• Aucun résultat trouvé

A remark on harmonic analysis of strongly almost-periodic groups of linear operators

N/A
N/A
Protected

Academic year: 2022

Partager "A remark on harmonic analysis of strongly almost-periodic groups of linear operators"

Copied!
5
0
0

Texte intégral

(1)

A NNALI DELLA

S CUOLA N ORMALE S UPERIORE DI P ISA Classe di Scienze

S. Z AIDMAN

A remark on harmonic analysis of strongly almost- periodic groups of linear operators

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3

e

série, tome 26, n

o

3 (1972), p. 645-648

<http://www.numdam.org/item?id=ASNSP_1972_3_26_3_645_0>

© Scuola Normale Superiore, Pisa, 1972, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une infraction pénale.

Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

OF STRONGLY ALMOST-PERIODIC GROUPS OF LINEAR OPERATORS

S.

ZAIDMAN(1)

1.

Introduction.

Let us consider a Banach space

9~

and then take a one

parameter

group of linear

operators

(~

(t),

- oo --~

Z 1-Y),

which is

strongly almost-periodic ;

this means that for any x E

9Cy

the

X-valued function y (t)

==

= G (t) x

is

(Bochner)-almost-periodic (see [2]).

It is a well-known result

(see

for

example [1]),

that for any

x-valued almost-periodic

function

f (t),

the mean value

exists for any real number A.

Furthermore,

this mean value

equals

0 for all A with the

possible

ex-

ception

of a set 1 which is finite or

countable,

and is denoted

by o ( f ).

A natural

problem

is the

following (2) :

Is there any

strongly almost-periodic one-parameter

group G

(t),

with the

property

that

Answering

to a letter of us,

professor

S. Bochner indicated a

solution;

this will be

explained

here with some more details.

Pervenuto alla Redazione il 28 Luglio 1971.

(i) This research is supported by a grant of the National Research Council of Canada.

(2) It arose in connection with onr paper

[3].

(3)

646

2. We shall remember here the de6nition of the

space l2 [-

coy

00].

It consists of all

complex-valued

functions ac

(1),

defined for -oo

~

00,

having

the

property

that

In

fact, (2. 1)

means,

by definition,

that for a certain constant c

&#x3E;

0

we have

whenever

arbitrary real Aj

are choosen

(and

for any

n = 1, 2, 3, ...).

Let us remark that if a

(1)

E Z2

[-

oo,

oo]

there exists a sequence

depending

on

a (1),

such that

a (1)

= 0 if A

# Aj, Bjj ---1,2, ...

This follows

becouse,

if we

put (fj J Ri, a , &#x3E; () J l

we see that

00

every

C;

is a finite

set;

hence ;=1

U d; = d

is a countable

set,

and if

a (1) #

0

then

Let us denote the set

(A ; a (1) +- 0 ) by Sp a ( . ) ; so Sp a r- (f

is a fini te

or countable

set, (in)7 ,

and we take a fixed

ordering

of it.

It can be

proved

that 12

[-

oo,

00]

is a linear space on the

complex

field. We can introduce a scalar

product

on this space ; if a

(1), b (2)

E

l2

[-

00,

oo],

and

= Sp

a

(. ), (pn)§°

=

Sp

b

(.),

then

by

definition

(a (A),

00

_

this sum becomes finite if one of

Sp a, ( . )

or

j=l

Spb(.)

is finite.

It can be

proved

in the usual manner that l2

[-

oo,

oo]

is a

(com-

plete)

Hilbert space.

Let us consider now, for any real

number t,

the map of

l2 [-

oo,

oo]

into itself which is defined

by

We shall denote this map

by Gt ;

we see that

Gtl+tt

=

Gtl Gt2 , Go

= I for

any

pair tj t2

of real

numbers ;

here I is the

identity operator

Furthemore,

we have

so

G,

is an isometric map

of l2, ~

real t.

(4)

3. In this

part

of the paper we prove the

following

THEOREM. The

one parameter

group

Gt is strongly

al1nost

periodic

in Z2

We need for the

proof

several Lemmas.

Consider,

for a

given Ào

E

(-

oJ, the function qJÂo

(I)

which

equals

1 for

À. =

Ro ,

and

equals

0 for À.

# 10. Obviously E l2

y and

Sp

r

( . )

=

Now,

we have

LEMMA 1. Let a

(l)

be and

(~n)i

=

Sp a (.).

Then we

(3.1)

the convergence

being

in l2

[-

00,

00 1

w

Let us

put

in fact a

(Â.n) (A).

n=i

’~

It can be seen without

difficulty

that

Sp bN (.) = (AN+l, N+2, ...).

Hence

-

hence

This last

expression

tends to 0 as N- oo, because a

(I)

E

12.

This proves Lemma.

Then we remark the trivial fact that

Applying

Lemma 1 we obtain that for any real t we have

the convergence

being in l2 [-

oo,

ooJ.

Also we have the

simple

LEMMA

2. Any functions -

oo

t

oc

-+ 12 [-

oo,

ooJ

which is

given by

This is a

particular

case of the fact that if

%

is a Banach space, x E

X,

and a is a real

number,

the function - oo

t

oo -~

9~~ given by

eill x

(5)

648

is

St almost-periodic (in

fact it is In our case a =

=~(~)~(~9C=~

,

It follows from

(3.3)

that is

l2-almost-periodic,

if we prove that

the convergence in

(3.3)

is uniform with

respect

to t E

(-

oo,

cxJ).

This is

done in

LEMMA 3. The

series 1- (A)

is

convergent

to

(a,)

in l2-

n=1

"

norm,

uniformly for -

Let us consider in fact the difference

We see that

moreover

Consequently Sp g N(’, t)

=

(AN+] , IN+2, .. )

and

which tends to 0 as 1~’--~ 00,

obviously uniformly

with

respect

to t E

(-

00,

oo).

This proves the Theorem.

Let us

consider a ; ~)

= for any

fixed Ào

E

(-

oo,

oo).

Then

This is a 12-valued

periodic

function and

~~o ~ · ))

_

ilo)

Hence

U 1?1 g ((~t ~ryo( . ))

= real line Ri and this solves the

problem

in the Introduction.

REFERENCES

[1]

Amerio-Prouse: Almost-periodic functions and functional equations, Van Nostrand Reinhold

Company, New York 1971.

[2]

Zaidman : sur la perturbation presque-périodique .... Rend. Matem. e Appl., V, 16, (1957),

pp. 197-206.

[3]

Zaidman : A remark on integration of almost-periodic functions, Can. Math. Bull. Vol. 13, 2, June 1970, pp. 249.251.

Références

Documents relatifs

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » ( http://www.sns.it/it/edizioni/riviste/annaliscienze/ ) implique l’accord

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » ( http://www.sns.it/it/edizioni/riviste/annaliscienze/ ) implique l’accord

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » ( http://www.sns.it/it/edizioni/riviste/annaliscienze/ ) implique l’accord

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » ( http://www.sns.it/it/edizioni/riviste/annaliscienze/ ) implique l’accord

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » ( http://www.sns.it/it/edizioni/riviste/annaliscienze/ ) implique l’accord

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » ( http://www.sns.it/it/edizioni/riviste/annaliscienze/ ) implique l’accord

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » ( http://www.sns.it/it/edizioni/riviste/annaliscienze/ ) implique l’accord

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » ( http://www.sns.it/it/edizioni/riviste/annaliscienze/ ) implique l’accord