• Aucun résultat trouvé

Spatial vegetation density index from terrestrial laser scanner

N/A
N/A
Protected

Academic year: 2021

Partager "Spatial vegetation density index from terrestrial laser scanner"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01376468

https://hal.archives-ouvertes.fr/hal-01376468

Submitted on 4 Oct 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Spatial vegetation density index from terrestrial laser scanner

Joris Ravaglia, Alexandra Bac, Richard Fournier

To cite this version:

Joris Ravaglia, Alexandra Bac, Richard Fournier. Spatial vegetation density index from terrestrial laser scanner. IEEE Geoscience and Remote Sensing Society (IGARSS), Jul 2014, Québec, Canada. �hal-01376468�

(2)

S

PATIAL

V

EGETATION

D

ENSITY

I

NDEX

F

ROM

T

ERRESTRIAL

L

ASER

S

CANNER

J. R

AVAGLIA

1,2

, A. B

AC

1

AND

R. F

OURNIER

2 1

U

NIVERSITÉ DE

S

HERBROOKE

, S

HERBROOKE

, C

ANADA

2

U

NIVERSITÉ D

’A

IX

-M

ARSEILLE

, M

ARSEILLE

, F

RANCE

B

ACKGROUND AND

O

BJECTIVES

Introduction: Forest monitoring is a key

is-sue in scientific, social and commercial domains. Manual measurements of forests attributes can be tedious and limited. Terrestrial Laser Scanner (TLS) has been introduced in forest monitoring [1]. Vegetation density index is a way to quan-tify vegetation using voxels from TLS data [2].

Problem statement: The vegetation density

in-dex is estimated using ray tracing techniques in a 3D voxel grid. This process can be time con-suming and can be improved.

Objectives:

• Decrease the computing time

• Increase the consistency of the calculus

Figure 1: TLS point cloud and voxelisation of a tree

D

ENSITY

I

NDEX

Assumption: The number of laser beams

intercepted within a volume is proportional to the density of vegetation.

Density index: this index is defined as :

D = Ni

Nt − Nb 100

Nt: theoretical beams Ni: returned beams

• • • • • Nb: intercepted beams ••• •

Figure 2: Density index computation using raytracing [3]

R

ESULTS

0.750 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 10 20 30 40 50 60

Ratio Raytracing / Analytic 5th percentile

95th percentile

Ratio Raytracing / Analytic

F re qu en cy (% )

Figure 3: Comparison of density index between raytracing technique and analytical solution

0 20 40 60 80 100 120 0.01 0.1 1 10 100 1000 Raytracing 0.02° Raytracing 0.04° Raytracing 0.06° Raytracing 0.08° Raytracing 0.10° Analytic (not a function of ΔΦ Δφ) Number of voxels (10K) T im e (m s)

Figure 4: Computational time for both approaches

R

EFERENCES

[1] Dassot, Constant, and Fournier. The use of terrestrial LiDAR technology in forest science: application fields, benefits and challenges. Annals of Forest Science, 68(5):959–974, July 2011.

[2] Durrieu, Allouis, Fournier, Véga, and Albrech. Spatial quantification of vegetation density from terrestrial laser scanner data for characterization of 3D forest structure at plot level. In Proceedings of SilviLaser, pages 325–334, 2008.

[3] Amanatides and Woo. A fast voxel traversal algorithm for ray tracing. In Proceedings of EUROGRAPHICS, volume I, pages 3–10, 1987.

C

ONTACT

I

NFORMATION

Web www.cartel.recherche.usherbrooke.ca Email joris.ravaglia@usherbrooke.ca Phone +1 (819) 821 8000 - extension 62945

F

UTURE

R

ESEARCH

Characterizing the limits and conditions

that need to be fulfilled while using our methodology.

Provide an analytical calculus for the average

distance covered by a beam inside a voxel.

C

ONCLUSION

• Raytracing and analytic process give similar

results

• The analytical calculus represents an

important gain of time

• Parallel processing is easy to set up

M

ETHODOLOGY

1. Identify the visible faces of all voxels

2. Compute their solid angles (eq. 1)

3. Compute the adjustment factor (eq. 4)

4. Compute the density index (eq. 5)

A

NALYTIC

A

PPROACH

Analytic calculus of theoretical number of beams Nt for each voxel :

Ω = X Ωi (1) dS = ρ2 · sin φ · dφdθ (2) ∆S = Z θ+∆θ θ Z φ+∆φ φ dS (3) ∆S = 1 φ2 − φ1 1 θ2 − θ1 Z θ2 θ1 Z φ2 φ1 ∆Sdφdθ (4) Nt = Ω ∆S (5)

x

y

z

θ

φ

∆θ

∆φ

• • • • • •

Références

Documents relatifs

The parameters studied during the sensitivity analysis are: c: collection side mirror angle; p: projection side mirror angle; f0: distance between the collecting lens and

A l'aide des techniques de biologie moléculaire permettant l'expression de protéines fusionnées à la GFP (et ses variants spectraux) en cellules et des méthodes utilisant les déclins

Aboveground biomass (AGB) and the associated carbon content are generally assessed indirectly via allometric models based on simple tree measure- ments such as trunk diameter at

PSS model are not only used to define a smooth surface from a point set, but they are also a tool to decimate or generate additional sample points on a surface. The decimation

Gilles Fouret, Sylvie Gaillet, Jerome Lecomte, Béatrice Bonafos, Ferdinand Djohan, Bruno Barea, Eric Badia, Charles Coudray, Christine Feillet-Coudray. To cite

Digitized trees manually acquired by expert are used as reference and virtual scans as input of the reconstruction procedure.. Formally, the structures are represented as

In this thesis, we focused on several topics related to noise detection in point clouds generated by Terrestrial Laser Scanners (TLS): first, the projection methods to compute an

Thrombocytopenic coagulopathy Kasabach-Merritt phenomenon is associated with kaposiform hemangioendothelioma and not with common infantile hemangioma... Hémangiome chez l’enfant