• Aucun résultat trouvé

Une algèbre de Hopf associée à une paire de Lie

N/A
N/A
Protected

Academic year: 2022

Partager "Une algèbre de Hopf associée à une paire de Lie"

Copied!
5
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Differential geometry

A Hopf algebra associated with a Lie pair

Une algèbre de Hopf associée à une paire de Lie

Zhuo Chen

a

, Mathieu Stiénon

b

, Ping Xu

b

aDepartmentofMathematics,TsinghuaUniversity,China bDepartmentofMathematics,PennStateUniversity,UnitedStates

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received6August2013

Acceptedafterrevision16September2014 Availableonline3October2014 PresentedbyCharles-MichelMarle IntributetoAlanWeinsteinontheoccasion ofhisseventiethbirthday

The quotient L/A[−1] ofapair AL ofLie algebroids is aLie algebra object inthe derived category Db(A) ofthe category A ofleftU(A)-modules,theAtiyah class

α

L/A beingitsLiebracket.Inthisnote,wedescribetheuniversalenvelopingalgebraoftheLie algebraobjectL/A[−1]andweprovethatitisaHopfalgebraobjectinDb(A).

©2014Académiedessciences.PublishedbyElsevierMassonSAS.All rights reserved.

r é s um é

Le quotient L/A[−1] d’unepaire AL d’algébroïdes de Lie est un objet algèbre de Lie danslacatégorie dérivée Db(A)de lacatégorieA desmodulesàgauchesurU(A). Danscettenote,nousdécrivonsl’algèbreenveloppanteuniverselledel’objetalgèbredeLie L/A[−1]etnousprouvonsquecelle-ciconstitueunobjetalgèbredeHopfdansDb(A).

©2014Académiedessciences.PublishedbyElsevierMassonSAS.All rights reserved.

Versionfrançaiseabrégée

SoitLunealgébroïdedeLiesurunevariétédifférentiableMet Aunesous-algébroïdede L–nousdironsque

(

L

,

A

)

est unepairedeLie.Laclassed’Atiyah

α

E d’un A-moduleE relativeàlapaire

(

L

,

A

)

,quifutintroduitepar[1],estl’obstruction à l’existence d’une L-connexion A-compatible sur E. Elle unifie les classes définies par Atiyah pour les fibrés vectoriels holomorphesetparMolinopourlesvariétésfeuilletées.

SoitA lacatégorie(abélienne)des A-modules,c’est-à-direlesmodules surl’algèbreenveloppanteuniverselleU

(

A

)

de l’algébroïdedeLie A.LequotientL

/

A d’unepairedeLie

(

L

,

A

)

–plusprécisément,sonespacedesectionsC –constitue un A-module[1].Saclassed’Atiyah

α

L/Arelativeàlapaire

(

L

,

A

)

détermineunmorphisme L

/

A

[−

1

] ⊗

L

/

A

[−

1

] →

L

/

A

[−

1

]

delacatégoriedérivéeDb

(A)

,faisantde L

/

A

[−

1

]

unobjetalgèbredeLiedansDb

(A)

.

Danscettenote, nousconstruisonsl’algèbreuniverselle enveloppantedel’objet algèbrede LieL

/

A

[−

1

]

dans Db

(

A

)

et nousprouvonsquecelle-ciestunobjetalgèbredeHopfdansDb

(A)

.Pourcefaire,nousétablissonsuneapplicationdetype Hochschild–Kostant–Rosenberget,reprenantlesidéesdeRamadoss [6],remplaçonsL

/

A

[−

1

]

parlecomplexeL

(D

poly1

)

,qui est,quantàlui,quasi-isomorphe.

ResearchpartiallysupportedbyNSFgrantDMS1101827,NSAgrantH98230-12-1-0234,andNSFCgrants11001146and11471179.

E-mailaddresses:zchen@math.tsinghua.edu.cn(Z. Chen),stienon@psu.edu(M. Stiénon),ping@math.psu.edu(P. Xu).

http://dx.doi.org/10.1016/j.crma.2014.09.010

1631-073X/©2014Académiedessciences.PublishedbyElsevierMassonSAS.All rights reserved.

(2)

Lecas particulierde TX

[−

1

] ∈

Db

(

X

)

correspondantà lapairedeLie

(

TX

C

,

T0X,1

)

associéeàunevariétécomplexe X joue un rôleimportant dansla théoriedesinvariantsde Rozansky–Witten desvariétés de dimension 3 etenthéoriede l’indice.Desapplicationsdurésultatci-dessusdanscesdomainesserontdéveloppéesailleurs.

L’algèbreenveloppanteuniverselleU

(

L

)

d’unealgébroïdedeLieréelleLestunbimodulesur R

:=

C

(

M

)

,quis’identifie à l’algèbredes opérateurs différentielssur le groupoïde de Lie local L intégrant L tangents aux s-fibres etinvariants à gauche.Deplus, U(L

)

admetunecomultiplicationcocommutativeetcoassociative

Δ :

U(L

)

U(L

) ˜⊗

U(L

)

.Ici,

˜⊗

désigne leproduittensorieldemodulesàgauchesurR.Enfin,U

(

L

)

estunL-module,puisquetoutélémentl de

Γ (

L

)

agitsurU

(

L

)

parmultiplicationàgauche :

lu

=

l

·

u,pourtoutu

U

(

L

)

.

ÉtantdonnéunepairedeLie

(

L

,

A

)

,considéronslequotientD1poly

=

U(UL)Γ ((L)A) deU(L

)

parsonidéalà gaucheengendré par

Γ (

A

)

.On vérifie aisément que la comultiplicationde U(L

)

induit une comultiplication

Δ :

Dpoly1

Dpoly1

˜⊗D

1poly sur Dpoly1 etque l’actionde L sur U(L

)

détermineuneactionde A sur D1poly.Enfait,D1poly estunecoalgèbrecocommutative coassociativesur R,dontlacomultiplicationestcompatibleaveclaA-action.

Soit Chb

(A)

la catégorie des complexes de A bornés, et Db

(A)

la catégorie dérivée de A. Notons Dnpoly la n-ième puissance tensorielleD1poly

˜⊗··· ˜⊗D

1poly de Dpoly1 et,pourn

=

0,posonsD0poly

=

R.L’opérateurd

:

Dpoly

Dpoly•+1 définipar l’équation(1)faitdeDpoly

=

n=0Dnpoly unobjetdeChb

(A)

.L’applicationdeHochschild–Kostant–Rosenberg HKR

: Γ

S

L

/

A

[−

1

]

Dpoly

estobtenueàpartirdel’inclusionnaturelle

Γ (

L

/

A

)

D1polyparsymétrisation(voirl’équation(2)).

Proposition0.1. L’applicationHKR

: (

S

(

L

/

A

[−

1

] ),

0

)(

Dpoly

,

d

)

est,dansChb

(

A

)

,unquasi-isomorphisme.

Théorème0.2.

(i) L’objetDpolyestunealgèbredeHopfdansDb

(

A

)

.

(ii) L’algèbreassociative

(

Dpoly

, ˜⊗ )

estl’algèbreenveloppanteuniverselledeL

/

A

[−

1

]

dansDb

(

A

)

. 1. Introduction

Let A be a Lie algebroid over a manifold M. Its space of smooth sections

Γ (

A

)

is a Lie–Rinehart algebra over the commutativering R

=

C

(

M

)

.Byan A-module,wemeanamoduleovertheLie–RinehartalgebracorrespondingtotheLie algebroid A,i.e.amoduleovertheassociativealgebraU

(

A

)

.

Recall that the universal envelopingalgebra U(A

)

of a Lie algebroid A over M is simultaneously an associativealge- bra andan R-bimodule. IncasetheLie algebroid A isreal, U(A

)

is canonicallyidentified to thealgebra ofleft-invariant s-fiberwisedifferentialoperatorsonthelocalLiegroupoidA integratingA.Letusrecallitsconstruction.

Thevectorspaceg

=

R

Γ (

A

)

admitsanaturalLiealgebrastructuregivenbytheLiebracket:

[

f

+

X

,

g

+

Y

] = ρ (

X

)

g

ρ (

Y

)

f

+ [

X

,

Y

],

where f

,

g

Rand X

,

Y

Γ (

A

)

.Here

ρ

denotestheanchormap.Leti denotethenaturalinclusionofgintoitsuniversal enveloping algebra U(g) andlet V(g) denotethesubalgebra ofU(g)generated by i

(g)

. Theuniversal enveloping algebra U(A

)

oftheLiealgebroid A isthequotientofV(g)bythetwo-sidedidealgeneratedbytheelements oftheformi

(

f

)

i

(

g

+

Y

)

i

(

f g

+

f Y

)

with f, g

R andY

Γ (

A

)

.

When A is a Lie algebra, U

(

A

)

is indeed the usual universal envelopingalgebra. On the other hand,when A is the tangentbundle T M,U(A

)

isthealgebraofdifferentialoperatorsonM.

We usethesymbolA todenotetheAbeliancategoryof A-modules.Abusingterminology,wesaythatavectorbundle E over Misan A-moduleif

Γ (

E

)

A.

GivenaLiepair

(

L

,

A

)

ofalgebroids,i.e.aLiealgebroid LwithaLiesubalgebroidA,theAtiyahclass

α

E ofan A-module E relative tothepair

(

L

,

A

)

is definedasthe obstructionto theexistence ofan A-compatible L-connectiononthe vector bundle E.An L-connection

onan A-module E issaid tobe A-compatibleifit extendsthegiven flat A-connection on E andsatisfies

a

l

− ∇

l

a

= ∇

[a,l] foralla

Γ (

A

)

andl

Γ (

L

)

.Thisfairlyrecentlydefinedclass (see[1]) hasasdouble origin,theAtiyahclassofholomorphicvectorbundlesandtheMolinoclassoffoliations.

The quotient L

/

A ofanyLiepair

(

L

,

A

)

is an A-module[1].Its Atiyah class

α

L/A can bedescribed asfollows.Choose an L-connection

on L

/

A extendingthe A-action.Its curvatureisthevectorbundlemap R

: ∧

2L

End

(

E

)

definedby R

(

l1

,

l2

) = ∇

l1

l2

− ∇

l2

l1

− ∇

[l1,l2],forall l1

,

l2

Γ (

L

)

. Since L

/

A isan A-module, R vanishes on

2A and, therefore, determines asection RL/A of A

(

L

/

A

)

End

(

L

/

A

)

.Itwas proved in[1]that RL/A isa 1-cocyclefortheLiealgebroid A with values in the A-module

(

L

/

A

)

End

(

L

/

A

)

and that its cohomology class

α

L/A

H1

(

A

; (

L

/

A

)

End

(

L

/

A

))

is independentofthechoiceoftheconnection.

(3)

LetChb

(A)

denotethecategoryofboundedcomplexes inAandlet Db

(A)

denotethecorresponding derivedcategory.

WewriteL

/

A

[−

1

]

todenotethequotientL

/

A regardedasacomplexinAconcentratedindegree1.

Thefollowingwasprovedin[1].

Proposition1.1.(See[1].)Let

(

L

,

A

)

beaLiealgebroidpair.TheAtiyahclass

α

L/AofthequotientL

/

A relativetothepair

(

L

,

A

)

deter- minesamorphismL

/

A

[−

1

] ⊗

L

/

A

[−

1

] →

L

/

A

[−

1

]

inthederivedcategoryDb

(A)

makingL

/

A

[−

1

]

aLiealgebraobjectin Db

(A)

.

ItiswellknownthateveryordinaryLiealgebragadmitsauniversalenvelopingalgebraU

(g)

,whichisaHopfalgebra.

Wearethus ledtothefollowingnaturalquestions:doesthereexistauniversalenvelopingalgebraforL

/

A

[−

1

]

inDb

(A)

and,ifso,isitaHopfalgebraobject?

InthisNote,wegiveapositiveanswertothequestionsabove.Foracomplexmanifold X,theAtiyahclassoftheLiepair

(

TX

C

,

T0X,1

)

issimply theusualAtiayhclassoftheholomorphictangentbundle TX recentlyexploitedby Kapranov[2].

It wasproved that theuniversal envelopingalgebraof theLiealgebra object TX

[−

1

]

in Db

(

X

)

isthe Hochschildcochain complex

(D

poly

(

X

),

d

)

[5–7]. This result played an important role in the study of several aspects of complex geometry includingtheRiemann–Rochtheorem[5],theCherncharacter[6]andtheRozansky–Witteninvariants[7,8].Applicationsof ourresultwillbedevelopedelsewhere.

2. Hochschild–Kostant–Rosenbergmap

It isknown [9]that theuniversal envelopingalgebra U(L

)

of aLie algebroid L admitsacocommutative coassociative coproduct

Δ :

U

(

L

)

U

(

L

) ˜⊗

U

(

L

)

,which is defined on generators as follows:

Δ(

f

) =

f

˜⊗

1

=

1

˜⊗

f,

f

R and

Δ(

l

) =

l

˜⊗

1

+

1

˜⊗

l,

l

Γ (

L

)

.Here, andin the sequel,

˜⊗

stands for thetensor product ofleft R-modules. Moreover, U

(

L

)

is an L-modulesinceeachsectionl ofLactsonU(L

)

byleftmultiplication:

lu

=

l

·

u,

u

U(L

)

.

Now,givenaLiepair

(

L

,

A

)

,considerthequotientDpoly1 ofU(L

)

bytheleftidealgeneratedby

Γ (

A

)

.Itisstraightforward toseethatthecomultiplicationonU

(

L

)

inducesacomultiplication

Δ :

D1poly

Dpoly1

˜⊗D

poly1 on Dpoly1 andtheactionofL onU

(

L

)

determinesanactionof AonD1poly.

Lemma2.1.ThequotientD1poly

=

U(UL)Γ ((L)A)issimultaneouslyacocommutativecoassociativeR-coalgebraandanA-module.Moreover, itscomultiplicationiscompatiblewithitsA-action:

X

p

) = Δ(∇

Xp

),

X

Γ (

A

),

p

D1poly

.

LetDnpolydenotethen-thtensorialpowerD1poly

˜⊗··· ˜⊗D

1polyofD1polyand,forn

=

0,setD0poly

=

R.Wedefineacobound- aryoperatord

:

Dpoly

Dpoly•+1 onDpoly

=

n=0Dpolyn by

d

(

p1

˜⊗··· ˜⊗

pn

) =

1

˜⊗

p1

˜⊗··· ˜⊗

pn

p1

) ˜⊗··· ˜⊗

pn

+

p1

˜⊗

p2

) ˜⊗··· ˜⊗

pn

− · · ·

+ (−

1

)

np1

˜⊗··· ˜⊗

pn1

˜⊗(Δ

pn

) + (−

1

)

n+1p1

˜⊗··· ˜⊗

pn

˜⊗

1

,

(1) foranyp1

,

p2

, . . . ,

pn

Dpoly1 .Sincethecomultiplication

Δ

iscompatiblewiththeactionofA,theoperatordisamorphism of A-modules.Moreover,

Δ

beingcoassociative,dsatisfiesd2

=

0.Thus

(

Dpoly

,

d

)

isanobjectinChb

(

A

)

.

Whenendowedwiththetrivialcoboundaryoperator,thespaceofsectionsof

S

L

/

A

[−

1

]

=

k=0

Sk

L

/

A

[−

1

]

=

k=0

kL

/

A

[−

k

]

isacomplexof A-modules:

0

R

− →

0

Γ (

L

/

A

) − →

0

Γ

2

(

L

/

A

)

0

Γ

3

(

L

/

A

)

0

→ · · ·

Thenaturalinclusion

Γ (

L

/

A

)

Dpoly1 extendsnaturallytotheHochschild–Kostant–Rosenbergmap HKR

: Γ

S

L

/

A

[−

1

]

Dpoly byskew-symmetrization:

HKR

(

b1

∧ · · · ∧

bn

) =

1 n

!

σSn

sgn

( σ )

bσ(1)

˜⊗

bσ(2)

˜⊗··· ˜⊗

bσ(n)

,

b1

, . . . ,

bn

Γ (

L

/

A

).

(2)

(4)

Proposition2.2.InChb

(A)

,HKRisaquasi-isomorphismfrom

(Γ (

S

(

L

/

A

[−

1

] )),

0

)

to

(D

poly

,

d

)

.

Sketchofproof Assuming L and A are real Lie algebroids,let L and A be localLie groupoids integrating L and A re- spectively. Thesourcemap s

:

L

M inducesasurjective submersion J

:

L

/A

M.The rightquotientL

/A

isaleft L-homogeneousspacewithmomentummap J [4].Therefore,itadmitsaninfinitesimal L-action,andhenceaninfinitesi- mal A-action.ThecoalgebraDpoly1 mayberegardedasthespaceofdistributionsonthe J-fibersofL

/A

supportedonM.

Its A-modulestructurethenstemsfromtheinfinitesimal A-actiononL

/

A.Then-thtensorialpowerDnpolymaybeviewed asthespaceofn-differentialoperatorsonthe J-fibersofL

/A

evaluatedalongMandthedifferentialdastheHochschild coboundary.TheconclusionfollowsfromtheclassicalHochschild–Kostant–Rosenbergtheorem.Toprovethepropositionfor complexLiealgebroids,itsufficestoconsiderformalgroupoidsinsteadoflocalLiegroupoids[3].

3. UniversalenvelopingalgebraofL/A[−1]inDb(A)

FollowingMarkarian[5],Ramadoss[6],andRoberts–Willerton[7],weintroducethefollowing:

Definition3.1.Ifitexists,theuniversalenvelopingalgebraofaLiealgebraobjectGinDb

(

A

)

isanassociativealgebraobjectHin Db

(A)

togetherwithamorphismofLiealgebrasi

:

G

HinDb

(A)

satisfyingthefollowinguniversalproperty:givenanyassociative algebraobjectKandanymorphismofLiealgebras f

:

G

Kin Db

(A)

,thereexistsauniquemorphismofassociativealgebras

f

:

H

KinDb

(

A

)

suchthatf

=

f

i.

Inview ofthesimilaritybetween

(

Dpoly

,

d

)

andtheHochschildcochain complex,wedefine acupproduct

onDpoly bysetting P

Q

=

P

˜⊗

Q,forall P

,

Q

Dpoly.It issimpletocheckthat

d

(

P

Q

) =

d P

Q

+ (

1

)

|P|P

d Q

,

forallhomogeneous P

,

Q

Dpoly .

Proposition3.2.ForanyLiepair

(

L

,

A

)

ofalgebroids,

(D

poly

,

d

,)

isanassociativealgebraobjectinDb

(A)

,whichisinfactthe universalenvelopingalgebraoftheLiealgebraL

/

A

[−

1

]

inDb

(A)

.

Consider the inclusion

η :

R

Dnpoly, the projection

ε :

DnpolyR, and the mapst

:

Dpoly

Dpoly and

Δ ˜ :

Dpoly

Dpoly

RDpoly defined,respectively,by

t

(

p1

˜⊗

p2

˜⊗··· ˜⊗

pn

) = (−

1

)

n(n21)pn

˜⊗

pn1

˜⊗··· ˜⊗

p1 and

Δ( ˜

p1

˜⊗

p2

˜⊗··· ˜⊗

pn

) =

i+j=n

σ∈Sij

sgn

( σ )(

pσ(1)

˜⊗··· ˜⊗

pσ(i)

)(

pσ(i+1)

˜⊗··· ˜⊗

pσ(n)

),

whereSijdenotesthesetof

(

i

,

j

)

-shuffles.1

Theorem3.3.ForanyLiepair

(

L

,

A

)

ofalgebroids,

(D

poly

,

d

)

withthemultiplication

,thecomultiplication

Δ ˜

,theunit

η

,thecounit

ε

, andtheantipode t,isaHopfalgebraobjectin Db

(A)

.

4. Ramadoss’sapproach:L(D1poly)

ToproveProposition 3.2andTheorem 3.3,weessentially followRamadoss’sapproach[6].Let L

(D

1poly

)

bethe(graded) freeLiealgebrageneratedover RbyD1polyconcentratedindegree1.Inotherwords,L

(D

1poly

)

isthesmallestLiesubalgebra ofDpolycontaining Dpoly1 .TheLiebracketoftwovectorsu

Dipolyandv

Dpolyj isthevector

[

u

,

v

] =

u

˜⊗

v

(−

1

)

i jv

˜⊗

u

Dpolyi+j. Actually, L

(

D1poly

)

is made of all linear combinations of elements of the form

[

p1

, [

p2

, [· · · , [

pn1

,

pn

] · · ·]]]

with p1

, . . . ,

pn

D1poly.Onechecksthat L

(

D1poly

)

isad-stable A-submoduleofDpolyandthatitsLiebracketisachainmapwith respecttothecoboundaryoperatord.Therefore

(

L

(

D1poly

),

d

)

isaLiealgebraobjectinChb

(

A

)

.

1 An(i,j)-shuffleisapermutationσoftheset{1,2,. . . ,i+j}suchthatσ(1)σ(2)≤ · · · ≤σ(i)andσ(i+1)σ(i+2)≤ · · · ≤σ(i+j).

(5)

LetS

(

L

(D

1poly

))

bethesymmetricalgebraofL

(D

1poly

)

andlet I

:

S

(

L

(D

1poly

))

Dpoly bethesymmetrizationmap:

I

(

z1

· · ·

zn

) =

1 n

!

σSn

sgn

( σ ;

z1

, . . . ,

zn

)

zσ(1)

˜⊗

zσ(2)

˜⊗··· ˜⊗

zσ(n)

.

TheKoszul signsgn

( σ ;

z1

, . . . ,

zn

)

ofa permutation

σ

ofthe(homogeneous)vectors z1

,

z2

, . . . ,

zn

S

(

L

(D

1poly

))

isdeter- minedbytherelationzσ(1)

zσ(2)

· · ·

zσ(n)

=

sgn

( σ ;

z1

, . . . ,

zn

)

z1

z2

· · ·

zn.

Lemma4.1.ThesymmetrizationI

:

S

(

L

(

D1poly

))

DpolyisanisomorphisminChb

(

A

)

.

Using Lemma 4.1andtheHKR quasi-isomorphism,onecan prove thatthe composition

β : Γ (

L

/

A

[−

1

] )

L

(D

poly1

)

of the inclusions

Γ (

L

/

A

[−

1

] )

D1poly

L

(D

1poly

)

is a quasi-isomorphismin Chb

(A)

,which intertwines the Lie bracketson

Γ (

L

/

A

[−

1

])

andL

(D

poly1

)

.

Proposition4.2.

(i) Theinclusion

β : Γ (

L

/

A

[−

1

]) →

L

(D

1poly

)

isaquasi-isomorphisminChb

(A)

.

(ii) Theinclusion

β : Γ (

L

/

A

[−

1

]) →

L

(D

1poly

)

isanisomorphismofLiealgebraobjectsinDb

(A)

asthediagram

Γ (

L

/

A

[−

1

]) ˜⊗Γ (

L

/

A

[−

1

])

αL/A

ββ

L

(

Dpoly1

) ˜⊗

L

(

Dpoly1

)

[,]

Γ (

L

/

A

[−

1

])

β L

(

Dpoly1

)

commutesinDb

(A)

.

Proposition 3.2andTheorem 3.3nowfollowimmediately.

References

[1]ZhuoChen,MathieuStiénon,PingXu,FromAtiyahclassestohomotopyLeibnizalgebras,arXiv:1204.1075,2012.

[2]M.Kapranov,Rozansky–WitteninvariantsviaAtiyahclasses,Compos.Math.115 (1)(1999)71–113,MR1671737(2000h:57056).

[3]NielsKowalzig,HesselPosthuma,ThecyclictheoryofHopfalgebroids,J.Noncommut.Geom.5 (3)(2011)423–476,MR2817646(2012f:16081).

[4]Zhang-JuLiu,AlanWeinstein,PingXu,DiracstructuresandPoissonhomogeneousspaces,Commun.Math.Phys.192 (1)(1998)121–144,MR1612164 (99g:58053).

[5]NikitaMarkarian,TheAtiyahclass,HochschildcohomologyandtheRiemann–Rochtheorem,J.Lond.Math.Soc.(2)79 (1)(2009)129–143,MR2472137 (2010d:14020).

[6]AjayC.Ramadoss,ThebigChernclassesandtheCherncharacter,Int.J.Math.19 (6)(2008)699–746,MR2431634(2010h:14028).

[7]JustinRoberts,SimonWillerton,OntheRozansky–Wittenweightsystems,Algebr.Geom.Topol.10 (3)(2010)1455–1519,MR2661534.

[8]L.Rozansky,E.Witten,Hyper–Kählergeometryandinvariantsofthree-manifolds,Sel.Math.NewSer.3 (3)(1997)401–458,MR1481135(98m:57041).

[9]PingXu,Quantumgroupoids,Commun.Math.Phys.216 (3)(2001)539–581,MR1815717(2002f:17033).

Références

Documents relatifs

D As an immediate corollary of Theorem 4.2 one obtains the following generalization of a fundamental result of Harish-Chandra (see [9], Theo- rem 4 or (1.2)) from the diagonal case

By considering the solution of the stochastic differential equation associ- ated with A, we also obtain an explicit integral representation of the semigroup in more general

(iv) The map Ds gives another construction of the Poincare-Cartan form e for a class of Lagrangians in the multivariate higher order calculus of variations.. Section

ZEMAN, Uniqueness of solutions of the Cauchy problem for linear partial differential equations with characteristics of constant multiplicity, J. ZEMAN, Uniqueness of

SIMONENKO, On the question of the solvability of bisingular and poly- singular equations,

THEOREM 2 : Let S and T be left invariant compactly supported pseu- do-differential operators of class S~ and respectively.. We do not use the standard adjoint

The present paper is devoted to the case where Q is replaced by ∆ 0 , the fundamental relative invariant of an irreducible regular prehomogeneous vector space of commutative

The study of this dendriform structure is postponed to the appendix, as well as the enumeration of partitioned trees; we also prove that free Com-Prelie algebras are free as