• Aucun résultat trouvé

Results from FOPI on nuclear collective flow in heavy ion collisions at SIS energies

N/A
N/A
Protected

Academic year: 2021

Partager "Results from FOPI on nuclear collective flow in heavy ion collisions at SIS energies"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: in2p3-00022230

http://hal.in2p3.fr/in2p3-00022230

Submitted on 9 Sep 2004

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ion collisions at SIS energies

N. Bastid

To cite this version:

(2)

& % N. Bastid for the FOPI Collaboration, LPC Clermont-Ferrand G¨oteborg, June 27 - July 2

Results from FOPI

on Nuclear Collective Flow

in Heavy Ion Collisions at SIS energies

1 Motivations

2 FOPI detector overview

3 Experimental systematics

• Directed flow

• Elliptic flow

4 Data versus IQMD

• Sensitivity to σ

nn

?

• Sensitivity to EoS?

5 Anisotropic flow from Lee-Yang Zeroes

6 Conclusion

(3)

& %

Motivations & Observables

Probing hot & dense hadronic matter

,→ Nuclear Equation of State

 Collision dynamics

 In-medium effects: σnn, MDI

bounce off

bounce off

OFF plane emission OFF plane emission

reaction plane impact parameter b Ru (400 AMeV) + Ru - Z = 2 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 -1 -0.5 0 0.5 1 l <bgeo> = 1.1 fm n <bgeo> = 2.9 fm M <bgeo> = 4.7 fm (pz) cm 0 < (p x ) 0 >

Au+Au E=250 AMeV A=4 |y(0)|<0.1

0 5 10 15 20 25 30 35 0 90 180 270 360 φ (deg.) dN/d φ (a.u.) M2 M3 M4 M5

Global flow : pdirx =

X

sign(ycm)Zux

. X

Z, ux = βxγ Flow angle: θF, Aspect ratios: λ31 & λ21

(4)

& %

FOPI detector @ GSI

x y

z

inner plastic wall outer plastic wall

(5)

& %

Systematics of

Directed Flow & Stopping

Sideflow Au+Au Ca+Ca hydro Excitation Functions 10-1 100

beam energy (GeV/A) 0.1 0.2 max [ pxdir (0) ] Au+Au Ca+Ca Stopping 0.4 0.5 0.6 0.7 0.8 0.9 vartl Sideflow n 0.4A GeV ∆ 1.5A GeV Ca Ni RuXe Au Size dependence 40 80 120 160 Z system Stopping n 0.4A GeV ∆ 1.5A MeV Ca Ni RuXe Au Size dependence

Stopping:

b/bmax < 0.15 vartl = σ 2(yt) σ2(yz)

Sideflow:

b/bmax ' 0.3 - 0.4 max [(pdirx )(0)]

W. Reisdorf et al., (FOPI), PRL 92 (2004) 232301

Correlation between stopping & flow & pressure

Evidence for incomplete stopping

Stopping: maximum ∼ 400A MeV

(6)

& %

Systematics of Elliptic Flow

-0.1 -0.05 0 0.05 0.1 10-1 1 v 2 Z=1, all pt(0) M2 M3 M4 -0.2 -0.1 0 0.1 10-1 1 Ebeam /A (GeV) A≤4, xA pt(0)> 0.8

Transition

from in-plane to

out-of-plane preferred

emission at low energies

Maximum

∼ 400A MeV

(depending on Pt)

• v

2

decreasing

toward higher

beam energies

A. Andronic et al., (FOPI), GSI Report 2004-1 (2004) 54

• Interplay between fireball expansion & spectator

shadowing

• Passing time decreasing at high beam energies

• Influence of collision dynamics

• Information on different stages of the collision

⇒ High p

t

particles messengers of high density phase

T. Gaitanos et al., Eur. Phys. J. A 12 (2001) 421

(7)

& %

Shape parameters:

Sensitivity to in-medium σ

nn

?

θ

F

Directed flow

λ

31

= f

2

3

/f

12

Directed flow &

Stopping

λ

21

= f

2

2

/f

12

Elliptic flow

J. Gosset et al., (DIOGENE), Phys. Lett. B 247 (1990) 233

10 20 30 40 50 60 70 0 2 4 6 σnn/σfreenn θ F (deg.) IQMD - HM IQMD - SM FOPI Data 1 1.25 1.5 1.75 2 0 2 4 6 σnn/σfreenn λ 31 1 1.2 1.4 1.6 1.8 2 0 2 4 6 σnn/σfreenn λ 21

Ru (400 AMeV) + Ru - Proton-likes - < bgeo > = 1.1 fm

N. Bastid et al., (FOPI), Nucl. Phys. A (2004), in press

Data favour in-medium σ

nn

close or

slightly higher than σ

nnfree

Consistent with results on nuclear stopping

(8)

& %

EoS from Directed Flow?

0 0.1 0.2 0.3 0.4 0.5 0 0.2 0.4 0.6 0.8 1 v1 y(0)=0.5-0.7 Z=1 0 0.1 0.2 0.3 0.4 0.5 0 0.2 0.4 0.6 0.8 1 1.2 y(0)=0.7-0.9 0 0.2 0.4 0.6 0 0.2 0.4 0.6 0.8 1 Z=2 Data 0 0.2 0.4 0.6 0 0.2 0.4 0.6 0.8 1 1.2 HM H SM S IQMD pt(0) 0 0.1 0.2 0.3 0.4 0.5 0 0.2 0.4 0.6 0.8 1 1.2 v1 y(0)=0.5-0.7 all,xZ Data M4 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.2 0.4 0.6 0.8 1 1.2 HM H SM S IQMD y(0)=0.7-0.9 pt(0)

Au + Au @ 400A MeV, M4 400A MeV

Pt(0)

Au (90A MeV) + Au

A. Andronic et al., (FOPI), Phys. Rev C 67 (2003) 034907

• Sensitivity to the EoS parametrization

• Soft EoS (with MDI & σ

nnfree

) in best agreement with

directed flow data for Au + Au & Xe + CsI at 400 AMeV

(9)

& %

EoS from Elliptic Flow?

-0.2 -0.15 -0.1 -0.05 0 0 0.5 1 1.5 2 p(o) v 2 Daten IQMD SM IQMD HM dN/dp IQMD

Au 600AMeV mul4 Proton

-0.15 -0.1 -0.05 0 500 1000 1500 Eb[AMeV] v 2 Au mul4 Proton |y(0)|<0,1 Daten IQMD SM IQMD HM -0.15 -0.1 -0.05 0 500 1000 1500 Eb[AMeV] v 2 Au mul4 p+2d+.. |y(0)|<0,1 Daten IQMD SM IQMD HM

Proton

Total mass

T. Kress, (FOPI), PhD, Darmstadt (2002)

Proton elliptic flow in qualitative agreement with IQMD

Light fragments & IMF (Z>2) abundantly produced at SIS

energies

Bound protons/all protons:

,→

67% (400A MeV) → 33% (1500A MeV)

(10)

& %

Flow from Lee-Yang Zeroes method

Genuine flow directly from correlation between many

particles

⇒ Non-flow correlations due to quantum statistics,

resonance decays, momentum conservation effects, ...,

not neglected

 Generating function:

G(i

r

) =

Q

j

1 + i

r

ω

j

cos(n(

ϕ

j

− θ))



events

where ln G(ir) =

P

+∞ k=1

c

k (ir)k k!

, c

k

= cumulant

 Find

first zeroe (minimum)

,

r

θ

0

, of | G(ir) |

0 → Asymptotic behaviour of ck in the expansion of ln G(ir)

 “Integrated” flow:

V

nθ

{∞

} =

j

01

r

θ

0

(& averaged over θ)

 Resolution parameter:

χ

=

V

n

{∞}

σ

→ χ > 1: Lee-Yang zeroes should be used

→ 0.5 < χ < 1: Important to optimize weights

→ χ < 0.5: Large statistical errors, better to use cumulants

 Differential flow:

→ Deduced from Vθn{∞} in harmonics multiples of n

Detailed description in:

(11)

& %

First application of Lee-Yang theory

to FOPI data: Ru + Ru @ 1.69A GeV

0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5 < bgeo> = 2.9 fm | G θ (ir) | θ = 0 n = 1 r | G θ (ir) | 0 0.05 0.1 0.15 0.2 0.25 0.3 0.16 0.18 0.2 0.22 r | G θ (ir) |

Generating function

r

0

• χ

= 1.45 ⇒ Lee-Yang Zeroes

theory can be used

Clear indication of collective

effects

-0.5 -0.4 -0.3 -0.2 -0.1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Protons -0.9 < y(0)< -0.7 < bgeo> = 2.9 fm Lee-Yang zeroes Standard method

Standard method (w/o recoil correction) Cumulants 2nd order

Cumulants 4th order

Pt (GeV/c) v 1

PRELIMINARY

Non-flow effects from 4-particle correlations negligible

Evidence for (small) momentum conservation effects on v

1

Non-flow effects negligible for higher harmonics

Ongoing development → π± flow & influence of ∆ decay?

(12)

& %

Conclusion

Complete set of data at SIS energies measured with FOPI:

• Variation of beam energy from 90A MeV to 2A GeV • Variation of system size from Ca to Au

• Variation of asymmetry in isospin (Ru/Zr)

• Variation of asymmetry in system size (Au/Ca & Pb/Ni)

Main dependences of directed & elliptic flow are available

New procedure of Lee-Yang Zeroes (& cumulants at SIS)

successfully used for first time to analyze flow

Correlations from non-flow effects negligible for protons &

composite particles

Most features of flow data reproduced qualitatively well

by IQMD model but not in detail

EoS is influencing different observables

EoS is linked to in-medium NN interaction

momentum dependence, cross sections

(13)

& %

FOPI

FOPI Collaboration

A. Andronic, V. Barret, Z. Basrak, N. Bastid,

M.L. Benabderrahmane, R. ˇCaplar, E. Cordier, P. Crochet, P. Dupieux, M. Dˇzelalija, Z. Fodor, I. Gaspari´c, Y. Grishkin, O. Hartmann, N. Herrmann,

K.D. Hildenbrand, B. Hong, D. Kang, J. Kecskemeti, Y.J. Kim, M. Kirejczyk, P. Koczon, M. Korolija, R. Kotte, M. Kowalczyk, T. Kress, A. Lebedev, Y. Leifels, X. Lopez, A. Mangiarotti, V. Manko, T. Matulewicz,

M. Merschmeyer, D. Moisa, D. Pelte, M. Petrovici, F. Rami, W. Reisdorf, A. Schuettauf, Z. Seres, B. Sikora, K.S. Sim, V. Simion,

K. Siwek-Wilczy´nska, M. Smolarkiewicz, V. Smolyankin, J. Soliwoda-Poddany, M. Stockmeier, G. Stoicea, Z. Tyminski,

K. Wi´sniewski, D. Wohlfarth, Z. Xiao, I. Yushmanov, A. Zhilin NIPNE Bucharest, Romania

KFKI Budapest, Hungary LPC Clermont-Ferrand, France

GSI Darmstadt, Germany Univ. of Heidelberg, Germany IKH Rossendorf/Dresden, Germany

ITEP Moscow, Russia

Kurchatov Institute, Moscow, Russia Korea University Seoul, Korea

Références

Documents relatifs

data, from the FOPI and the KaoS collaborations, are compared with the predictions of various transport codes without (left) and with (right) in-medium kaon–nucleon potentials..

We focus here on recent results obtained for neutral strange Λ-hyperons measured in the reaction Ni + Ni at 1.93 AGeV.. The results may allow to test the in-medium attractive

International Conference on Heavy Ion Nuclear Collisions in the Fermi Energy Domain Hicofed 86, 1986, Caen, France... In the liquid-drop model giant resonances are interpreted

Because of the very low nuclear temperatures deduced from our analysis one cannot neglect the possibility that the shifts of the resonance mass might be induced by still other

The PHENIX and STAR experiments measured the nuclear modification factor of electrons from heavy-flavour decays in Au–Au collisions at √ s NN = 200 GeV [ 8,

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Because tissue protein breakdown occurs early in PDAC 9 , we assessed tissue wasting kinetics in the KP−/−C model and found decreased AT mass by 6 weeks of age, a time when

Schrödinger equation, unbounded potential, Dirichlet-to-Neumann map, uniqueness, stability inequality, Borg-Levinson type theorem.. The author is supported by the grant