• Aucun résultat trouvé

On an integral formula of Berndtsson related to the inversion of the Fourier-Laplace transform of <span class="mathjax-formula">$\bar{\partial }$</span>-closed <span class="mathjax-formula">$(n,n-1)$</span>-forms

N/A
N/A
Protected

Academic year: 2022

Partager "On an integral formula of Berndtsson related to the inversion of the Fourier-Laplace transform of <span class="mathjax-formula">$\bar{\partial }$</span>-closed <span class="mathjax-formula">$(n,n-1)$</span>-forms"

Copied!
7
0
0

Texte intégral

(1)

ANNALES MATHÉMATIQUES

BLAISE PASCAL

Telemachos Hatziafratis

On an integral formula of Berndtsson related to the inversion of the Fourier-Laplace transform of ∂-closed ¯ (n, n − 1)-forms

Volume 11, no1 (2004), p. 41-46.

<http://ambp.cedram.org/item?id=AMBP_2004__11_1_41_0>

©Annales mathématiques Blaise Pascal, 2004, tous droits réservés.

L’accès aux articles de la revue « Annales mathématiques Blaise Pascal » (http://ambp.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://ambp.cedram.org/legal/). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copy- right.

Publication éditée par le laboratoire de mathématiques de l’université Blaise-Pascal, UMR 6620 du CNRS

Clermont-Ferrand — France

cedram

Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques

(2)

On an integral formula of Berndtsson related to the inversion of the Fourier-Laplace

transform of ∂-closed ¯ (n, n − 1)-forms

Telemachos Hatziafratis

Abstract

We give a proof of an integral formula of Berndtsson which is re- lated to the inversion of Fourier-Laplace transforms of ∂-closed¯ (n, n1)-forms in the complement of a compact convex set inCn.

1 Introduction

Let K be a compact and convex subset of Cn and F(ζ) an entire analytic function of the following exponential type: For every δ > 0 there exists a constantCδ>0so that

|F(ζ)| ≤Cδ exp (HK(ζ) +δ|ζ|) (ζ ∈Cn), (1.1) where HK(ζ) = sup{Rehz, ζi : z ∈ K} and hz, ζi= Pn

j=1zjζj. One way to produce functionsF(ζ), which satisfy (1.1), is to take a ∂-closed¯ (n, n−1)- formθ(z)inCn−Kand consider its Fourier-Laplace transformFθ(ζ)defined by the integral

Fθ(ζ) = Z

z∈S

ehz,ζiθ(z),

whereSis a smooth(2n−1)-dimensional surface surrounding K. Then it is easy to see thatFθ does not depend on the choice of S and that it satisfies (1.1).

In [2], we showed that, conversely, any entire functionF(ζ), which satisfies (1.1), is Fθ(ζ) for some θ ∈ Z(n,n−1)¯

(Cn−K). (Notation: Z(n,n−1)¯

denotes

sets of∂-closed¯ (n, n−1)-forms.) The proof uses an integral of Berndtsson, which is defined as follows:

θFρ(z) =an

Z

t=0

tn−1e−thz,∂ρ/∂ziF(t∂ρ/∂z)dt

∂ρ(z)∧[ ¯∂∂ρ(z)]n−1,

(3)

Telemachos Hatziafratis

forz ∈Cn− {ρ≤1},

where ∂ρ/∂z = (∂ρ/∂z1, ..., ∂ρ/∂zn) and an = 1/[(n−1)!(2πi)n]. Here we assume that0∈K and that the functionρis chosen to be convex, positively homogeneous (i.e., ρ(sz) = sρ(z) for s > 0) and such that {ρ < 1} is a strictly convex neighborhood of K. ((1.1) is needed for the convergence of the above integral.)

Then Berndtsson proved (in [1]) that if the entire functionF(ζ)satisfies (1.1) then

Z

{ρ(z)=1}

ehz,ζiθFρ(z) =F(ζ), f or ζ ∈Cn. (1.2)

The proof given in [1] was based on an integral formula with weights and a change of variables, using some facts from convex analysis concerning the polar set of the convex set{ρ≤1}.

In this note we will give a proof of (1.2) by a direct computation of the integral which is based on the following observations: First, the differential formθFρ(z)is∂-closed in the set¯ Cn−{ρ≤1}(see [2, Lemma 1]) and therefore

Z

{ρ(z)=1}

ehz,ζiθρF(z) = Z

{|z|=R}

ehz,ζiθρF(z) (1.3)

when the sphere{|z|=R} surrounds the compact set{ρ≤1}, and second, if we expand the entire functionF(ζ)in power series

F(ζ) = X

k1,...,kn≥0

ck1,...,knζ1k1...ζnkn

and we if we substitute this expansion in the integral which defines θFρ(z), then we may interchange the order of summation and integration, provided thatR is sufficiently large.

After this interchange we see thatθρF(z)is a combination of terms of the form

an

Z

t=0

tn+k1+···+kn−1e−thz,∂ρ/∂zi

dt

!

× ∂ρ

∂z1 k1

...

∂ρ

∂zn kn

∂ρ(z)∧[ ¯∂∂ρ(z)]n−1. (1.4)

(4)

Since

Z

t=0

tNe−tσdt= N!

σN+1 (for Reσ >0), we see that

Z

t=0

tn+k1+···+kn−1e−thz,∂ρ/∂zidt= (n+k1+· · ·+kn−1)!

hz, ∂ρ/∂zin+k1+···+kn .

It follows that (1.4) is the following derivative of the Cauchy-Fantappiè ker- nel:

(n−1)!ank1+···+kn

∂w1k1...∂wknn w=0

∂ρ(z)∧[ ¯∂∂ρ(z)]n−1 hz−w, ∂ρ/∂zin

. (1.5)

Now recall the Cauchy-Fantappiè formula: For entire functions f, 1

(2πi)n Z

{|z|=R}

f(z)∂ρ(z)∧[ ¯∂∂ρ(z)]n−1

hz−w, ∂ρ/∂zin =f(w) (|w|< R).

Differentiating both sides of this equation with respect tow, we obtain that Z

{|z|=R}

f(z)Fρk

1,...,kn(z) = ∂k1+···+knf

∂w1k1...∂wknn(0), (1.6) where Fρk1,...,kn(z) is the kernel (1.5) (which, as we pointed out, is equal to (1.4)).

These observations lead to a proof of the following theorem.

Theorem 1.1: If the entire function F(ζ) =P

ckζk satisfies (1.1) then Z

{ρ(z)=1}

f(z)θρF(z) = X

k1,...,kn

ck1,...,knk1+···+knf

∂wk11...∂wnkn(0), for every entire function f.

(1.7) Notice that (1.2) is the formula (1.7) whenf(z) =ehz,ζi. Since the set of the functionsehz,ζi,ζ ∈Cn, is dense in the space of entire functions (with the topology of uniform convergence on compact sets), (1.2) is actually equivalent to (1.7).

(5)

Telemachos Hatziafratis

2 The proof of the Theorem

First (1.1) guarantees the convergence of the integral which definesθρF(z), for ρ(z) ≥1(see [2, p.910]) and, as we pointed out before, θρF ∈Z(n,n−1)¯

(Cn

{ρ≤1}). Therefore, by Stokes’s theorem, the integralR

{ρ=1}f θρF is equal to an

Z

{|z|=R}

f(z)

Z

t=0

tn−1e−thz,∂ρ/∂zi X

k1,...,kn

ck1,...,kntk1+···+kn

× ∂ρ

∂z1 k1

...

∂ρ

∂zn kn

dt ∂ρ(z)∧[ ¯∂∂ρ(z)]n−1. (2.1) We want to show that we may interchange the order of integration and sum- mation in (2.1), provided that R is sufficiently large. By Lebesque’s domi- nated convergence theorem, it suffices to chooseRso that

X

k1,...,kn

|ck1,...,kn| Z

{|z|=R}

Z

t=0

f(z)tn−1e−thz,∂ρ/∂zitk1+···+kn

× ∂ρ

∂z1 k1

...

∂ρ

∂zn kn

dt|∂ρ(z)∧[ ¯∂∂ρ(z)]n−1|<∞. (2.2) For this purpose, we will need an estimate for the coefficientsck, which follows from (1.1). First (1.1) implies that|F(ζ)| ≤AeB|ζ| forζ ∈Cn, whereAand B are positive constants. Using this and Cauchy’s formula in the polydisc, we see that the coefficients

ck1...kn = 1 k1!...kn!

k1+···+knF

∂ζ1k1...∂ζnkn(0)

satisfy the inequality

|ck1...kn| ≤AeB(r1+···+rn)

r1k1...rnkn , for every r1, ..., rn >0.

Applying this withr1=k1/B, ..., rn=kn/B, we obtain that

|ck1...kn| ≤A(eB)k1+···+kn

kk11...kknn , for every k1, ..., kn. (2.3)

(6)

On the other hand(∂ρ/∂zj)(sz) = (∂ρ/∂zj)(z) fors >0, and therefore

∂ρ

∂zj(z)

≤β def= max

∂ρ

∂zj(ξ)

: |ξ|= 1, j = 1, ..., n

(z 6= 0).

Also the function γ(z) def= Rehz, ∂ρ/∂zi has the property γ(sz) = sγ(z) (s >0), and therefore

γ(z) =|z|γ(z/|z|)≥|z| for z 6= 0, where def= min{γ(ξ) : |ξ|= 1}>0.

It follows that

Z

t=0

tn+k1+···+kn−1|e−thz,∂ρ/∂zi|dt=(n+k1+· · ·+kn−1)!

[γ(z)]n+k1+···+kn

≤(n+k1+· · ·+kn−1)!

(|z|)n+k1+···+kn . Thus

Z

{|z|=R}

Z

t=0

f(z)tn−1e−thz,∂ρ/∂zi

tk1+···+kn ∂ρ

∂z1 k1

...

∂ρ

∂zn kn

dt

× |∂ρ(z)∧[ ¯∂∂ρ(z)]n−1|

≤ (n+k1+· · ·+kn−1)!

(R)n+k1+···+kn βk1+···+kn Z

{|z|=R}

|f(z)||∂ρ(z)∧[ ¯∂∂ρ(z)]n−1|.

This inequality together with (2.3) imply that, in order to have (2.2), it suffices to chooseRso that

X

k1,...,kn

(n+k1+· · ·+kn−1)!

(R)k1+···+kn

(βeB)k1+···+kn

kk11...kknn <∞. (2.4) But (2.4) holds, ifR > nβeB/, since

X

k1,...,kn

(k1+· · ·+kn)!

k1!. . . kn! τ1k1. . . τnkn = 1

1−(τ1+· · ·+τn) for τ1+· · ·+τn<1, τj>0.

(7)

Telemachos Hatziafratis

Thus, working withR > nβeB/,we may interchange the order of integration and summation in (2.1). The result is that the integral R

{ρ=1}f θρF is equal to the sum

X

k1,...,kn

ck1,...,kn Z

{|z|=R}

f(z)Fρk

1,...,kn(z),

which, by (1.6), is equal to X

k1,...,kn

ck1,...,knk1+···+knf

∂wk11...∂wknn(0).

This proves (1.7) and completes the proof of the Theorem.

References

[1] B. Berndtsson. Weighted integral formulas. In J.E.Fornaess, editor,Sev- eral Complex Variables, Proc. Mittag-Leffler Inst., 1987-88, pages 160–

187. Princeton Univ. Press, 1993.

[2] T. Hatziafratis. Note on the Fourier-Laplace transform of∂-cohomology¯ classes. Zeitschrift für Analysis und ihre Anwendungen, 1998.

Telemachos Hatziafratis University of Athens Department of Mathematics Panepistemiopolis

Athens 15784 GREECE

thatziaf@math.uoa.gr

Références

Documents relatifs

Tout sous-corps fermé E de Cp est l'adhérence d'une extension algé- brique L de Qp, et nous démontrons que, pour que la transformation de Fourier ^ soit injective, il faut et il

La décomposition en facteurs premiers des nombres N compris entre 101 et 201 montre que les seuls de ces nombres qui ne pourraient satisfaire au théorème IV, en vertu des théorèmes

Si s est modérément ramifiée, elle est induite d’un caractère modérément ramifié Il de l’extension quadratique non ramifiée de F, à. valeurs dans

Soit (n, V) une représentation irréductible de G ayant un caractère central, et de dimension infinie.. Les fonctions de Kirillov

We prove that the -çe-adic L-function interpolates the critical values of the classical zeta function of the twists of our form by finite characters of conductor

Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

L’accès aux archives de la revue « Nouvelles annales de mathématiques » implique l’accord avec les conditions générales d’utilisation ( http://www.numdam.org/conditions )..

— Dans la formule qui doni^e 2 cos ma, on a divisé les deux membres par 2cos#, pour donner la même physionomie à toutes