• Aucun résultat trouvé

Analysis of shear-induced anisotropy in leda clay

N/A
N/A
Protected

Academic year: 2021

Partager "Analysis of shear-induced anisotropy in leda clay"

Copied!
19
0
0

Texte intégral

(1)

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=0e9b7d2f-9692-410f-ac35-8b3138fda1e3

https://publications-cnrc.canada.ca/fra/voir/objet/?id=0e9b7d2f-9692-410f-ac35-8b3138fda1e3

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Analysis of shear-induced anisotropy in leda clay

(2)

d

Research Council of Canada

705

lational de recherches du Canada

ANALYZED

-'

ANALYSIS OF SHEAR-INDUCED ANISOTROPY

IN

LEDA CLAY

__

.

-.

---

by

K. T. Law and Kwan Y. Lo

4

FEB

14

1977

Reprinted from

Numerical Methods in Geomechanics

Blacksburg, Va., June 1976

Proceedings, Engineering Foundation Conference on

held at Virginia Polytechnic Institute and State University

Vol. 1, p. 329-344.

g-4

5s3Q

DBR Paper No. 705

Division of Building Research

(3)

Une mdthode des dldments finis est mise au point pour I'analyse du comportement, al I'dtat non draind, d'un remblai reposant sur des argdes tendres et sensibles ayant comme caractdristiques une anisotropic produite par cisaillement et un ramollissement au-dell d'une certaine charge. La mdthode se fonde sur I'observation des discontinuitds dues au cisaillement qui sont mobilisdes lorsque l'argile est ddformde au-dell de sa rdsistance maximale. Des dtudes en laboratoire des conditions de cette mobilisation indiquent que la pression de consolidation en est le facteur ddterminant inddpendamment de la vitesse de ddformation, de l'inclinaison de I'dchantdlon et du genre de chargement. A l'aide de donndes typiques, l'analyse est appliqude

A

la construction des remblais afin d'dtudier I'dtreinte latdrale artificielle, la profondeur de l'assise rocheuse, le regime de contrainte initiale, la rigiditd du remblai et la resistance audelal d'une certaine charge maximale. On dvalue dgalement I'analyse dlastique ordinaire en fonction de la mdthode proposde.

I

T "

III~I~IIIII~II

IIIIIIII[I~I~!~II

-

-

809

002

-

9

-

(4)

ANALYSIS OF SHEAR-INDUCED ANISOTROPY IN LEDA CLAY

By K.T.

awl

and

K.Y.

LO,^

A.M. ASCE

INTRODUCTION

Many field observations involving deformation or failure in earth structures have revealed that there are regions of induced shear or strain discontinuities within the soil mass. In a number of landslide records (e.g., refs. 3, 10, 12) the failure mass moved monolithically along a thin zone of soil underlain by a relatively unsheared or undisturbed soil mass. Similar discontinuities have also been observed in embankment construction (e.g. ref. 8) and such discontinuities have even been found outside the sliding surface (17). Because of the many uncertainties, little work has been done on the stress-strain analysis of problems involving these discontinuities.

The complexity is further aggravated when work-softening behavior

is involved. The associated problems have been discussed (6, 11).

An

important advance was brought about by Lo and Lee (16) and by Desai (7). A particular solution of the problem in undrained behavior under embankment loading, however, still requires further attention.

An attempt has been made to define the conditions favorable to the development of shear-induced discontinuities in the laboratory and a model has been developed for the post-peak behavior. The proposed method has been applied to the study of embankments founded on a soft sensitive clay.

LABORATORY STUDY

Block samples and 12.7-cm diameter Osterberg samples (18) of Leda clayweretaken from two locations in Ottawa, Ontario to study the conditions under which discontinuities arise. This clay is noted for its brittleness, high sensitivity and compressibility. A general

description of the deposit has been given by Crawford (4) and Bozozuk

and Leonards (1). Additional specific geotechnical data are given in

Table 1.

Research Officer, Division of Building Research, National Research Council of Canada, Ottawa, Ontario.

Professor, Faculty of Engineering Science, The University of Western Ontario, London, Ontario.

(5)

330

NUMERICAL METHODS IN GEOMECHANICS

Table 1. Summary of So11 Properties

Table 2. S m a r y of Laboratory Tests

Location

Gloucester

"

"

Heron Rd

'I1 i = angle between axis of specimen and the vertical

('I 0;

-

vertical consolidation pressure; P = in sit" overburden pressure 13' 0; = horizontal consolidation pressure

Sr = post-peak strength; Sp = peak strength VS = vertical splitting; SP = shear plane

Test Type UU on vertical specimens UU an inclined specimens 1') 1;30'.90' CAU on vertical speclrnens CIU on ~nclined specmens 1=30°-go0 CIU, different

":

CAU, different depths CAU, plane straln different depths CAU, plane straln stress controlled UU an vertical specimens UU on inclined specimens i=309-90' CAU Constant ( 8 ' + 0 1 ) 1 3 drained test No. of Tests 5 4 3 4 4 5 5 2 7 5 4 I Straln rats. % / m m . 0.43-0.0001 0.0093 0.017-0.0001 0.017 0.017 0.017 0.017 0.56-0.0001 0.013 0.084-0.0001 0.00023 i2) o;/Po 1.27 1 .O 2.18-5.45 1.0 1.0 1.0 0 0 1 1

1

Sr'Sp 0.74-1.08 0.71-1.00 0.66 0.67-0.79 0.56-0.79 0.66-1.00 0.58-0.16 0.55-0.62 1 3 ) o ' l o ' h v 1 1 0.70 1.0 1.0 0.5 0.5 0.5 1 1 0.5 0.5 Mode of failure I shear plane angle i5) VS+SP, 56°-570 VS+SP, 50°-560 SP, 56' SP, 56O-57' Bulging SP, 54'-60' SP. 5S0-60' SP, 56' VS+SP, 55'-57° VS+SP, 54'-57' SP, 56O-58' SP.56'

(6)

SHEAR INDUCED ANISOTROPY 33 1

The e x p e r i m e n t a l program c o n s i s t e d mainly o f c o n v e n t i o n a l t r i a x i a l u n d r a i n e d t e s t s c o n s o l i d a t e d a t d i f f e r e n t p r e s s u r e s and s h e a r e d under d i f f e r e n t s t r a i n i n g r a t e s r a n g i n g from 0 . 5 % p e r min t o 1 % p e r week. P l a n e s t r a i n t e s t s , b o t h s t r a i n and s t r e s s c o n t r o l l e d , t e s t s under c o n s t a n t a v e r a g e e f f e c t i v e p r e s s u r e and t e s t s on i n c l i n e d specimens were a l s o performed.

A summary o f some 50 t e s t s i s g i v e n i n T a b l e 2. For a l l t e s t s , t h e major p a r t o f t h e p r e - p e a k s t r a i n i n g g e n e r a l l y r e s u l t s i n a r e a s o n a b l y uniform l a t e r a l d e f o r m a t i o n w i t h o u t t h e development o f any d i s c o n t i n u i t i e s . F a i l u r e s t r a i n s a r e u s u a l l y s m a l l (about 1 % ) e x c e p t when t h e c o n s o l i d a t i o n p r e s s u r e i s h i g h ( 2 x Po, where Po = e f f e c t i v e overburden p r e s s u r e ) . Work-softening b e h a v i o r g e n e r a l l y p r e v a i l s w i t h t h e r a t i o o f t h e p o s t - p e a k t o peak s t r e n g t h r a n g i n g from 0 . 5 5 t o 1 . 0 . I t i s a p p a r e n t from T a b l e 2 t h a t t h e v a l u e o f t h e c o n s o l i d a t i o n p r e s s u r e i s t h e f a c t o r t h a t governs t h e mode o f f a i l u r e . A t h i g h p r e s s u r e s , ' a b u l g e - t y p e f a i l u r e i s t h e predominant f e a t u r e . A t low p r e s s u r e s , however, f o r u n c o n s o l i d a t e d u n d r a i n e d t e s t s (UU t e s t s ) v e r t i c a l s p l i t t i n g o c c u r s around t h e peak d e v i a t o r i c s t r e s s and i s f o l l o w e d by s h e a r p l a n e s upon f u r t h e r s t r a i n i n g . S p l i t t i n g h a s been a s c r i b e d t o t h e e f f e c t o f end r e s t r a i n t s which might g i v e r i s e t o t e n s i l e s t r e s s ( 5 , 9 ) . T h i s view i s s u p p o r t e d h e r e by t h e r e s u l t s o f t h e c o n s t a n t e f f e c t i v e s t r e s s t e s t i n which t h e specimen f a i l s w i t h o u t s p l i t t i n g . A t t h e i n t e r m e d i a t e p r e s s u r e (below o r s l i g h t l y above P o ) , s h e a r p l a n e s o r d i s c o n t i n u i t i e s a r e i n v a r i a b l y t h e p r e v a i l i n g mode of f a i l u r e . T h i s b e h a v i o r i s found t o be independent o f t h e f o l l o w i n g : 1) t h e r a t e o f s t r a i n ; 2) t h e i n c l i n a t i o n a t which t h e specimen was trimmed from t h e block sample; 3 ) t y p e o f l o a d i n g c o n d i t i o n , i . e . p l a n e s t r a i n o r t r i a x i a l s t a t e .

I n many e n g i n e e r i n g o p e r a t i o n s i n Leda c l a y i t i s common

f o r u n d r a i n e d l o a d i n g t o s t a r t from i n s i t u s t r e s s e s . L o c a l i z e d s h e a r d i s c o n t i n u i t i e s s h o u l d be a n t i c i p a t e d and a n a l y s i s i n c o r p o r a t i n g t h e p e r t i n e n t b e h a v i o r i s e s s e n t i a l i f t h e s a f e t y f a c t o r i s m a r g i n a l . NUMERICAL FORMULATION

A f i n i t e element method i s proposed i n t h e a n a l y s i s o f s o i l - s t r u c t u r e i n t e r a c t i o n , i n p a r t i c u l a r , f o r s o i l showing w o r k - s o f t e n i n g and s h e a r d i s c o n t i n u i t i e s when s t r a i n e d beyond t h e peak. In t h i s method, which i s an e x t e n s i o n o f t h e method u s e d by Lo and Lee ( 1 6 ) , a l i n e a r e l a s t i c b e h a v i o r i s assumed i n t h e pre-peak s t a t e . When t h e s o i l f a i l s l o c a l l y , two s e p a r a t e p r o c e s s e s a r e a p p l i e d t o m a i n t a i n s t r e s s and s t r a i n c o m p a t i b i l i t y . F i r s t l y , a s t r e s s t r a n s f e r t e c h n i q u e (21) i s employed t o g e n e r a t e a new s e t o f n o d a l f o r c e s f o r t h e subsequent i t e r a t i v e s o l u t i o n . Secondly, an a p p r o p r i a t e s t i f f n e s s m a t r i x is f o r m u l a t e d , which r e a l i s t i c a l l y d e s c r i b e s t h e p o s t - p e a k d e f o r m a t i o n a l c h a r a c t e r i s t i c s o f t h e s o i l .

The p r e s e n t method d i f f e r s from t h e p r e v i o u s a n a l y s i s (16) i n two r e s p e c t s : it d e a l s mainly w i t h t h e s h o r t - t e r m l o a d i n g c o n d i t i o n ( t h e p r e v i o u s one i s concerned w i t h excavated s l o p e s under t h e long-term s i t u a t i o n ) , and i t e x p l i c i t l y t r e a t s t h e problem o f s h e a r d i s c o n t i n - u i t i e s , t h e f o r m u l a t i o n o f which i s p r e s e n t e d i n t h e f o l l o w i n g .

(7)

f a i l u r e p l a n e , a s w e l l a s i t s a n a l o g y , i s shown i n F i g . 1. The system c o n s i s t s of two i n t a c t masses s l i d i n g r e l a t i v e t o each o t h e r and hence a n a p p a r e n t a n i s o t r o p y i s i n t r o d u c e d . C o n s i d e r i n g t h e s t r e s s - s t r a i n b e h a v i o r i n t h e d i r e c t i o n s p a r a l l e l and normal t o t h e f a i l u r e p l a n e , t h e c o m p r e s s i o n a l moduli f o r b o t h d i r e c t i o n s (Ep and En) can be d e r i v e d w i t h t h e h e l p of t h e analogy of two systems of s p r i n g s , one connected i n p a r a l l e l and t h e o t h e r i n s e r i e s ( F i g s . l b and l c ) . The r e s u l t i n g e x p r e s s i o n s a r e :

and

where

E1/E2 = r a t i o o f modulus o f t h e i n t a c t t o t h a t o f t h e s o f t e n e d s o i l , and

t / h = r a t i o o f t h e t h i c k n e s s of t h e s o f t e n e d t o t h a t o f t h e i n t a c t s o i l .

E x i s t i n g d a t a i n d i c a t e t h a t t / h i s u s u a l l y l e s s t h a n 0 . 1 % and t h a t E1/E2 seldom exceeds 10 (14). The r a t i o s o f E /E P 1 and En/E1 a r e p l o t t e d i n F i g . 2. For a l l p r a c t i c a l p u r p o s e s b o t h Ep and En can b e t a k e n a s e q u a l t o El, t h e modulus o f t h e o r i g i n a l i n t a c t m a t e r i a l . I t was found i n a s i m i l a r manner t h a t t h e e f f e c t i v e P o i s s o n ' s r a t i o , v , of t h e system c o n t a i n i n g a s h e a r p l a n e i s e q u a l t o t h a t o f t h e i n t a c t m a t e r i a l .

The s h e a r modulus a l o n g t h e f a i l u r e p l a n e however s h o u l d b e c o n s i d e r e d s e p a r a t e l y . Assuming a m o n o t o n i c a l l y i n c r e a s i n g l o a d , once f a i l u r e i s r e a c h e d , t h e r e i s no s h e a r r i g i d i t y t o p r e v e n t f u r t h e r r e l a t i v e d i s p l a c e m e n t between t h e i n t a c t masses. T h e r e f o r e t h e s h e a r modulus i s e s s e n t i a l l y z e r o , which was a l s o n o t e d by'Lo (15) b u t from a d i f f e r e n t v i e w p o i n t .

Consequently t h e s e l f - i m p o s e d composite system can be f u n c t i o n a l l y t r e a t e d a s a g r o s s l y a n i s o t r o p i c m a t e r i a l with p r i n c i p a l p l a n e s l y i n g p a r a l l e l and normal t o t h e s h e a r p l a n e . The e l a s t i c i t y m a t r i x

[D']

w i t h r e s p e c t t o t h e s e d i r e c t i o n s i s w r i t t e n a s f o l l o w s f o r t h e p l a n e s t r a i n c o n d i t i o n :

R e f e r e n c e t o t h e g l o b a l c o o r d i n a t e s i s o b t a i n e d v i a t h e t r a n s f o r - mation m a t r i x [TI ( 2 0 ) , and g i v e s :

(8)

SHEAR INDUCED ANISOTROPY P O R T I O N F O R S P R I N G A N A L O G Y I L L U S T R A T I O N ( a ) S C H E M A T I C D I A G R A M O F A S O I L S A M P L E A F T E R F A I L U R E FIGURE 1

Modeling of soils, failing with a shear plane

u x I b l S T R E S S P A R A L L E L T O F A I L U R E P L A N E

t

"Y

t

Y ( c ) S T R E S S N O R M A L T O F A I L U R E P L A N E 1 0 0 . 0 \ I I I I I [ l -

Y&

\

'\,

'--.?l\n = 0 . 0 0 0 5

j

-

-

,

..

0 . 0 0 1 0

-

8

.

.

Z - '\\

p*.

-

d 0 0 0 5 ** * % W -

-

\

..

-

C -** FIGURE 2 Y \ 9 9 . 5 - \

-

Typical values of the o

-

-

E I E

'

0 . 0 0 1 0

modulus of deformation

-

-

---

P 1

"<

- E " ' E l of the composite CL

-

\

-

W system

'.

\

-

'.

-

- \ 2 0 6 8 10

(9)

Assembly o f t h e combined s t i f f n e s s m a t r i x c o m p r i s i n g a l l e l e m e n t s a t d i f f e r e n t s t a g e s o f l o a d i n g can t h e n b e accomplished. Coupled w i t h t h e g e n e r a t e d nodal f o r c e s from l o c a l l y f a i l e d e l e m e n t s , i t e r a t i o n c a n be performed u n t i l s t r e s s - s t r a i n c o m p a t i b i l i t y i s s a t i s f i e d .

APPLICATION TO EMBANKMENTS FOUNDED ON SOFT CLAYS

The proposed method was used t o s t u d y t h e performance of an embankment founded on s o f t c l a y s . Some o f t h e symbols and p a r a m e t e r s a r e d e f i n e d i n F i g . 3 ; a d d i t i o n a l d a t a a r e a s f o l l o w s : K = 0 . 5 = c o e f f i c i e n t o f e a r t h p r e s s u r e a t r e s t ; D / H = 5 = r a t i o of bedrock d e p t h t o embankment h e i g h t ; 0 = Sr/S = 1 . 0 = r a t i o o f p o s t - p e a k t o peak s t r e n g t h s o f s u b s o i l ; P L/B = 5 = r a t i o o f l e n g t h o f l a t e r a l g e o m e t r i c confinement t o h a l f b a s e width o f embankment. An a b r u p t d r o p t o p o s t - p e a k s t r e n g t h s i m i l a r t o t h e t r e a t m e n t by Lo and Lee (16) was assumed. I t should be n o t e d t h a t t h i s i s n o t a r e s t r i c t i o n t o t h e a p p l i c a t i o n o f t h e proposed method.

Two s t r e n g t h p r o f i l e s , c a s e s L and H ( F i g . 3 ) , a r e c o n s i d e r e d . The c o n v e n t i o n a l f a c t o r s o f s a f e t y computed by t h e s i m p l i f i e d B i s h o p ' s method a r e , r e s p e c t i v e l y , 1 . 3 6 and 2 . 3 2 . Except when a c e r t a i n v a r i a b l e was under i n v e s t i g a t i o n , t h e s e d a t a were m a i n t a i n e d t h r o u g h o u t t h e s t u d y .

The c o n s t r u c t i o n p r o c e d u r e was s i m u l a t e d by i n a c t i v a t i n g and r e a c t i v a t i n g e l e m e n t s r e p r e s e n t i n g t h e embankment. I n a c t i v a t i o n c o n s i s t s o f s e t t i n g t h e s t i f f n e s s o f t h e i n a c t i v e e l e m e n t s t o a n e a r z e r o v a l u e and p r e s c r i b i n g z e r o d i s p l a c e m e n t t o t h e i n a c t i v e nodes. During r e a c t i v a t i o n , i . e . , s i m u l a t i n g t h e a d d i t i o n o f a new l a y e r o f embankment m a t e r i a l , t h e a p p r o p r i a t e i n a c t i v e e l e m e n t s and nodes a r e r e s t o r e d t o t h e i r o r i g i n a l b e h a v i o r . F u r t h e r d e t a i l s a r e g i v e n i n r e f . (14). The t o t a l number o f nodes and c o n s t a n t s t r a i n t r i a n g u l a r e l e m e n t s used a r e , r e s p e c t i v e l y , 234 and 407.

DETERMINATION OF THE DISTANCE OF LATERAL CONFINEMENT

A f i n i t e dimension o f t h e problem must b e s p e c i f i e d i n t h e f i n i t e element method. I t would be p r e f e r a b l e t h a t t h i s s h o u l d conform c l o s e l y t o f i e l d c o n d i t i o n s . U n f o r t u n a t e l y , f o r embankment c o n s t r u c t i o n i n an open f i e l d , t h e l a t e r a l e x t e n t i s u s u a l l y t o o l a r g e t o b e accommodated i n t h e a n a l y s i s . Placement of a n a r t i f i c i a l l a t e r a l g e o m e t r i c

confinement a t a s u f f i c i e n t d i s t a n c e (L) i s g e n e r a l l y r e q u i r e d . From F i g . 4 , which shows t h e v a r i a t i o n o f t h e s u r f a c e s e t t l e m e n t a t t h e c e n t r e (6VC) and t h e h o r i z o n t a l d i s p l a c e m e n t a t t h e t o e (6HT) w i t h d i f f e r e n t assumptions o f l a t e r a l c o n f i n e m e n t , it would seem t h a t a v a l u e o f L/B e q u a l t o o r g r e a t e r t h a n 5 i s a d e q u a t e . S e t t l e m e n t p r o f i l e s w i t h d e p t h a l o n g t h e c e n t r e l i n e and t h e e x t e n t of t h e zone of

(10)

SHEAR INDUCED ANISOTROPY

LATERAL GEOMEtRIC CONFINEMENT

SUBSOIL EMBANKMENT

-

PARAMnER

SYMBOL

SYMBOL

VALUE

COHESION Su AS SHOWN C f 0.05 kglcm2 ON RIGHT FRICTION ANGLl #, "f 35" DENSITY 7, 1.7btlm3 y , 2.0tlrn3 MODULUS E 240 kglcm2 Ef 240 k g k m 2 POISSON'S u s 0.49 v f 0.40 RATIO - C FIGURE 3

Basic p a r a m e t e r s and symbols employed i n t h e numerical a n a l y s e s

0 0 2 4 6 8 10 LENGTH O F CONFINEMENT. L I B I I I __oC-- 9-

-

..*I\

-

,*

8,,/H. C A S E L

-

-

z/Oe

-

-

0-

-

A d -

-

B H T I H , C A S E H

-

I I I I I I I I I FIGURE 4

E f f e c t o f l a t e r a l geometric confinement on computed deformations

t h e peak s t r e n g t h ) have been examined. The r e s u l t s a l s o s u b s t a n t i a t e t h e same L / B v a l u e . I t i s o f i n t e r e s t t o n o t e t h a t t h i s c o n d i t i o n h a s seldom been imposed i n s i m i l a r numerical a n a l y s e s .

(11)

EMBANKMENT

I

D I H

-

10

----

8

---

5

. . . .

.

.

.

.

.

..

2 FIGURE 5 Zones of l o c a l f a i l u r e a t d i f f e r e n t bedrock depths (case L) D I H FIGURE 6

Surface s e t t l e m e n t s a t v a r i o u s value of bedrock depths (case

EFFECT OF BEDROCK DEPTH

Figure 5 d e p i c t s t h e r e l a t i v e e x t e n t of

t h e

Z.L.F. under v a r i o u s D/H r a t i o s . With g r e a t e r depth t o bedrock, a l a r g e r Z.L.F. r e s u l t s .

The surface settlement

at

t h e centre f o r t h e v a r i o u s values

of

D/H i s shown i n F i g . 6. It i s s i g n i f i c a n t t o n o t e that f o r a low s a f e t y

factor t h e settlement at D/H = 10 is 4.5 times greater than

when

O / H = 2. This clearly illustrates t h e j o i n t e f f e c t

of

t h e thickness of

(12)

SHEAR INDUCED ANISOTROPY

COEFFICIENT OF EARTH PRESSURE AT REST, KO

FIGURE 7

Embankment performance a t d i f f e r e n t KO (Case L)

EFFECT OF KO

The v e r t i c a l s t r e s s and t h e assumed v a l u e o f KO c o n t r o l t h e i n i t i a l s h e a r s t r e s s e s i n t h e f i e l d . Coupled w i t h t h a t induced by t h e imposed l o a d , t h e r e s u l t a n t s h e a r w i l l d e t e r m i n e t h e e x t e n t o f t h e Z . L . F . The a n a l y s e s i n d i c a t e t h a t when KO d e c r e a s e s o r t h e i n i t i a l s h e a r i n c r e a s e s , t h e Z.L.F. s p r e a d s a p p r e c i a b l y , p a r t i c u l a r l y i n t h e downward d i r e c t i o n . T h i s may have a s t r o n g i n f l u e n c e on t h e immediate g e n e r a t i o n of p o r e w a t e r p r e s s u r e and i t s subsequent d i s s i p a t i o n , which i n t u r n i n f l u e n c e s t h e t i m e r a t e o f s e t t l e m e n t and change o f s o i l r e s i s t a n c e .

F i g u r e 7 shows t h e r e l a t i v e magnitudes o f Z.L.F., hVC, and hHT a s normalized by t h e q u a n t i t i e s computed w i t h KO = 1 . The a p p a r e n t e f f e c t o f KO i s c l e a r l y d e m o n s t r a t e d .

(13)

TRAPEZOIDAL LOADING 0 . 6 0 . 4

"*

0. 2 ( a ) VERTICAL SIRESSES r 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 FIGURE 8

xlB

D i s t r i b u t i o n o f induced E t l E S s t r e s s e s a t t h e embankment-

-

s u b s o i l i n t e r f a c e ( c a s e H) 0. 1

.

.

.

.

. . . .

1.0

EFFECT OF EMBANKMENT RIGIDITY

Embankment r i g i d i t y g e n e r a l l y s e r v e s t o s p r e a d t h e v e r t i c a l l o a d on t h e f o u n d a t i o n ( F i g . 8 a ) . The t r a p e z o i d a l d i s t r i b u t i o n r e p r e s e n t s t h e l o a d i n g s i t u a t i o n w i t h z e r o embankment r i g i d i t y . In a l l o t h e r c a s e s , some o f t h e s t r e s s e s a r e t r a n s f e r r e d towards t h e t o e . Thus s h e a r s t r e s s i s i n t r o d u c e d a t t h e i n t e r f a c e ( F i g . 8 b ) . No

s i g n i f i c a n t d e v i a t i o n from t h i s o b s e r v a t i o n can be d e t e c t e d with d i f f e r e n t v a l u e s f o r P o i s s o n ' s r a t i o o f t h e embankment m a t e r i a l .

Concern o v e r t h e p o s s i b i l i t y of induced t e n s i l e s t r e s s e s and hence t e n s i o n c r a c k s , h a s been e x p r e s s e d ( e . g . r e f . 1 3 ) . T h i s concern stems from t h e o b s e r v a t i o n o f t e n s i l e s t r a i n a t t h e i n t e r f a c e

( e . g . r e f . 1 9 ) . To p u r s u e t h i s p o i n t , t h e d i s t r i b u t i o n o f t h e e x t e n s i o n s t r a i n and t h e r e s u l t a n t minor p r i n c i p a l s t r e s s e s a t t h e i n t e r f a c e have been s t u d i e d . In s p i t e o f t h e p r e v a l e n t e x t e n s i o n s t r a i n which v a r i e s from about 0.15% t o 0.05% from t h e c e n t r e l i n e t o n e a r t h e t o e , t h e minor p r i n c i p a l s t r e s s e s remain compressive

t h r o u g h o u t . The a d v e r s e p o s s i b i l i t y o f t e n s i o n c r a c k s w i l l n o t a r i s e i n t h e s e c a s e s .

The v a l u e s o f bVC and bHT a t d i f f e r e n t embankment r i g i d i t i e s a r e shown i n F i g . 9. In g e n e r a l t h e d e v i a t i o n i s s m a l l and l i e s w i t h i n 10%.

(14)

SHEAR INDUCED ANISOTROPY

I-

G V C I H . E f l E S

-

0 7. 6 DISPLACEMENT 3.0 2 . 8 6. 8 2 . 2 1 10 100 FIGURE 9 E f f e c t o f embank- ment r i g i d i t y on t h e computed d e f o r m a t i o n s ( c a s e L)

EFFECT OF POST-PEAK STRENGTH

R e s u l t s o f a n a l y s e s o f t h e r a t i o s o f p o s t - p e a k t o peak s t r e n g t h s e q u a l t o 0 . 7 5 , 0 . 9 and 1 . 0 show t h a t t h e r e i s a tendency f o r t h e zone t o s p r e a d l a t e r a l l y w i t h lower p o s t - p e a k s t r e n g t h ( F i g . 1 0 ) . A

d e c r e a s e i n p o s t - p e a k s t r e n g t h o f 25% may i n c u r a change o f 50% t o 90% i n t h e computed d e f o r m a t i o n and a r e a of Z.L.F.

PROPOSED METHOD VERSUS ELASTIC METHOD

The o r d i n a r y e l a s t i c f i n i t e element method ( e . g . r e f . 2 ) i s i n a c c u r a t e when t h e f a c t o r o f s a f e t y i s low ( c a s e L, F i g . 3 ) . I t i s o f i n t e r e s t , t h e r e f o r e , t o a s s e s s t h e e r r o r s r e s u l t i n g from t h e u s e o f such a method.

F i g u r e 11 shows t h e change o f t o t a l v e r t i c a l and h o r i z o n t a l s t r e s s e s a l o n g t h e c e n t r e l i n e computed by t h e proposed and t h e o r d i n a r y e l a s t i c methods. The same s e t o f i n p u t d a t a was used i n b o t h a n a l y s e s e x c e p t t h a t peak and p o s t - p e a k s t r e n g t h s were g i v e n i n t h e proposed method. The v e r t i c a l s t r e s s e s a g r e e c l o s e l y n e a r t h e t o p b u t d e v i a t e s l i g h t l y a t g r e a t e r d e p t h s . The h o r i z o n t a l s t r e s s e s computed by t h e proposed method however a r e a p p r e c i a b l y h i g h e r t h r o u g h o u t t h e Z.L.F. T h i s i s u n d e r s t a n d a b l e a s , when t h e change o f v e r t i c a l p r e s s u r e i s r e l a t i v e l y i n s e n s i t i v e t o t h e s t r e n g t h p r o f i l e , t h e h o r i z o n t a l p r e s s u r e i s l a r g e l y c o n t r o l l e d by t h e a v a i l a b l e p o s t - p e a k s h e a r r e s i s t a n c e . T h e r e f o r e t h e lower t h e r e s i s t a n c e , t h e h i g h e r w i l l be t h e h o r i z o n t a l s t r e s s . S u r f a c e s e t t l e m e n t s a t t h e c e n t r e l i n e and h o r i z o n t a l d i s p l a c e m e n t a t t h e t o e a r e compared i n F i g u r e 12. The l a r g e d i s c r e p a n c y (up t o 400%; f o r a d e c r e a s e o f 25% i n t h e p o s t - p e a k s t r e n g t h from t h e peak should be n o t e d .

(15)

2.0 1 1 1 1 1.8

-

Ln Y

-

+

-

1.6- C Z u 3 0 a 1.4- W C 3

...

'\

CL 5

'..

\ \

z

...

\ 0 1 . 2 -

...

\

-

U Y o QUANTITIES (NORMALIZED o

-

BY THOSE FROM S I S = 1) 1.0- C r P 4

w

-

AREA OF ZONE OF LOCAL FAILURE

FIGURE 10 Performance o f f o u n d a t i o n a t v a r i o u s v a l u e s o f p o s t - p e a k s t r e n g t h s ( c a s e L) HORIZONTAL MOVEMENT AT TOE

.

. .

.

.

. .

k 8

t

---

SURFACE SEITLEMENT AT CENTRE

1

CONCLUSIONS

A f i n i t e element method i s proposed t h a t t a k e s i n t o account

s h e a r - i n d u c e d a n i s o t r o p y and w o r k - s o f t e n i n g c h a r a c t e r i s t i c s . The f o r m u l a t i o n i s based on t h e o b s e r v a t i o n o f t h e development o f a f a i l u r e p l a n e when s t r e s s e d beyond t h e peak. The method h a s been a p p l i e d t o t h e s t u d y o f embankments founded on such s o i l s and t h e f o l l o w i n g o b s e r v a t i o n s may be made:

1. The geometric confinement u s e d i n a f i n i t e element a n a l y s i s should c o v e r a d i s t a n c e n o t l e s s t h a n 5 t i m e s t h e h a l f b a s e width o f t h e embankment i f it i s t o s i m u l a t e f i e l d c o n d i t i o n s .

2 . The deeper t h e bedrock, t h e l a r g e r i s t h e zone o f l o c a l f a i l u r e and t h e more s e v e r e t h e d e f o r m a t i o n .

3. For an embankment c o n s t r u c t e d a t a low f a c t o r o f s a f e t y ( 1 . 3 ) , lower KO g i v e s a l a r g e r zone o f l o c a l f a i l u r e and h i g h e r d e f o r m a t i o n s .

4 . The e f f e c t o f embankment r i g i d i t y i s small f o r t h e c a s e s s t u d i e d . I t t e n d s t o s p r e a d t h e v e r t i c a l l o a d more e v e n l y and i n t r o d u c e s s h e a r s t r e s s a t t h e embankment-subsoil i n t e r f a c e . No t e n s i l e s t r e s s e s a r e d e t e c t e d a t t h e i n t e r f a c e .

(16)

SHEAR INDUCED ANISOTROPY C H A N G E OF T O T A L S T R E S S , A o l y . H

---

ELASTIC ANALYSIS

-

PROPOSED METHOD S IS = 1.0 r P

. . .

.

. .

.

PROPOSED METHOD SJS- = 0.75 ' I 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 FIGURE 11 Comparison o f computed s t r e s s e s by d i f f e r e n t m e t h o d ? ( c a s e L)

"bAuH

; c 3 . 0

p"

{

a Y 5 \ : 1 4. D I I 6 . 0 1 I

I

- - --~-- - , L -~

.

5. P o s t - p e a k d e c r e a s e o f s t r e n g t h b e a r s an i m p o r t a n t e f f e c t on t h e b e h a v i o r o f t h e s u b s o i l , The zone o f l o c a l f a i l u r e , s u r f a c e s e t t l e m e n t and h o r i z o n t a l d e f o r m a t i o n may i n c r e a s e by 50% t o 9 0 % f o r a p o s t - p e a k d e c r e a s e o f s t r e n g t h of 25%. 6. The u s e of an e l a s t i c s o l u t i o n w i t h o u t r e d i s t r i b u t i o n o f s t r e s s e s r e s u l t i n g from l o c a l f a i l u r e w i l l i n t r o d u c e e r r o r s which i n c r e a s e I w i t h lower v a l u e s o f KO and p o s t - p e a k s t r e n g t h s .

The main b u l k o f t h e computer a n a l y s i s was performed w i t h t h e CDC 6 4 0 0 system a t t h e U n i v e r s i t y o f Western O n t a r i o u n d e r

Grant No. A7745 from t h e N a t i o n a l Research Council of Canada. The a s s i s t a n c e from t h e t e c h n i c a l and r e s e a r c h s t a f f . ~ a r t i c u l a r l v

(17)

SURFACE SETTLEMENT AT CENTRE

L

---

HORIZONTAL DEFORMATION AT TOE

1

FIGURE 12

Comparison o f computed deformation by d i f f e r e n t methods ( c a s e L)

0 . 5 0 0. 75 1.00

COEFFICIENT OF EARTH PRESSURE AT REST, KO

M. Bozozuk, of t h e Geotechnical S e c t i o n , D i v i s i o n of B u i l d i n g Research, i s g r a t e f u l l y acknowledged.

T h i s p a p e r i s a c o n t r i b u t i o n from t h e U n i v e r s i t y of Western O n t a r i o and t h e D i v i s i o n of Building Research, N a t i o n a l Research Council o f Canada, and i s p u b l i s h e d w i t h t h e approval o f t h e D i r e c t o r of t h e D i v i s i o n .

APPENDIX 1 . REFERENCES

(1) Bozozuk, M. and Leonards, G . A . , "The G l o u c e s t e r T e s t F i l l , " P r o c e e d i n g s , S p e c i a l t y Conference on Performance of E a r t h - Supported S t r u c t u r e s , ASCE, Purdue Univ., Vol. 1 , P t 1 , 1972, pp. 299-317.

(2) Clough, R . W . , and Woodward, R . J . , 111, "Analysis o f Embankment S t r e s s e s and Deformation," J o u r n a l of t h e S o i l Mechanics and Foundations D i v i s i o n , ASCE, Vol. 93, No. SM4, Proc. Paper 5329, J u l y , 1967, pp. 529-549.

( 3 ) Conlon, R . J . , " L a n d s l i d e s on The Toulnustouc R i v e r , Quebec," Canadian Geotechnical J o u r n a l , Vol. 3, 1966, pp. 113-144. (4) Crawford, C . B . , "Engineering S t u d i e s o f Leda Clay," S o i l s i n

Canada, Royal S o c i e t y Canada, S p e c i a l P u b l i c a t i o n NO. 3 , 1 9 6 1 , pp. 200-217.

(5) Crawford, C . B . , "Cohesion i n an Undisturbed S e n s i t i v e Clay," Geotechnique, I n s t i t u t i o n o f C i v i l E n g i n e e r i n g , London, Vol. 13, No. 2 , 1963,

pp.

132-146.

(18)

SHEAR INDUCED ANISOTROPY

(6) D e s a i , C . S . , "Overview, T r e n d s , and P r o j e c t i o n s , Theory and A p p l i c a t i o n s o f t h e FE Method i n G e o t e c h n i c a l E n g i n e e r i n g , " P r o c e e d i n g s , Symposium on A p p l i c a t i o n o f FE Method i n G e o t e c h n i c a l E n g i n e e r i n g , Vicksburg, Vol. 1 , 1972, pp. 3-90. (7) D e s a i , C . S . , "A C o n s i s t e n t F i n i t e Element Technique f o r Work-

s o f t e n i n g Behavior," P r o c e e d i n g s I n t e r n a t i o n a l Conference on Computational Methods i n N o n l i n e a r Mechanics, A u s t i n , Texas, 1974, pp. 969-978.

(8) D a s c a l , O . , T o u r n i e r , J . P . , Tavenas, F. and LaRochelle, P . , " F a i l u r e o f an embankment on S e n s i t i v e Clay

,"

P r o c e e d i n g s , S p e c i a l t y Conference on Performance o f E a r t h and E a r t h Supported S t r u c t u r e s , ASCE, Purdue Univ., Vol. 1 , P t . 1 , 1972, pp. 129-158. (9) F i l o n , L.N.G., "On t h e E l a s t i c E q u i l i b r i u m o f C i r c u l a r C y l i n d e r s

under C e r t a i n P r a c t i c a l Systems o f Load," P h i l o s o p h i c a l

T r a n s a c t i o n s o f t h e Royal S o c i e t y o f London, S e r i e s A, Vol. 198, 1902, pp. 147-233.

(10) Gould, J . P . , "A Study o f Shear F a i l u r e i n C e r t a i n T e r t i a r y Marine Sediments," P r o c e e d i n g s , Research Conf. on S h e a r S t r e n g t h o f Cohesive S o i l s , ASCE, Boulder, Colorado, J u n e , 1960, pp. 615-641. (11) Hoeg, K., " F i n i t e Element A n a l y s i s o f S t r a i n - S o f t e n i n g Clay,"

J o u r n a l o f t h e S o i l Mechanics and Foundations D i v i s i o n ,

ASCE, Vol. 9 8 , No. SM1, P r o c . Paper 8650, J a n u a r y , 1 9 7 2 , p p . 43-58. (12) Kenney, T.C. and A l i , M.S., d i s c u s s i o n o f " S t a b i l i t y o f N a t u r a l

S l o p e s i n S e n s i t i v e Clav." by C . B . Crawford and W . J . Eden. ~ o u E n a 1 o f t h e S o i l ~ e c h a n i c s and Foundations D i v i s i o n , ASCE, Vol. 94, No. SM5, S e p t . , 1968, pp. 1185-1190.

(13) Kenney

,

T. C .

,

"General Report on Embankments

,"

P r e s e n t e d a t t h e 26th Canadian G e o t e c h n i c a l Conference, Toronto, 1973.

(14) Law, K.T., "Analysis o f Embankments on S e n s i t i v e C l a y s , " T h e s i s p r e s e n t e d t o The U n i v e r s i t y o f Western O n t a r i o , London, O n t a r i o , i n 1974 i n p a r t i a l f u l f i l l m e n t o f t h e r e q u i r e m e n t s f o r t h e Degree of Doctor o f P h i l o s o p h y .

(15) Lo, K . Y . , "An Approach t o t h e Problem o f P r o g r e s s i v e F a i l u r e , " Canadian G e o t e c h n i c a l J o u r n a l , Vol. 9 , No. 4 , 1972, pp. 407-429. (16) Lo, K.Y. and Lee, C.F., " S t r e s s A n a l y s i s and S l o p e S t a b i l i t y i n

S t r a i n - S o f t e n i n g Clay," Gdotechnique, I n s t i t u t i o n o f C i v i l E n g i n e e r s , London, Vol. 23, March 1973, pp. 1 - 1 2 .

(17) Morgenstern, N.R. and Tchalenko, J . S . , " M i c r o s t r u c t u r a l O b s e r v a t i o n on S h e a r Zones from S l i p s i n N a t u r a l C l a y s , " Proceedings G e o t e c h n i c a l Conference, O s l o , 1967, Vol. 1, pp. 147-152.

(18) O s t e r b e r g , J . O . , "New P i s t o n Tube Sampler," E n g i n e e r i n g News- Record, Vol. 148, 1952, pp. 77-78.

(19) Tavenas, F.A., Chapeau, C . , LaRochelle, P. and Roy, M . , "Immediate S e t t l e m e n t s o f Three T e s t Embankments on Champlain Clay," Canadian G e o t e c h n i c a l J o u r n a l , Vol. 11, No. 1 , Feb. 1974, pp. 109-141.

(19)

(20) Zienkiewicz, O.C., and Cheung, Y . K . , The F i n i t e Element Method i n S t r u c t u r a l and Continum Mechanics, McGraw-Hill, London, 1967. (21) Zienkiewicz, O.C., V a l l i a p a n , S . , and King, I . P . , " S t r e s s

A n a l y s i s i n Rock a s a No-Tension M a t e r i a l , " Gbotechnique, I n s t i t u t i o n o f C i v i l E n g i n e e r s , London, Vol. 1 8 , March 1968, pp. 55-66.

APPENDIX 11. NOTATION

The f o l l o w i n g symbols a r e used i n t h i s p a p e r .

B , H = h a l f b a s e width and h e i g h t o f embankment, r e s p e c t i v e l y ; C = c o h e s i o n ;

D = bedrock d e p t h ;

E l , E 2 = moduli o f t h e i n t a c t and s o f t e n e d s o i l s , r e s p e c t i v e l y ; Ep, En = moduli p a r a l l e l and normal t o s h e a r p l a n e s , r e s p e c t i v e l y ;

h , t = t h i c k n e s s e s o f t h e i n t a c t and s o f t e n e d s o i l s , r e s p e c t i v e l y ; KO = c o e f f i c i e n t o f e a r t h p r e s s u r e a t r e s t ; L = l e n g t h of g e o m e t r i c confinement; Sp, Sr = peak and p o s t - p e a k s t r e n g t h s o f s o i l s , r e s p e c s i v e l y ; [Dl, [D'] = e l a s t i c i t y m a t r i c e s w i t h r e f e r e n c e t o t h e g l o b a l and l o c a l c o o r d i n a t e a x e s ; [TI = t r a n s f o r m a t i o n m a t r i x ; y = d e n s i t y ; 6VC = s u r f a c e s e t t l e m e n t a t t h e c e n t r e l i n e ; 6HT = h o r i z o n t a l movement a t t h e t o e ;

n

= r a t i o o f p o s t - p e a k t o peak s t r e n g t h s ; v = P o i s s o n ' s r a t i o :

4

= a n g l e of i n t e r n a l f r i c t i o n ; and a = normal s t r e s s . S u b s c r i p t s : f = embankment m a t e r i a l ; and s = s u b s o i l .

Figure

Table 1.  Summary of So11 Properties
Figure  5  d e p i c t s   t h e   r e l a t i v e   e x t e n t   of  t h e   Z.L.F.  under  v a r i o u s   D/H  r a t i o s

Références

Documents relatifs

Une fois démontrées la faisabilité et l’innocuité des autogreffes d’îlots par voie intramusculaire, cette 3 ème étude avait pour objectif d’évaluer la fonction

In this thesis research, broadening the study of short reach optical interconnects to include its potential to disrupt current technology trends could yield some

More precisely, one of the key ingredients that leads to the classification of the global minimizers for the Mumford-Shah functional is the fact that the blow-up limits are connected

 Octobre 2012- Juillet 2017 : Thèse sur l’incidence de la ménopause induite chez les patientes atteintes d’un cancer du sein, Division de Recherche Clinique,

Still according to this table, the branch-and-bound based discretization method addressed herein can find the global optimal design taking into account a limitation on the

To cite this version : Sahraoui, Halima and Mauclair, Julie and Baqué, Lorraine and Nespoulous, Jean-Luc What do pause patterns in non- fluent aphasia tell us about monitoring

In fact, during bimodal 3D point presentation, the head movement has improved the recognition rate of a set of expressions (neutral, anger, sadness) but not the others

Information is required on the time dependence of the maximum strcss and tensile strength to establish the dependence of bearing capacity on vehicle spccd. 'Thc m;~thcmatic:~l