• Aucun résultat trouvé

New architectured hybrid sol-gel coatings for wear and corrosion protection of low-carbon steel

N/A
N/A
Protected

Academic year: 2021

Partager "New architectured hybrid sol-gel coatings for wear and corrosion protection of low-carbon steel"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: hal-01473628

https://hal.archives-ouvertes.fr/hal-01473628

Submitted on 22 Feb 2017

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

New architectured hybrid sol-gel coatings for wear and

corrosion protection of low-carbon steel

Claire Lavollée, Marie Gressier, Julien Garcia, Jean-Michel Sobrino, Jean

Reby, Marie-Joëlle Menu, Stefano Rossi, Michele Fedel

To cite this version:

Claire Lavollée, Marie Gressier, Julien Garcia, Jean-Michel Sobrino, Jean Reby, et al.. New

archi-tectured hybrid sol-gel coatings for wear and corrosion protection of low-carbon steel. Progress in

Organic Coatings, Elsevier, 2016, 99, pp.337-345. �10.1016/j.porgcoat.2016.06.015�. �hal-01473628�

(2)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 16642

To link to this article : DOI:10.1016/j.porgcoat.2016.06.015

URL :

http://dx.doi.org/10.1016/j.porgcoat.2016.06.015

To cite this version : Lavollée, Claire and Gressier, Marie and Garcia,

Julien and Sobrino, Jean-Michel and Reby, Jean and Menu,

Marie-Joëlle and Rossi, Stefano and Fedel, Michele New architectured

hybrid sol-gel coatings for wear and corrosion protection of

low-carbon steel. (2016) Progress in Organic Coatings, vol. 99. pp.

337-345. ISSN 0300-9440

Any correspondence concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(3)

New

architectured

hybrid

sol-gel

coatings

for

wear

and

corrosion

protection

of

low-carbon

steel

Lavollée

Claire

a,b,∗

,

Gressier

Marie

a

,

Garcia

Julien

b

,

Sobrino

Jean-Michel

b

,

Reby

Jean

c

,

Menu

Marie-Joëlle

a

,

Rossi

Stefano

d

,

Fedel

Michele

d

aUniversitédeToulouse,UniversitéPaulSabatier,InstitutCarnotCIRIMAT,118RoutedeNarbonne,31062ToulouseCedex09,France bCETIM,Pôle“MatériauxMétalliquesetSurfaces”,52AvenueFélixLouat,CS80067,60304SenlisCedex,France

cCETIM,Pôle“MatériauxMétalliquesetSurfaces”,74RoutedelaJonelière,CS50814,44308NantesCedex3,France dDepartmentofIndustrialEngineering,UniversityofTrento,viaSommarive9,38123Trento,Italy

Keywords: Mildsteel Architecturedcoating Sol-gel Corrosionprotection Wear Abrasion

a

b

s

t

r

a

c

t

Thereplacementofexpensivestainlesssteelinvarioussocio-economicsectorssuchasmechanicalor alimentaryisanissuethatwouldbepossibletosolvebydevelopingaprotectivecoatingonlow-carbon steel.Intheseapplications,complexpiecesareincontactwithdifferentkindsoffluids,withorwithout particleswhenfunctioning.Consequently,theexpectedcoatingfunctionistoeffectivelyprotectthe equipmentfromcorrosion,abrasionanderosion.

Inthisworkthinhybridcoatingsobtainedbythesol-gelprocesshavebeendevelopedforcorrosion andwearprotectiononlow-carbonsteel.Thisinnovativesystemisconstitutedofalumino-silicateepoxy basedsol-gelcoatingsactingasbarrierlayerswhich,whenloadedwithzirconiaparticles,improvethe mechanicalproperties.Takingintoaccountthespecificityofthecarbonsteel,wedevelopedtwo architec-turedcoatingsdisplayingcorrosionandwearprotection.Theyarebuiltbysuperpositionofabi-layered hybridprimercoatingandamono-layeredzirconialoadedhybridcoating.Usingtwodifferent zirco-niacontents,30wt.%and40wt.%,thincoatingsof5and10␮mareachieved.Whatisofinterestisthat thecombinationofantiweartestsandEIStoevaluatetheinfluenceofabrasivewearonanticorrosion propertieshas,forthefirsttime,beendemonstratedonsuchthinhybridsol-gelcoatings.Thelossof corrosionprotectionofthelowerzirconialoadedcoatingwasattributedtotheformationoflocalized defectsafterremovalofmaterial.Onthecontrary,thehigherzirconialoadedcoatingdemonstratedan interestingcorrosionandwearbehaviorwiththeformationofacompactedlayeratthetopoftheouter layerprovidingabarriereffectagainstwaterandionpermeation.Tofurthercharacterizetheprotective systems,themorphologyandthemicrostructureofthecoatingswereinvestigatedbyscanningelectron microscopy.

1. Introduction

Variousprotectionsystemsareusedforcorrosionprotection ofmildsteel.Theuseoforganiccoatingsisoneofthemost com-monmethodsforcorrosionprotectionofindustrialcomponents. Accordingto the way theyare applied, paints can cause envi-ronmentalproblems.Thisisthecaseofliquidpaintscontaining volatileorganiccompoundsthethicknessofwhichrangefrom140 to600␮mdependingonthecorrosionrequirements.Water-based paintsarealsodevelopedbut stillcontainaresidualofsolvent.

∗ Correspondingauthorat:UniversitédeToulouse,UniversitéPaulSabatier, Insti-tutCarnotCIRIMAT,118RoutedeNarbonne,31062,ToulouseCedex09,France.

E-mailaddress:lavollee@chimie.ups-tlse.fr(L.Claire).

Toovercomeenvironmentalconcerns,apowdercoatingprocess is usedin theindustry tocoat and protect metalsurfaces.The mostcommonlythermosettingresinpowdersusedarepolyesters, epoxy,epoxypolyesters[1–3].Thesecoatingsareappliedinone layer(60–80␮m)ortwolayers(160–200␮m)dependingonthe exposureconditionsandtherequireddurability.Recently, Monte-mor[4]described,inareview,differentfunctionalcoatingsand especially siloxane-modified epoxy coatingsdeposited onsteel [5–7] which significantly improve conventional epoxy coatings properties.Anotherprocessusedinindustrialsectorsisa protec-tivethinlayerelectrodeposited[8](15–25␮m),butdespitegood corrosionresistancetosaltspraytest,additivespresentinthebaths suchasco-solvents and heavymetals cancause environmental problems.

(4)

Theseprotectivesystemspresenthighthicknessesorevenshow limitationssuchasthepresenceofco-solvents,heavymetalsor volatileorganiccompounds.Asuitabletechniquetocombinehard andpliantmaterialsisthesol-gelprocess,wherethehydrolysisand condensationreactionsofinorganicalkoxidesprovideaninorganic networkafterappropriatethermaltreatment.Whenorganosilanes areinvolvedintheprocess,ahighlycross-linkednetwork contain-ingorganicandinorganicpartsisformed.Thesematerialsareof interestbecausetheycombinebothpropertiesoftheorganic poly-merandtheinorganicmaterials.Thehardnessandtheflexibility ofthecoatingcanbeadjustedbytheamountofinorganic com-pounds(alumina,silica...)aswellaspolymerizablegroups(e.g. epoxy,vinyl,methacrylate)fortheformationofadensenetwork. Moreoverthechemicalcompatibilitywithorganicpaintsfacilitates theadhesionofthecoatingtothesubstrateandtheintroduction of corrosion inhibitors suchas cerium(III) salts improves coat-ingperformancesagainst corrosion[9,10]. Finally,thehardness andmechanicalresistanceoftheorganic-inorganichybrid coat-ingscanbeincreasedbynanoparticlereinforcement.Amongthe well-describedcoatingscontainingoxidenanoparticleswhichare essentiallydepositedonaluminumalloys,somepapersdealwith coatedsteelrelatingtodifferentnanoparticlese.g.Zn[11], Mont-morillonite[12],Al2O3 [13,14],ZrO2 [15,16], SiO2 [14,15,17,18]

distributedinthehybridmatrix.Theintroductionofthe nanoparti-cleswithinthehybridsolmaybedoneeitherasnanoscalepowder [15],synthesizedin-situ[16]orcolloidalsuspension[18].

Theperformanceofacoatinginanabrasiontestdependson theintrinsicpropertiesofthecoatingmaterialaswellasthefilm thicknessandtheadhesionofthesol–gelcoatingtothesubstrate. Forexample,theoptimalamountofparticlesincorporatedinthe coatingsclearlydependsonitssol-gelmatrix.Thisishighlighted byGrundwürmeretal.[19]whodemonstratedthattheaddition ofzirconiananoparticlescouldeitherhaveapositiveornegative effectontheerosionperformances.Wilkesetal.[20].explainedthat sol-gelcoatingsappliedonvarioussubstrates,e.g.copper,brass andstainlesssteelareeffectiveinwearcontrolbuthaveapoorer performanceontheplainsteel,duetoalowerlevelofadhesionto thesubstrate.

Theaimedprotectivecoatingsrequiregoodresistanceto corro-sionandabrasion.Indeed,mechanicaldamagecanlocallyresultin thereductionoftheprotectivepropertiesofacoatingand,thus,a corrosionattackofthesubstratemightoccur.Hence,thenecessity toevaluatetheresistancetotheabrasionofthecoatingsystemsis achievedbyabrasiveweartests.Thesetestshavelimitationsinso farastheydonotdetermineaprecisevalueoftheprotective capac-ity,buttheydoallowtheperformanceofcomparativetestsamong thedifferentcoatingsystems.Themostinterestingabrasivewear testoncoatingistheTabertest[21],initiallydevelopedto evalu-atetheresistanceofthickorganiclayers[1–3],andlessappliedto othersol-gelcoatedsystems[16,20].

Wear and corrosion properties are usually independently investigatedsothattheinfluenceofmechanicaldegradationon corrosion coatings performance is not well-correlated. During mechanicaldamageaction,andtakingthicknessdecreaseandmass lossintoconsideration,asindicatedinthestandard,insufficient informationcanbeextrapolatedaboutthedamageofthecoating anditsresidualprotectiveproperties.Inthissense,atestprocedure hasbeendevelopedtoevaluatethedecreaseofprotective prop-ertiesbymeansofelectrochemicalimpedancespectroscopy(EIS), afterTaberAbraserstandardtest[1].

Todate,particle-reinforcedhybridsol-gelcoatingson corrod-ingmaterialssuchascarbonsteelshavebeenpoorlydeveloped. Oneofthestrategicissuesofthistechnologyishowthesol-gelcan beformulatedtoobtainbothhighcorrosionandabrasionresistant coatingsonmildsteel.Thissystemshouldcombinethebarrier

pro-Table1

Chemicalcompositionoflow-carbonsteel(Febalance).

Element C Mn Ni Cr Mo

Mass% 0.047 0.26 0.010 0.016 ≤0.005

tectioneffectofhybridsilicatedandceriumdopedcoatingswith thereinforcingactionofnanoparticles.

Theaimofthisworkwastodesigntwoinnovativearchitectured systemscombiningbi-andmonolayercoatings,theouterlayerof whichcontainszirconiananoparticles.Abrasiondegradationofthe architecturedorganic-inorganicsol-gelcoatingscausedbyTaber Abraserwasevaluated.Electrochemicalimpedancemeasurements andmicrostructuralanalysiswereundertakentoevaluatethe per-formanceoftheprotectingsystems.Thetwoarchitecturedsystems havebeencomparedandthebestanticorrosiveperformancesof suchsol-gelcoatingshavebeenhighlighted.

2. Experimentalprocedure

2.1. Samplepreparation

The metal substrates are panels of low-carbon steel 100mm×100mm×1mm the composition of which is given inTable1.Themetalsubstrates,aftersurfacecleaningwith ace-tone,werepre-treatedfollowingthesetwosteps:5minimmersion in NaOH,1.125molL−1 alkaline degreasing solutionmaintained at60◦Ctoremovealltracesofoilfollowingby5minimmersion inhydrochloricacid(5.5molL−1)at roomtemperature inorder toremoveoxidesorcompoundsonthesurfaceofthesampleand improvewettability.Samplesarefinallywashed inethanol and driedinair.

2.2. Solandcoatingpreparation

Glycidoxypropyltrimethoxysilane (GPTMS), aluminum iso-propoxide (AIP, ≥98%) and cerium nitrate hexahydrate (Ce (NO3)3,6H2O)areobtainedfromAldrich,polyethyleneglycolPEG

35000 is obtained from Fluka, zirconia nanoparticles (TOSOH, 40nm) were purchased from IMCD. The size of the TOSOH nanoparticleshasbeencontrolledbyFEG-SEMobservation. Zirco-niananoparticlesweresuspendedina1:25v:vwater:isopropanol mixture.Allothersreagentswereusedasreceived.

S0solformulationoftheprimerlayerwaspreparedbymixing GPTMS(5.94g,0.0251mol)andAIP(3.6g,0.0176mol)inamolar ratioof1.7,inisopropanol11.25mL(0.1479mol).Ceriumnitrate hexahydrate(1.00g,0.0023mol)wasdissolvedindistilledwater (25.8g,1.43mol)andthenaddedtothepreviousmixture.Thesol waspreparedforafinalvolumeof46.1mL.Itwasmaturatedduring 24hatroomtemperature.Aftermaturation,theviscosityoftheS0 formulationis7mPa.s.

FortheS1andS2zirconiananoparticlesloadedsols,firstGPTMS (9.52g,0.0403mol)andAIP(2.4g,0.0118mol))inamolarratioof 3.4,aremixedinisopropanol7.5mL(0.0986mol).Aqueoussolution ofceriumnitratehexahydrate(0.67g,0.0015molin6g,0.33mol ofwater,0.05molL−1)wasaddedtothesolwhichisvigorously stirred.ThenPEG35000(0.61g)dilutedindistilledwater 6mL) atafinalconcentrationof20gL−1wasaddedtothesol.Thesol wasmaturatedduring24hatroomtemperatureandthenXmLof solwasintroducedinthezirconiasuspensionscontaining13.6or 20.7gin25.9mLof1:25v:vwater:isopropanoltogiveS1andS2 solscontaining30wt.%and40wt.%ofZrO2nanoparticles,

respec-tively.Aftermaturation,theviscosityoftheS1andS2formulations reaches12and18mPa.srespectively.

Twoarchitecturedcoatingswereproducedbyadip-coating pro-cedureatacontrolledwithdrawalrateof20cmmin−1.Theywere

(5)

Fig.1.C1coatingafter1000cyclesabrasiontest.

composedofabi-layerscoatingusingS0sol,andazirconialoaded mono-layercoatinginvolvingS1(30wt.%)and S2(40wt.%)sols respectively,toprovideC1andC2architecturedcoatings.To elab-oratethesemulti-layeredsystems,thecoatingwasdriedaftereach dip1hat50◦Cthenthefinalheattreatmentwasprocessed50◦C for30minand150◦Cfor4h.

2.3. Characterizationofthesolsandthecoatings

TheviscosityofthesolsweremeasuredwithaRheomatRM100 rheometerforshearingratesrangingbetween644and966s−1.The thermalanalysisofthesolsandthexerogelswereperformedusing thedeviceSETARAM(TG-DTA92).Microstructuralpropertiesand coatingsthicknesswereobservedbyscanningelectronmicroscopy (SEM)withaJEOLJSM-6400SEMinstrument,byusingan environ-mentalscanningelectronmicroscopeTMPESEMFEI(ESEMPhilips XL30)andbyaJEOLJSM-6700F-EDSFEG-SEM.Theabrasiontests werecarriedoutwithaTaberAbraser5135usingabrasivewheels calledCS10wheels(smallabrasiveparticles,whichsimulatesthe effectofpolishingorcleaning),anappliedloadof250g;theentire testconsistedof1000cycles[18].Duringtheabrasiontesting,the wheelswererefacedaftereverystep abrasioncycles. The elec-trochemicalset-upexploitedtocarryouttheEISmeasurements consistedin a“mobile cell”[3] allowedtoinvestigatethe elec-trochemicalresponseoftheprotectionsystemaftereachabrasion step.

The“mobilecell”consistsintwoconcentricPVCcylinderswhich aredesignedtodelimitatetheTabertrack.Thecylindersarenot gluedtothesurfaceofthemetalbutarepressedtoonitbymeans offourscrewsconnectedtoanexternalframework.Theedgeofthe cylindersincontactwiththemetalarecoatedwithasilicongasket topreventtheelectrolytespread.AftereachEISmeasurement,the cellwasremovedandthesampleunderwentanewabrasionstep. Thetestedarea(about37.5cm2)includedthewholeabradedarea

whichconsistsofanapproximately1cmthickring,indicatedFig.1 bythedottedline.

Toavoidtheinfluenceofpossiblewateruptake,aftereveryEIS testthesamplewastreatedfor10minat45◦Ctoinducewater evaporationandcooled10minatroomtemperature.EIS measure-mentswerecarriedoutattheinitialstep(0cycle)andafter100and 1000cyclesusingaPAR273potentiostatandaSolartron1255 fre-quencyresponseanalyzerinthefrequencyrangebetween100kHz and10mHz,witha20mVamplitudesignal,atthefreecorrosion potential.Acounterelectrode ofplatinumanda reference elec-trodeofAg/AgCl(+207mVvsSHE)wereused.Theelectrolytewas

a0.3wt.%Na2SO4solution.Suchamildmediumhasbeenemployed

astheaimistoinvestigatetheabrasionresistanceofthecoatings. Forthispurpose,EIShasbeenexploitedinordertomonitorthe decreaseofprotectionpropertiesofthecoatingspromotedonly bythemechanicalactionoftheabrasivewheels.Inthissense,the useofaggressivesodiumchloridecontainmediawouldlead to an“additional”extentofdegradationnotrelatedtowearprocess. ZSimpwinsoftwarewasemployedforthenumericalfittingofthe experimentalspectra.

Eachexperimentwasrealizedintriplicateandwasrepeatable.

3. Resultsanddiscussion

3.1. Architecturedcoatings

Architecturedsystemsinvestigatedin thisstudyare builtby superpositionof a bi-layeredhybridprimer coatingand mono-layered zirconia loaded hybrid coating. As recently reported, anticorrosion protections of steel substrates are obtained from anorganic-inorganichybrid,mostofteninvolving tetraethoxysi-lane(TEOS)associatedwith3-methacryloxypropyltriethoxysilane (MAP) or methyltriethoxysilane (MTES) and rarely with 3-glycidoxypropyltrimethoxysilane(GPTMS)[22].Mechanical prop-erties are improvedwhen aluminium alkoxide [23] or zirconia nanoparticles[15]areintroducedintheformulation.Inourwork thesolformulationswerebasedon glycidoxypropyltrimethoxysi-lane(GPTMS)andaluminumiso-propoxide(AIP)inisopropanol. Ceriumnitrateinaqueoussolutionwasintroducedasaninorganic corrosioninhibitor[24,25].Asstudiedinourpreviouswork[27] involvingGPTMS-AIPformulations,improvedcorrosionproperties wereobservedwhentheSi/Alratiowasintherange1and2so aSi/Alratioequalto1.7hasbeenusedforthebi-layeredprimer coating.S0solformulatedfromthesethreecompoundswas mat-urated24hatroomtemperature.Dip-coatingprocedureoftwo S0soldepositsonmildsteelsubstratewasfollowedbyathermal treatmentgivingabi-layeredhybridprimercoating.

Inordertoobtainthickerdeposits,S0formulationwas investi-gatedgivingS1andS2solswhichwillconstitute,afterdeposition, theoutermono-layer.TheSi/Alratiowaschosenequalto3.4to increasetheorganicpart,PEG35000wasincorporatedasa plasti-cizertoincreasetheviscosity[26]andzirconiaparticleswereadded toprovideareinforcementofcorrosionandmechanical proper-ties.S1andS2formulationscontain30wt.%and40wt.%ofZrO2

nanoparticlesrespecttothetotal sol,respectively.Before depo-sition solswerematurated24hat roomtemperature.Theheat treatmenthasbeendeterminedbythermalanalysisofthe xero-gelswhichshowstwomaintrends(seeSupplementarymaterial, Fig.1).Thepresenceofastableanddensifiedmaterialupto250◦C andtheslowdegradationoforganicmatterfrom250◦Cto600◦C. Therefore,inordertopreservetheorganicpartofthearchitectured coating,itwasdriedat50◦Cfor30minandthentreatedat150◦C for4h.

Consideringthesurfaceroughnessofthemildsteelintherange 0.8–1␮maftercleaningandthelowsolviscosityofS0 formula-tionaround7mPas,theprimerwasdepositedasabi-layeredthe thicknessofwhichreachesamaximumof4␮m,dependingonthe surfaceroughness.Thisprimercoatingishomogeneous,crack-free, coveringandlevelingthesubstrate.Thethicknessoftheouterlayer variesfrom2to3␮mto8␮minagreementwiththedifferent con-tentsofzirconiananoparticles,thehighertheamountofparticles inthesol,thethickerthecoating.Thisiswellillustratedbyelectron micrographsofthecross-sectionofthetwoundamagedsystems, reportedinFig.2,wherethethicknessofthetotalarchitectured systemsreachs5␮mand10␮mforC1andC2respectively.Both samplesexhibitananocompositeouterlayerconstitutedof

(6)

zirco-Fig.2. (a)SEMimageoftheC1architecturedsystemand(b)ESEMimageoftheC2architecturedsystemsbeforeabrasioncycles.

niananoparticlesembeddedinalumino-silicatedmatrixwithsome aggregatesofnanoparticles(Fig.2aandb).

ArchitectureoftheC1andC2coatingsiswellhighlightedin theseimageswiththedifferenceincontrastbetweenthemostly hybridpartoftheprimercoatingandthezirconiapartoftheloaded layer.ForbothC1andC2coatings,anextremelygoodcohesionof bothlayers,hybridandloaded,isdemonstratedheretakinginto considerationthattheseimagesareobtainedbyliquidnitrogen brittlefracturemethodforthepreparationofthesamplesforSEM andESEMobservations.

3.2. InfluenceoftheZrO2contentonthemorphologydamage

Inthissection,theTabertestsresultsaredescribedforthetwo zirconiacontentsloadedcoatingswithanimposedweightof250g andCS10abrasivewheels.Thethicknesswasmeasuredin corre-spondencetotheabrasiontrackafter100and1000cyclestogether withtheobservationofthemorphologyofthedamagedareas.Fig.3 showstheelectronmicrographsofthecross-sectionofthecoatings asliquidnitrogenbrittlefracture.Comparingtheevolutionofthe thicknessofbothcoatings,C1andC2coatingsdidnotexhibitthe samebehaviortowardtheappliedTabertest.ConcerningtheC1 coating,onecanseeaveryslightdecreaseofthecoatingthickness after100abrasioncycles(Fig.3a)andevenafter1000abrasion cycles(Fig.3b) wherethe thicknessstill remainsaround 5␮m. TheC2coatingbehaviorisdifferentsincethethicknessdecreases from10␮mto8␮mafter100cyclesuntil5␮mafter1000abrasion cycles(Fig.3dande)dependingontheareapositioninthetrack.

Surprisingly,theseabrasion conditionsare severeenoughto induceseriousmechanicaldamagebutnotenoughtoremovethe coating.However,advancedmicroscopicinvestigationsofthecross sectionoftheabradedsurfacesafter1000abrasioncyclesreveal thatbothcoatingsaredamaged,butdeeperdefectsaredetectedin thelowerzirconialoadedcoating.Atotalremovaloftheouterlayer isobservedinsomeareasforC1coatingasillustratedinrightside ofthismicrograph(Fig.3c)whereonlythenon-damagedprimer coatingispreservedwith2␮m thickness.Onthecontraryonly compactionoftheoutermono-layerisobservedfor thethicker C2coating(Fig.3e).Tocompletemicroscopiccharacterization,the surfaceofthedamagedcoatingwasinvestigated.Fig.4showsSEM imagesofthedamagedsurfacesaftertheabrasiontest.Decreasing thezirconiacontentleadstotheformationoflocalizeddefectsin theshapeofpunctualdefects(Fig.4a).Ahighermagnificationofthe imagecorrespondingtotheC1coatingabradedsurfaceshowsthe removaloftheouterlayer(Fig.4b)providingbareprimercoating. Evidenceofthepreservationofthehybridprimeronthemetallic substrateisdemonstratedbytheabsenceofthesubstrate topog-raphy.The C2coatingpresents anothermorphologyof damage

(Fig.4d)withanheterogeneoussurfacehighlightedbythedifferent contrastareaswhenobservinginsecondaryelectronmode.High relief,whichappearsclearerinthemicrograph,isattributedtoa highercoatingthickness,whereaslowrelief,whichappearsdarker inthemicrograph,isattributedtoalowercoatingthickness.To bet-tercharacterizethesetwocontrastedareas,FEG-SEMobservations havebeenundertakeninbothrelevantareasinthetrack,indicated bytheredsquare(Fig.4e).Asalreadyobservedinthemicrographof thecrosssection,thepresenceofzirconiananoparticlesinthelower thicknessareawasconfirmedathighermagnification(Fig.4f).The sameconclusionwasreachedafterobservationoftheclearestarea (seeSupplementarymaterial,Fig.3).

It isworth notingthat during abrasiontesting, theC2 coat-ingiscompressedundertheactionoftheloadandacompacted layer is formed. Fig. 5a clearly shows the presence of a com-pactedlayerattheextremesurfacefollowingtheabrasioncycles asevidenceofthemechanicalactionoftheabrasivewheels.SEM microscopyobtainedbyback-scatteredelectrondetectionmode (Fig.5b)allowedustoestimatethecompactionthicknessofabout 2␮moftheouterlayer.

The effectof zirconia loadingshows a cleardependency on damagelevelsofthecoatingsduringabrasioncycles.Giventhe experimentaldata,itispossibletoconcludethatdependingonthe anti-wearprotectivesystem,abrasiveparticlesofthewheelwill havedifferentactions.Theywilleitherproduceaseriesoflocalized defectswiththinnercoatings,orallowtheformationofacompact andprotectiveouterlayerbymechanicalabrasion.

3.3. InfluenceoftheZrO2contentonthecorrosionbehavior

Theelectrochemicalpropertiesofthecoatingwereevaluated fromthebeginning ofthetest and atintermediate stages.This wasdoneinordertofollowtheprogressivemechanicaldamage tothesamesampleandtoavoidtheinitialdifferences.Because theaimofthisexperimentisnottosimulatearealcorrosive envi-ronmentbuttoevaluatethelossofprotectionpropertiesdueto theabrasionactionoftheabrasivewheels,amoderatelycorrosive electrolyte(i.e.0.3wt%Na2SO4)waschosen[28].Aremovable

elec-trochemicalcellwasusedinordertoallow,oncethemeasurement hadbeenmade,tocontinuewiththeabrasiontest.Measurements wererepeatedthreetimesandtherepeatabilitywasconsidered satisfactory.Toobtainabetterdescriptionofthedamageprocess, EISspectrawereacquiredattheinitialstep,after100and1000 cycles.Fig.6showstheimpedancediagramsofthenon-abraded andabradedsamplesafter100and1000cyclesofabrasionusing CS10wheelsandanimposedloadof250g.Abaresteelplate(same compositionofthecoatedsamples)wasinvestigatedfor compari-son,inordertoprovideareferenceofthebehaviorofthemetalin

(7)

Fig.3.ESEMandSEMimagesofthecoatingthicknessinthetrackafterabrasiontest(a)after100cycles;(b)and(c)after1000cyclesfortheC1coating;(d)after100cycles; (e)after1000cyclesfortheC2coating.

theemployedelectrolyte.Noticethattheohmicdropdueto elec-trolyteresistivityisaround1k×cm2.Consideringtherelatively

highimpedanceofthecoatings,theohmicdropisexpectednot toremarkablyaffecttheexperimentalresults.However,asfaras thebaremetalisconcerned,theelectrolyteresistivityaffectsthe impedancespectrumwhichshowsanalmostresistivebehaviorin thehighandmiddlefrequencyrange.

The EIS spectra of the investigated samples, C1(green dot) andC2(redtriangle),looksimilarbeforeabrasiontesting(Fig.6). Thevaluesoftheimpedancemodulusinthelowfrequencyrange (0.01Hz)areabout106cm2 and107cm2 forthe40ZrO

2 and

30ZrO2 monolayer,respectively.Noticethatthetotalimpedance

forthethinnercoating(C1)isaboutoneorderofmagnitudehigher comparedtothethickerone(C2).Thisfactcanberelatedtoahigher amountofdefectsinthe10␮mthickcoatingcomparedtothe5␮m thickone.

Inanycase,thelowfrequencyimpedancevaluesforboth coat-ingsaresignificantlyhigherthanthebaresteelsubstrate(black

square),whoseimpedancemodulusreachesaboutof103cm2.At

0cycle,thelow-frequencyimpedanceisrelatedtotheglobal pro-tectionpropertiesofthesystem.Itisbelievedthat,afterthevery fewminutesofimmersionthelowfrequencyimpedancevaluesof 106cm2and107cm2dependmainlyonthecoatingpore

resis-tance.ThemeasuredimpedancevaluesforsamplesC1andC2are inagreementwiththosereportedinliterature[29]andshowthat thecoatingshaveagoodbarrierpropertytowardtheelectrolyte penetration.

Withtheexpectationthattheimpedancemodulusvalueswould increasewiththeglobalthickness,theinitialimpedancemodulus valuesseemtobemoredependentonthemicrostructureofthe coatedsystemsandtothepresenceandextentofdefects.

Evenifthecomparisonoftheporeresistancetothoseobserved inliteratureisdifficult,sinceitdependsonthefilmthickness,the electrolyteusedandtheimmersiontimeinthecorrosivesolution, theinitialvaluesofbothcoatingscanbeconsideredindicativeof theirprotectiveproperties.

(8)

Fig.4.SEMimagesofthecoatingdamagedsurfaceoftheC1(a–c)andC2(d–f)coatingafter1000cyclesabrasiontest,(a)×500(b)×2500(c)×10,000(d)×500(e)×150(f) ×50,000inthedarkerarea.

However,tobetterinvestigatethepropertiesonthecoatings beforetheTabertest,theimpedancespectracollectedoverC1and C2sampleswereinvestigatedbynumericalfitting.FromFig.7it ispossibletoobservethatthreerelaxationprocessesarepresent forbothsamples.Thefirst,locatedinthe105÷102Hzfrequency

range,ispartiallyoverlappedtothesecondone,observedinthe 102÷100Hzfrequencyrange.Thelastrelaxationprocessispresent

inthelowfrequencydomain,below10−1Hz.

Accordingtoliterature[30],thecircuitdepictedinFig.8has beenexploitedtofittheexperimentaldata.Thefirstresistance (namelyRe)stands for theelectrolyte resistance. The high

fre-quencytime constant (modelled using a resistance, RHF,and a

constantphaseelement,QHF)hasbeenattributedtothesol-gel

coating.Inparticular,RHFisbelievedtorepresentthepore

resis-tance attribute to the hybrid coating, while QHF its dielectric

response.Themiddleandlowfrequencytimeconstantshavebeen modelledusingresistanceandconstantphaseelementsinparallel (namelyRMFQMFandRLFQLF,respectively).Thelowfrequencytime

constantisexpectedtoberelatedtothefaradicprocessoccurring atthemetalsubstrate.Therefore,RLFcanbeconsideredasacharge

transferresistance,whileQLFaconstantphaseelementrelatedto

thedoublelayercapacitance.Ontheotherhandthephysical mean-ingoftherelaxationprocessoccurringinmiddlefrequencyrange andmodelledusingRMFandQMFconnectedinparallel,isnotclear.

Itcanberelatedtoprimercoatingand/ortothecorrosionproducts accumulatingatthemetal/solutioninterface.

Table2showstheresultsofthenumericalfittingdatafor sam-plesC1andC2(electrolyteresistance,RE,equalto1.04kcm2in

bothcases).Noticethat,accordingtotheappearanceofthespectra inFig.7,theporeresistance(RHF)attributedtothesol-gel

(9)

coat-Fig.5. SEMmicrographsoftheC2coatingafter1000abrasioncyclestest(a)fracturedsample,(b)polishedcrosssection. 10-3 10-2 10-1 100 101 102 103 104 105 106 102 103 104 105 106 107 10-3 10-2 10-1 100 101 102 103 104 105 106 102 103 104 105 106 107 10-3 10-2 10-1 100 101 102 103 104 105 106 102 103 104 105 106 107 10-3 10-2 10-1 100 101 102 103 104 105 106 0 20 40 60 80 10-3 10-2 10-1 100 101 102 103 104 105 106 0 20 40 60 80 10-3 10-2 10-1 100 101 102 103 104 105 106 0 20 40 60 80

0 Cycle

B are steel C 1 C 2 Im pedan ce m o du lu s / cm 2

100

Cycles

B are steel C 1 C 2

1000 Cycles

B are steel C 1 C 2 B are steel C 1 C 2 - P h a s e ang le / Deg re e F req ue nc y / H z B are steel C 1 C 2 F req uen cy / H z B are steel C 1 C 2 F req uen cy / H z

Fig.6. Impedancemodulusandphaseplotsobtainedina0.3wt.%Na2SO4solutionforbaresteel(emptyblacksquare)andC1(greendot)andC2(redtriangle)coatedsteel,

beforeabrasiontest(0Cycles),after100abrasioncyclesandafter1000abrasioncycles.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferred tothewebversionofthisarticle.)

Table2

ResultsfromthenumericalfittingofEISspectraforsamplesC1andC2in0.3wt%Na2SO4beforeTabercyclesC2(electrolyteresistance,RE,equalto1.04kcm2inboth

cases). RHF(cm2) Pre-factorQHF (Ss␣cm−2) Exponent␣HF RMF(cm2) Pre-factorQMF (Ss␣cm−2) Exponent␣MF RLF(cm2) Pre-factorQLF (Ss␣cm−2) Exponent␣LF C1 4.64105 4.5310−9 0.94 1.97106 2.8210−8 0.56 1.43×109 4.0310−6 0.74 C2 1.51105 18.00×10−9 0.88 4.5×105 8.7710−8 0.65 3.12×109 8.3710−6 0.70

(10)

Fig.7. Impedanceandphaseangleplotscollectedin0.3wt.%Na2SO4solutionfor

samplesC1andC2beforetheabrasioncycles.

Fig.8. Electricalequivalentcircuitemployedfornumericalfittingofthe

experi-mentalspectra.

ingishigherforthethinnersample,comparedtothethickerone. Aspreviouslyanticipated,thisfactmightrelyonthepresenceof preferentialpathways(cracks/pores)inC2coatinginwhichthe electrolytecanpermeate.AsfarasthethicknessofC1andC2 coat-ingsisconcerned,(around5and10␮m,respectively)itisexpected tofindalowercapacitancevalueforthethickersol-gellayer. How-ever,itshouldbenotedthattheconstantphaseelement(QHF)for

sampleC2isaboutfourtimeshighercomparedtoC1.Evenifthe highfrequencyCPEexploitedforthenumericalfittingdonot cor-respondtoapurecapacitance(exponent“␣”isaround0.88–0.94), theincreaseinpre-factorQHFcanberelatedtoahigheramountof

waterinthecoating,inaccordancewiththesimultaneousdecrease inRHF.

Consideringthemiddleandlowfrequencyrelaxationprocesses, theexponent“␣”values(equalto0.56–0.65and0.70–0.74, respec-tively)relatedtotheCPEsexploitedforthenumericalfittingdo not permit any clear interpretation of the corresponding pre-factors.ThevaluesoftheRLFsuggestthattheelectrolytereached

themetalsubstrateandcorrosionprocessesareoccurringatthe metal/solutioninterface.The higher values obtainedfor theC1 coating(3.12×109cm2)comparedtoC2(1.43×109cm2)

fur-thersuggestthatbeforetheTabercyclesthethinnercoatingismore protectivecomparedtothethickerone.

Considering the effect of the abrasion wheelsduring Taber cycles,noticethatafter100cyclesofabrasion(Fig.6),the mechan-ical degradation and subsequent penetration of the electrolyte throughthecoatingsleadtothereductionoftheprotective proper-ties.Indeed,impedancemodulusvaluesofthesystemsdecreased from aboutone decade to 105ohmcm2. Despite differences in

thecoatingthickness,lowfrequencyimpedancemodulusvalues remaincomparableupto1000abrasioncycles(Fig.6).However after1000cycles,veryslightdifferencesoftheanticorrosion

prop-ertiesofthetwocoatingsareobserved,whichcanbeexplainedby themicrostructuralobservations.Fig.3aanddshowsthe differ-encesinthicknessbetweenbothcoatings30ZrO2and40ZrO2with

valueslessthan2␮mand3–4␮m,respectively.Itisworth not-ingthatthecoatingcontaining40%ofzirconiaparticlesmaintains a higherimpedance moduluscompared tothecoating contain-ing30%ofzirconiaparticles.Inthecaseofthelatter,thethinnest layerconstitutesafasterpathwayfortheelectrolytetopenetrate tothesubstrate.Afterincreasingthenumberofcycles(Fig.6),the totalimpedanceremainedconstantatarelativelylowfrequency, showingtheprotectivepropertiesofthecoatingswhichlimit cor-rosionpropagation.Betterwearresistantpropertiesaretherefore expectedforthesamplecontainingthehighernumberofparticles. Theeffectofmechanicaldegradationandabsorptionofliquid ontothecoatingisevenmoreremarkableconsideringthephase anglediagram(Fig.6).Forthesamplewith40%ofzirconia parti-clesthehighfrequencytimeconstantdecreasesinintensityandthe secondtimeinthemiddlefrequencyrangebecomesmore promi-nentafter100and1000cycles.Therelaxationprocessinthelow frequencyrangeisstillobservable.Howevertheexperimentaldata scattersbelow100Hzandaclearinterpretationistherefore

com-plicated.

Infact,astheabrasioncreatedlocalizeddefectsonthecoating, itproveddifficulttoseparatethecontributionofbothdamagedand undamagedareasintheEISresponse.Theauthorsattemptedtofit theexperimentalspectraofthedamagedcoatingsbymeansofthe previouslydescribedcircuit.However,aconsistentmathematical modellingoftheexperimentalcurveswasnotpossibleduetothe scatteringdatainthelowfrequencyrange.Thisisprobablyrelated totheeffectofmechanicaldamagewhichproducesanotuniform surfacewithhighroughness,scratches,thicknessdifferencesonthe Tabertrackspromotedbytheabrasionactionofthewheels.Forthis reasonitwasnotpossibletoobtainasatisfactorynumericalfitting oftheEISspectracollectedoverthedamagedsurfaces.

Generallyspeaking,theeffectoftheabrasionpromotesthe for-mationoflocalizeddefectsofthecoatings,athicknessreduction andconsequentincreaseofwaterandionspermeabilitywiththe numberofabrasioncycles.Figs.3cand4aillustratethepresence andthemorphologyofthedefectsandexplainthedifferent corro-sionprotectivebehaviorsofthecoatings.Moreover,inFig.4c,the SEMmicrographshowsthattheoutercoatingistotallyremoved anddoesnotplaytheroleofanti-wearcoatinganymore.Onthe otherhand,inagreementwithFig.5,thecompactedlayerofthe 40wt.% zirconia loadedcoating permitshigher electrochemical valuestobeobtainedandthusincreasethedurabilityofthe pro-tectivehybridcoating.Indeed,after1000abrasioncycles,despite theappearanceofasecondtimeconstantinthemiddlefrequency, the40wt.%zirconiaparticlescoatingseemstomaintainacertain barriereffectagainstwaterandionspermeation.

4. Conclusions

Inthisworkwehavedemonstratedthatthesol-gel technol-ogyoffersthepossibility tosynthesizeinnovativearchitectured systems for anticorrosion and wear properties. Promising anti-corrosion coatings have been deposited on a highly corrosion sensitiveandunevenmildsteelsubstrate.Thearchitectureisbased onalumino-silicatedhybridcoatingscontainingzirconia nanopar-ticles in theouterlayer,well-adapted to theaimedproperties. Abrasiontestconditionsundertakeninthisworkappeared well-adjustedtosuchthincoatingswithathicknesslowerthan10␮m. Asthedamageproducedbytheabrasivewheelswasrathera thin-ningofthecoating,estimationofthedamagelevelofthesamples wasthus carried out through microstructural observations and electrochemicalmeasurements.Thelossofcorrosionprotectionof

(11)

thelowerzirconialoadedcoatingwasattributedtotheformationof localizeddefectsaftertheremovalofmaterial.Onthecontrary,the higherzirconialoadedcoatingdemonstratedaninteresting corro-sionandwearbehaviorwiththeformationofacompactedlayerat thetopoftheouterlayerprovidingabarriereffectagainstwater andionspermeation.Furthermechanicalcharacterizationscould provideadditionalinformationaboutthehardnessofthisouter layer.

Whatisofinterestisthesuccessfulcombinationofweartests andEIStoevaluatetheinfluenceofabrasivewearonanticorrosion propertiesonsuchthinhybridsol-gelcoatings.

Acknowledgments

TheauthorswouldliketothankStephaneLEBLONDDUPLOUY (UMSCastaing)forSEMandEDScharacterizations.Thisworkwas performedintheframeworkofajointlaboratory,calledCETIMAT, whereCIRIMATandCETIMcollaborateforsomeaspectsoftheir research.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttp://dx.doi.org/10.1016/j.porgcoat.2016. 06.015.

References

[1]S.Rossi,F.Deflorian,L.Fontanari,A.Cambruzzi,P.L.Bonora,Prog.Org.Coat. 52(2005)288–297.

[2]S.Rossi,F.Deflorian,M.Risatti,Surf.Coat.Technol.201(2006)1173–1179. [3]A.Cambruzzi,S.Rossi,F.Deflorian,Wear258(2005)1696–1705. [4]M.F.Montemor,Surf.Coat.Technol.258(2014)17–37.

[5]S.Ahmad,A.P.Gupta,E.Sharmin,M.Alam,S.K.Pandey,Prog.Org.Coat.54 (2005)248–255.

[6]M.Qian,A.M.Soutar,X.H.Tan,X.T.Zeng,S.L.Wijesinghe,ThinSolidFilms517 (2009)5237–5242.

[7]I.Díaz,B.Chico,D.delaFuente,J.Simancas,J.M.Vega,M.Morcillo,Prog.Org. Coat.69(2010)278–286.

[8]B.N.Grgur,M.M.Gvozdenovi ´c,V.B.Miˇskovi ´c-Stankovi ´c,Z.Kaˇcarevi ´c-Popovi ´c, Prog.Org.Coat.56(2006)214–219.

[9]P.Balan,M.J.Shelton,D.O.L.Ching,G.C.Hand,L.K.Palniandye,ProcediaMater. Sci.6(2014)244–248.

[10]J.-B.Cambon,J.Esteban,F.Ansart,J.-P.Bonino,V.Turq,S.H.Santagneli,C.V. Santilli,S.H.Pulcinelli,Mater.Res.Bull.47(2012)3170–3176.

[11]A.Pepe,M.Aparicio,S.Cere´ı,A.Dura´ın,Mater.Lett.59(2005)3937–3940. [12]T.T.X.Hang,T.A.Truc,M.-G.Olivier,C.Vandermiers,N.Guerit,N.Pebere,Prog.

Org.Coat.69(2010)410–416.

[13]R.Akid,H.Wang,Corros.Sci.50(2008)1142–1148.

[14]P.Balan,A.Ng,C.B.Siang,R.K.SinghRaman,C.E.Seng,Adv.Mater.Res.686 (2013)244–249.

[15]G.Tsaneva,V.Kozhukharov,S.Kozhukharov,M.Ivanova,J.Gerwann,M. Schem,T.Schmidt,J.Univ.Chem.Technol.Metal.43(2)(2008)231–238. [16]P.Kiruthika,R.Subasri,A.Jyothirmayi,K.Sarvani,N.Y.Hebalkar,Surf.Coat.

Technol.204(2010)1270–1276.

[17]S.Turri,L.Torlaj,F.Piccinini,M.Levi,J.Appl.Polym.Sci.118(2010) 1720–1727.

[18]AlkaPhanasgaonkar,V.S.Raja,Surf.Coat.Technol.203(2009)2260–2271. [19]M.Grundwürmer,O.Nuyken,M.Meyer,J.Wehr,N.Schupp,Wear263(2007)

318–329.

[20]C.Li,K.Jordens,G.L.Wilkes,Wear242(2000)152–159.

[21]StandardASTMD4060-95,vol.06.01,AmericanSocietyforTestingand Materials,Philadelphia,US,1995.

[22]I.Santana,A.Pepe,E.Jimenez-Pique,S.Pellice,S.Ceré,Surf.Coat.Technol.236 (2013)476–484.

[23]S.Rahoui,V.Turq,J.-P.Bonino,Surf.Coat.Technol.235(2013)15–23. [24]M.L.Zheludkevich,R.Serra,M.F.Montemor,K.A.Yasakau,I.M.Miranda

Salvado,M.G.S.Ferreira,Electrochim.Acta51(2)(2005)208–217.

[25]K.A.Yasakau,M.L.Zheludkevich,O.V.Karavai,M.G.S.Ferreira,Prog.Org.Coat. 63(3)(2008)352–361.

[26]C.Lavollée,M.Gressier,M.-J.Menu,J.Garcia,J.-M.Sobrino,EuroHybrid MaterialsandStructures,92,PFH–PrivateUniversityofAppliedSciences, 2014.

[27]E.Certhoux,F.Ansart,V.Turq,J.P.Bonino,J.M.Sobrino,J.Garcia,J.Reby,Prog. Org.Coat.76(2013)165–172.

[28]Y.Reyes-Mercado,S.Rossi,F.Deflorian,M.Fedel,Wear265(2008) 1820–1825.

[29]A.G.Kannan,N.R.Choudhury,N.K.Dutta,J.Electroanal.Chem.641(2010) 28–34.

[30]B.Chico,J.C.Galván,D.delaFuente,M.Morcillo,Prog.Org.Coat.60(2007) 45–53.

Figure

Fig. 1. C1 coating after 1000 cycles abrasion test.
Fig. 2. (a) SEM image of the C1 architectured system and (b) ESEM image of the C2 architectured systems before abrasion cycles.
Fig. 3. ESEM and SEM images of the coating thickness in the track after abrasion test (a) after 100 cycles; (b) and (c) after 1000 cycles for the C1 coating; (d) after 100 cycles;
Fig. 4. SEM images of the coating damaged surface of the C1 (a–c) and C2 (d–f) coating after 1000 cycles abrasion test, (a) ×500 (b) ×2500 (c) ×10,000 (d) ×500 (e) ×150 (f)
+3

Références

Documents relatifs

Die Resultate der Studie zeigen, dass trotz einem erhöhten Risiko zu psychischen Folgen eines Einsatzes Rettungshelfer Zufriedenheit und Sinn in ihrer Arbeit finden können und

C’était le moment choisi par l’aïeul, […] pour réaliser le vœu si longtemps caressé d’ accroître son troupeau que les sècheresses, les épizoodies et la rouerie de

La ligne de fais eau ompr end une sour e ECR pour la produ tion des ions, des éléments (déviateurs, lentil les et ollimateurs) pour la mise en forme, l'analyse et la onduite du

This enables the designer to rapidly find the optimal converter design given a particular semiconductor switch, or the optimal combination of converter design and switch layout if

- Search: Look for research artefacts by funder, project, publication date, access mode, type, language, content provider or free text.. - Share: Deposit research

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The key property of a deterministic high-level domain de- scription is that the operator descriptions and propositional symbols are sufficient for planning—we can perform plan-