthekineticoperatorover thefield

φ

.The specificvalues for

β

that willbe relevantto us areforthe vector,the graviton, thethree-formandthegravitino.

Thesearegivenby

β

v

=

D

2

2

, β

m

=

D

2

, β

f

=

D

1

, β

C

=

D

2

3

.

(13) Herevdenotesthevectorfield,mthemetricorthegraviton, f the gravitino,andthecorresponding

β

valueshavebeenlistedinEqua- tion(2.37)of[14].C denotes thethree-formfieldandits

β

value maybe determined exactly in the same manneras the previous fields[14,38].Westart withtheexpressionforthenormalization ofthefield CM N P inD-dimensions.

D

CM N Pe

ddxg gMUgN VgP WCM N PCU V W

=

1

.

(14)

HerethemetricscalesasgM N

=

a2g(M N0) where g(0)doesnotscale witha.Thereforewehave

D

CM N PeaD6

ddx

g(0)g(0)MUg(0)N Vg(0)P WCM N PCU V W

=

1

.

(15) Hencethecorrectlynormalizedintegrationmeasureis

x,(M N P) d

aD23CM N P

.

(16)

FromthiswecanobtainthatthezeromodeofCM N P corresponds to

β

C

=

D

2

3

.

(17)

3. Countingthenumberofzeromodes

Fromthe above discussionit isclear that ifwe areto extract thecontributiontothe(logarithmofthe) quantumentropyfunc- tion which scales as lna, where a is the length scale associated withthe radii of AdS2, S2 and S7, it is enough to compute the zeromodesof the fieldsappearing in thepath integral (1). Zero modescanin principle appearinthe massless spectrum ofAdS2 fieldsobtainedfromfieldsofthe11dimensionalsupergravityre- ducedonto S2

×

S7.Inthissectionwewillenumeratethesezero modes and compute their contribution to the quantum entropy ofmagneticallycharged AdS4 black holes.In isolating thesezero modes, aspecial role isplayed by theso-calleddiscretemodesof

theLaplacian forspin-1 andspin-2fields,andtheDiracoperator forspin-32 fieldsonAdS2 explicitlyenumeratedin[33,34]respec- tively,andcountingthetotalnumberofzeromodesisessentially equivalenttocountingthetotalnumberofdiscretemodesofthese fields.Thesemodeshavealsobeenlistedin[12,14,17].Animpor- tantobservationforusisthatitturnsoutthatnaivelythenumber ofzeromodesforeachofthesefieldsturnsouttobeinfinite.How- ever,thisdivergenceturns out tobe essentiallyequivalent to the volumedivergenceofthefreeenergyandmayberegulatedinthe same way. Two slightly different, but equivalent, procedures for doingthisareavailablein[11,12,14]and[16,17]andweshalluse thoseresultsfortheregularizednumberofzeromodesinthecom- putationsthatfollow.

3.1. Bosoniczeromodes

ThebosonicfieldsarethegravitonhM N andthe3-formCM N P. Quantization ofthegraviton givesriseto aghost vectorfield but this hasno zero modes. Quantization of the 3-form C gives rise to aghost 2-form B withGrassmann oddstatistics, andaghost- for-ghost 1-form A with Grassmann even statistics. We use the following conventions: M is an 11-d vector index,

μ

is an AdS2 index,a isan S2 indexandi isan S7 index. Finally

α

iseithera ori.

Considerthemetriczeromodesfirst.ThegravitonhM N decom- posesintotheAdS2gravitonhμν,3masslessAdS2vectorshμa,and 4 masslessAdS2 vectorshμi, alongwiththe AdS2 scalars gia

,

gi j andgab.Incountingthenumberofmasslessvectors,weusedthe factthatthesearegivenby

hμα

=

vμkα

,

(18)

where isaKillingvector alongan internaldirection.Since the internal spacehas SU(2)

U(1)4 isometry, there are 3

+

4

=

7 Killingvectors.EachmasslessvectorfieldonAdS2 contributes

n0v

= −

1

,

(19)

hencethereare

7 zero modesfromthehμα.Alsothereare

3 zeromodesfromthe AdS2 metrichμν.Thereforetotalnumberof metriczeromodesis

nm0

= −

7

3

= −

10

.

(20)

Then the contribution to the log termfromthe 11d metric zero modesis

δ

Z

|

metric

=

m

1

)

nm0lna

= −

45 lna

.

(21) Wenextconsiderthe3-formfieldCM N P.Itsquantizationwascar- riedoutin[35–37]andisreviewedinSection3.1of[38].Wewill justrequirethefollowingresult.Thequantizationofa p-formre- quirespgeneralizedghostfieldswhichare

(

p

j

)

-forms,where j runsfrom1 top.Furtherthelogarithmiccontributionofallthese fieldstothefreeenergymaybepackagedintotheexpression

F

=

p

j=0

(−

1

)

j

β

pj

j

1

n0O

pjlna

,

(22)

where

O

is the kinetic operator. For j

=

1

, . . . ,

p which are the generalizedghostfields,thisisjusttheHodgeLaplacian.For j

=

0, whichisthephysicalfield,thiscanhavecouplingstobackground fluxesaswell.WenowconsiderthereductionofCM N P ontoAdS2. ThisfirstlyleadstoCμνaCμνiwhicharetwo-formsonAdS2 which are Hodge duals ofscalars. These haveno zero modes. Next,we considera 3-formwhichisthe wedgeproduct ofa1-formalong AdS2 withaharmonic2-formalong S2

×

S7.

C(3)

=

C((1AdS) 2)

C((2S)2×S7)

.

(23)

(5)

JID:PLB AID:33173 /SCO Doctopic: Theory [m5Gv1.3; v1.222; Prn:20/09/2017; 14:35] P.4 (1-5)

4 I. Jeon, S. Lal / Physics Letters B•••(••••)••••••

1 66

2 67

3 68

4 69

5 70

6 71

7 72

8 73

9 74

10 75

11 76

12 77

13 78

14 79

15 80

16 81

17 82

18 83

19 84

20 85

21 86

22 87

23 88

24 89

25 90

26 91

27 92

28 93

29 94

30 95

31 96

32 97

33 98

34 99

35 100

36 101

37 102

38 103

39 104

40 105

41 106

42 107

43 108

44 109

45 110

46 111

47 112

48 113

49 114

50 115

51 116

52 117

53 118

54 119

55 120

56 121

57 122

58 123

59 124

60 125

61 126

62 127

63 128

64 129

65 130

Thenumberofsuch harmonicformsisgivenby thesecond Betti number b2 of the manifold, which is 1 in this case, as may be readilyseenfrommultiplyingthePoincaré polynomialsof S2 and S7. Hence there is a single massless vector fields along AdS2 fromthe11dimensional3-formfield.Finally wehavethescalars Cabi

,

Cai j

,

Ci jk which don’t have zero modes. Hence the 3-form contributes

δ

Z

|

C

=

C

1

)

nC0lna

= −

3

2lna (24)

to the log term. We next consider the ghost BM N which arises from the quantization of C. This decomposes into the following massless fieldsonAdS2.Firstwe have Bμν whichcontributesno zeromodes.Nextwemayobtainamassless1-formonAdS2 from thisfield bydecomposing BM N intoa wedge productofan AdS2 1-formwithaharmonic1-formon S2

×

S7.The numberofsuch harmonic 1-forms is the first Betti number of S2

×

S7 which is zero.FinallywehavethescalarsBab

,

BaiandBi j,whichcontribute nozeromodes.Thereforethecontributiontothelogtermis

δ

Z

|

B

= −

B

2

)

n0Blna

=

0

.

(25) Theoverall minus signison accountofGrassmann oddstatistics ofthisfield.Finallywehavetheghost-for-ghostfield AM fromthe quantizationof B.Thisleadstoone masslessvectorfieldonAdS2 andtherefore

δ

Z

|

A

=

A

3

)

n0Alna

= −

3

2lna

.

(26)

Wethereforeadd(21),(24),(25)and(26)toobtain

δ

Z

=

45

3 2

3

2

lna

= −

48 lna

.

(27)

Theresidualscalargeneralizedghosthasnozeromodes.

3.2. Fermioniczeromodes

Tocount fermion zeromodes, we need to compute the regu- larizednumberofdiscretemodes

ξ

μ(k)+ and

ξ ˆ

μ(k)+,k

=

1

,

2

, . . .

,on AdS2.Therelevantcomputationsareavailablein[12,14,17]andwe onlymentionfinal results.Firstly,itmaybeshownthat theregu- larizednumberofmodesofboth

ξ

and

ξ ˆ

isgivenby

1.Further, thesemodesshouldbe tensoredwiththespinors associatedwith directionstransversetoAdS2.Thiswillgiverisetoadditionalmul- tiplicity factors. Todetermine the multiplicity, we note first that thenearhorizongeometryoftheblackholehasasuperconformal symmetry su

(

1

,

1

|

1

)

withfermionic generators

n where

α = ±

andn

∈ Z +

12.Thegravitinozeromodesweconsiderareassociated withthegenerators

n where

|

n

| ≥

32.Inparticular,weidentify n withn

32 with

ξ

kwheren

=

k

+

12 andGαn withn

≤ −

32 with

ξ

k wheren

= −

k

12.Hence,thereisanoverallmultiplicityfactorof 2comingfrom

α

takingvalues

+

and

.Thereforethenumberof fermionzeromodesis

n0f

= (−

1

1

) ×

2

= −

4

.

(28)

Then the contribution to the log term from the fermionic zero modesis

δ

Z

|

fermions

= − β

f

1

n0flna

= +

36 lna

.

(29) The overall minus is on account of Grassmann odd statistics.

Adding(27)and(29)weseethatthelogtermisgivenby

F

= (−

48

+

36

)

lna

= −

12 lna

.

(30)

4. Onthecomparisonwithmicroscopics

Wehavesofarcomputedthelogtermformagneticallycharged AdS4extremalblackholesusingthequantumentropyfunction.In thissectionweshallverybrieflydiscusshowinprincipleamatch withtheproposedmicroscopicanswerof[29]maybecarriedout.

At firstglanceone mayexpectthat thelarge N expansion ofthe logarithm ofthetopologicallytwistedindexintheCFTcomputed in[29]maybematchedtermby termwiththelargea expansion ofthelogarithm ofthe quantumentropyfunction.Wenote how- ever, that severalsteps should in principle be necessary tocarry outbeforeamatchcanbemeaningfullyproposed.

Firstly,theindexcomputedby[29]measurestheblackholeen- tropyinthegrandcanonicalensembleasitemploystheAdS4/CFT3 correspondence. In contrast, the natural boundary conditions for thequantumentropyfunction (1)pickout themicrocanonicalen- semble[9].Whilethechoiceofensembleisirrelevantinthestrict large N limit, it is typically important when finite N effects are takenintoaccount.Indeedexamplesexistwherethechoiceofen- sembleisexplicitlyshowntoaffectthevalueofthelogterm[15].

Therefore,asafirststep,weexpectthatone wouldneedtogoto the microcanonicalensemblewhencomputingtheCFTanswer to matchwiththequantumentropyfunction.

Second,itisnotobvioushowthenaivelarge N scalingsofthe log of the index are to be reproduced by the quantum entropy function. In particular, it appears from the analysis of [29] that lnZ scalesas

lnZ

N3/2

+ O (

NlnN

) .

(31)

TheN3/2termpreciselymatcheswiththeBekensteinHawkingen- tropy oftheblackhole,butthepossiblesubleadingtermoforder NlnN isparticularlysurprisingfromthepointofviewofthegen- eralscalingsofcontributionstothequantumentropyasexpected fromthequantumentropyfunction.Inparticular,ongoingthrough thescaling analysisofEquation(4),itisapparent thatwe donot expect atermoftheformNlnN,andthatthistermshoulddrop fromtheCFT3 answerifamatchwiththequantumentropyfunc- tionistobepossible.

Remarkably, itseemsthat anumericalestimate ofthe large N behavior of the index produces the pattern one would naturally expect from thequantum entropyfunction scalings, includingan absence of the NlnN term, and the presence of the lnN term, albeitwithamismatchingcoefficient[32].Thisremarkablefeature shouldcertainlybebetterunderstoodbycarryingoutasystematic largeN expansionoftheCFTindexwhileaccountingforthechoice ofensembleaswehaveindicatedabove.Itwouldbeinterestingto returntothesequestionsinthefuture.

Acknowledgements

We would like to thank Rajesh Gupta, Nick Halmagyi, Eui- hunJoung,TomokiNosaka,ChiungHwang,Leopoldo PandoZayas, AshokeSen,PiljinYiandAlbertoZaffaroniforhelpfuldiscussions.

SL thanks theKorea Institute of AdvancedStudy and Kyung Hee University for hospitality while this work was carried out. SL’s work issupported by a Marie Sklodowska Curie 2014Individual Fellowship.

References

[1] A.Strominger,C.Vafa,MicroscopicoriginoftheBekenstein–Hawkingentropy, Phys.Lett.B379(1996)99,arXiv:hep-th/9601029.

[2] R. Dijkgraaf, E.P. Verlinde, H.L. Verlinde, Counting dyons in N=4 string theory, Nucl. Phys. B 484 (1997) 543, http://dx.doi.org/10.1016/S0550- 3213(96)00640-2,arXiv:hep-th/9607026.

(6)

1 66

2 67

3 68

4 69

5 70

6 71

7 72

8 73

9 74

10 75

11 76

12 77

13 78

14 79

15 80

16 81

17 82

18 83

19 84

20 85

21 86

22 87

23 88

24 89

25 90

26 91

27 92

28 93

29 94

30 95

31 96

32 97

33 98

34 99

35 100

36 101

37 102

38 103

39 104

40 105

41 106

42 107

43 108

44 109

45 110

46 111

47 112

48 113

49 114

50 115

51 116

52 117

53 118

54 119

55 120

56 121

57 122

58 123

59 124

60 125

61 126

62 127

63 128

64 129

65 130

[3] B.Pioline, BPSblackhole degeneraciesandminimalautomorphic represen- tations,J.HighEnergyPhys.0508(2005)071,http://dx.doi.org/10.1088/1126- 6708/2005/08/071,arXiv:hep-th/0506228.

[4] D.Shih,A.Strominger,X.Yin,CountingdyonsinN=8stringtheory,J.HighEn- ergyPhys.0606(2006)037,http://dx.doi.org/10.1088/1126-6708/2006/06/037, arXiv:hep-th/0506151.

[5] J.R. David, A.Sen, CHLdyons and statistical entropy functionfrom D1–D5 system,J.HighEnergyPhys.0611(2006)072,http://dx.doi.org/10.1088/1126- 6708/2006/11/072,arXiv:hep-th/0605210.

[6] A.Sen,N=8dyonpartitionfunctionandwallsofmarginalstability,J.HighEn- ergyPhys.0807(2008)118,http://dx.doi.org/10.1088/1126-6708/2008/07/118, arXiv:0803.1014[hep-th].

[7] A. Sen, Black hole entropy function, attractors and precision counting of microstates, Gen. Relativ. Gravit. 40 (2008) 2249, http://dx.doi.org/10.1007/

s10714-008-0626-4,arXiv:0708.1270[hep-th].

[8] A. Sen, Entropyfunction and AdS(2) / CFT(1) correspondence, J. High En- ergyPhys.0811(2008)075,http://dx.doi.org/10.1088/1126-6708/2008/11/075, arXiv:0805.0095[hep-th].

[9] A.Sen,QuantumentropyfunctionfromAdS(2)/CFT(1)correspondence,Int.J.

Mod.Phys.A24(2009)4225,http://dx.doi.org/10.1142/S0217751X09045893, arXiv:0809.3304[hep-th].

[10] A.Sen,Arithmetic ofquantum entropyfunction,J. HighEnergy Phys.0908 (2009)068,http://dx.doi.org/10.1088/1126-6708/2009/08/068,arXiv:0903.1477 [hep-th].

[11] S.Banerjee,R.K.Gupta,A.Sen,Logarithmiccorrectionstoextremalblackhole entropyfromquantumentropyfunction,J.HighEnergyPhys.1103(2011)147, arXiv:1005.3044[hep-th].

[12] S.Banerjee,R.K.Gupta,I.Mandal,A.Sen,LogarithmiccorrectionstoN=4and N=8blackholeentropy: aoneloop testofquantumgravity,J.HighEnergy Phys.1111(2011)143,arXiv:1106.0080[hep-th].

[13] A.Sen,LogarithmiccorrectionstoN=2blackholeentropy:aninfraredwin- dowintothemicrostates,Gen.Relativ.Gravit.44 (5)(2012)1207,http://dx.doi.

org/10.1007/s10714-012-1336-5,arXiv:1108.3842[hep-th].

[14] A.Sen,Logarithmiccorrectionstorotatingextremalblackholeentropyinfour andfivedimensions,Gen.Relativ.Gravit.44(2012)1947,http://dx.doi.org/10.

1007/s10714-012-1373-0,arXiv:1109.3706[hep-th].

[15] A.Sen,LogarithmiccorrectionstoSchwarzschildandothernon-extremalblack holeentropyindifferentdimensions,J.HighEnergyPhys. 1304(2013)156, http://dx.doi.org/10.1007/JHEP04(2013)156,arXiv:1205.0971[hep-th].

[16] R.K.Gupta,S.Lal,S.Thakur,HeatkernelsontheAdS(2)coneandlogarithmic correctionstoextremalblackholeentropy,J.HighEnergyPhys.1403(2014) 043,http://dx.doi.org/10.1007/JHEP03(2014)043,arXiv:1311.6286[hep-th].

[17] R.K.Gupta,S. Lal,S. Thakur,Logarithmiccorrectionstoextremalblackhole entropyinN=2,4and8supergravity,J.HighEnergyPhys.1411(2014)072, http://dx.doi.org/10.1007/JHEP11(2014)072,arXiv:1402.2441[hep-th].

[18] A.Dabholkar,J.Gomes,S.Murthy,Quantumblackholes,localizationandthe topologicalstring,J.HighEnergyPhys.1106(2011)019,http://dx.doi.org/10.

1007/JHEP06(2011)019,arXiv:1012.0265[hep-th].

[19] A.Dabholkar,J.Gomes,S.Murthy,Localization&exactholography,J.HighEn- ergyPhys.1304(2013)062,http://dx.doi.org/10.1007/JHEP04(2013)062,arXiv:

1111.1161[hep-th].

[20] R.K.Gupta,S.Murthy,AllsolutionsofthelocalizationequationsforN=2quan- tumblackholeentropy,J.HighEnergyPhys.1302(2013)141,http://dx.doi.

org/10.1007/JHEP02(2013)141,arXiv:1208.6221[hep-th].

[21] A. Dabholkar,J. Gomes, S.Murthy,Nonperturbative blackhole entropyand Kloosterman sums,J. HighEnergy Phys. 1503(2015) 074,http://dx.doi.org/

10.1007/JHEP03(2015)074,arXiv:1404.0033[hep-th].

[22] S.Murthy,V.Reys,Functionaldeterminants,indextheorems,andexactquan- tumblackholeentropy,J.HighEnergyPhys.1512(2015)028,http://dx.doi.

org/10.1007/JHEP12(2015)028,arXiv:1504.01400[hep-th].

[23] R.K.Gupta,Y.Ito,I.Jeon,SupersymmetriclocalizationforBPSblackholeen- tropy:1-looppartitionfunctionfromvectormultiplets,J.HighEnergyPhys.

1511(2015)197,http://dx.doi.org/10.1007/JHEP11(2015)197,arXiv:1504.01700 [hep-th].

[24] S.Murthy,V.Reys,Single-centered blackholemicrostatedegeneraciesfrom instantonsinsupergravity,J.HighEnergyPhys.1604(2016)052,http://dx.doi.

org/10.1007/JHEP04(2016)052,arXiv:1512.01553[hep-th].

[25] R.M.Wald,BlackholeentropyistheNoethercharge,Phys.Rev.D48(1993) 3427,arXiv:gr-qc/9307038.

[26] J.Nian,X.Zhang,EntanglemententropyofABJMtheoryandentropyoftopo- logicalblackhole,J.HighEnergyPhys.1707(2017)096,http://dx.doi.org/10.

1007/JHEP07(2017)096,arXiv:1705.01896[hep-th].

[27] A.Dabholkar,N.Drukker,J.Gomes,Localizationinsupergravityandquantum AdS4/C F T3 holography, J. HighEnergyPhys. 1410 (2014)90, http://dx.doi.

org/10.1007/JHEP10(2014)090,arXiv:1406.0505[hep-th].

[28] A. Cabo-Bizet, V.I.Giraldo-Rivera, L.A.Pando Zayas, Microstatecounting of AdS4hyperbolicblackholeentropyviathetopologicallytwistedindex,J.High Energy Phys. 1708 (2017) 023, http://dx.doi.org/10.1007/JHEP08(2017)023, arXiv:1701.07893[hep-th].

[29] F.Benini,K.Hristov,A.Zaffaroni,BlackholemicrostatesinAdS4fromsuper- symmetric localization,J.High EnergyPhys. 1605(2016) 054,http://dx.doi.

org/10.1007/JHEP05(2016)054,arXiv:1511.04085[hep-th].

[30] F.Benini,A.Zaffaroni,Atopologicallytwistedindexforthree-dimensionalsu- persymmetrictheories,J.HighEnergyPhys.1507(2015)127,http://dx.doi.org/

10.1007/JHEP07(2015)127,arXiv:1504.03698[hep-th].

[31] F. Benini, K. Hristov, A. Zaffaroni, Exact microstate counting for dyonic blackholesinAdS4,Phys.Lett.B771(2017)462,http://dx.doi.org/10.1016/j.

physletb.2017.05.076,arXiv:1608.07294[hep-th].

[32] J.T.Liu, L.A.Pando Zayas,V.Rathee, W.Zhao,Toward microstatecounting beyond largeNinlocalizationandthedualone-loopquantumsupergravity, arXiv:1707.04197[hep-th].

[33] R.Camporesi,A.Higuchi,Spectralfunctionsandzetafunctionsinhyperbolic spaces,J.Math.Phys.35(1994)4217,http://dx.doi.org/10.1063/1.530850.

[34] R. Camporesi,A. Higuchi, On the eigenfunctions of the Dirac operator on spheresandrealhyperbolicspaces,J.Geom.Phys.20(1996)1,http://dx.doi.

org/10.1016/0393-0440(95)00042-9,arXiv:gr-qc/9505009.

[35] W. Siegel,Hidden ghosts, Phys. Lett. B 93(1980) 170,http://dx.doi.org/10.

1016/0370-2693(80)90119-7.

[36] J.Thierry-Mieg,BRSstructureoftheantisymmetrictensorgaugetheories,Nucl.

Phys.B335(1990)334,http://dx.doi.org/10.1016/0550-3213(90)90497-2.

[37] E.J.Copeland,D.J.Toms,Quantizedantisymmetrictensorfieldsandselfconsis- tentdimensionalreductioninhigherdimensionalspace-times,Nucl.Phys.B 255(1985)201,http://dx.doi.org/10.1016/0550-3213(85)90134-8.

[38] S.Bhattacharyya,A.Grassi,M.Marino, A.Sen,Aone-loop testofquantum supergravity,Class. QuantumGravity31(2014)015012, http://dx.doi.org/10.

1088/0264-9381/31/1/015012,arXiv:1210.6057[hep-th].

Références

Documents relatifs

On the one hand, we construct, in a mathematically rigorous way, the analytic continuation of the number of microstates of a spherical black hole in loop quantum gravity from

Mes questions de recherche sont de savoir tout d’abord si la sage-femme accomplit efficacement deux de ces compétences professionnelles qui ont un rôle important pour la survie

Flow lines of the plasma near a magnetised Kerr-Newman black hole are studied within the framework of the guiding centre approximation.. Surfaces of constant magnetic and electric

In cha pte r three, at first , the perturbati on theory of black holes is reviewed and the rest of the cha pter is dedicated to the result s that have been found for the perturbed

Annales de l’/nstitut Henri Poincaré - Physique théorique.. Proof of Theorem N.I. DE SABBATA, editor. Quantum Mechanics in Curved Space-Time, Vol. Asymptotic Completeness

This chapter is an introduction to entropy (or Lyapunov) methods for general (possibly nonlin- ear) dynamical system and some applications to some evolution PDEs (mostly

Aix Marseille Universit´ e, CNRS, Centrale Marseille, Institut de Math´ ematiques de Marseille, I2M - UMR 7373 163, avenue de Luminy, 13288 Marseille Cedex 9, France.