• Aucun résultat trouvé

Statistical description of the proton spin with a large gluon helicity distribution

N/A
N/A
Protected

Academic year: 2021

Partager "Statistical description of the proton spin with a large gluon helicity distribution"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: hal-01230963

https://hal-amu.archives-ouvertes.fr/hal-01230963

Submitted on 19 Nov 2015

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Statistical description of the proton spin with a large

gluon helicity distribution

Claude Bourrely, Jacques Soffer

To cite this version:

Claude Bourrely, Jacques Soffer. Statistical description of the proton spin with a large gluon helicity

distribution. Physics Letters B, Elsevier, 2015, 740, pp.168-171. �10.1016/j.physletb.2014.11.044�.

�hal-01230963�

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Statistical

description

of

the

proton

spin

with

a

large

gluon

helicity

distribution

Claude Bourrely

a

,

Jacques Soffer

b

aAix-MarseilleUniversité,DépartementdePhysique,FacultédesSciencessitedeLuminy,13288Marseille cedex 09,France bPhysicsDepartment,TempleUniversity,1835N,12thStreet,Philadelphia,PA 19122-6082,USA

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received29August2014

Receivedinrevisedform17November2014 Accepted23November2014

Availableonline2December2014 Editor:J.-P.Blaizot

Keywords:

Gluonpolarization Protonspin

Statisticaldistributions

The quantumstatisticalpartondistributionsapproachproposedmorethanonedecadeagoisrevisited byconsideringalargersetofrecentand accurateDeepInelastic Scattering(DIS)experimental results. It enablesus toimprovethe descriptionofthe databy meansof anew determinationofthe parton distributions.Wewillseethatalargegluonpolarizationemerges,givingasignificantcontributiontothe protonspin.

©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/3.0/).FundedbySCOAP3.

1. Introduction

Several years ago a new set of parton distribution functions (PDF) was constructedin theframework ofa statisticalapproach of the nucleon [1]. For quarks (antiquarks), the building blocks arethehelicitydependentdistributionsq±

(

x

)

(q

¯

±

(

x

)

). Thisallows to describe simultaneously the unpolarized distributions q

(

x

)

=

q+

(

x

)

+

q

(

x

)

andthehelicitydistributions



q

(

x

)

=

q+

(

x

)

q

(

x

)

(similarly forantiquarks).At theinitial energyscale,these distri-butions are given by the sumoftwo terms,a quasi Fermi–Dirac function and a helicity independent diffractive contribution. The flavor asymmetry for the light sea, i.e. d

¯

(

x

)

>

u

¯

(

x

)

, observed in the data is built in. This is simply understood in terms of the Pauli exclusion principle, basedon the fact that the proton con-tains two up-quarks and only one down-quark. The chiral prop-ertiesofQCD lead tostrongrelations betweenq

(

x

)

andq

¯

(

x

)

.For example,itisfoundthatthewellestablished result



u

(

x

)

>

0 im-plies



u

¯

(

x

)

>

0 and similarly



d

(

x

)

<

0 leadsto

d

(

x

)

<

0. This earlier prediction was confirmed by recent data. In addition we foundtheapproximateequalityoftheflavorasymmetries,namely

¯

d

(

x

)

− ¯

u

(

x

)

∼ ¯

u

(

x

)

−¯

d

(

x

)

.Concerningthegluon,theunpolarized distribution G

(

x

,

Q2

0

)

is given in terms of a quasi Bose–Einstein

function,withonlyonefreeparameter,andforsimplicity,wewere assuming zero gluon polarization, i.e.



G

(

x

,

Q02

)

=

0, at the

ini-E-mailaddress:jacques.soffer@gmail.com(J. Soffer).

tial energy scale Q02. As we will see below, the newanalysis of a larger set ofrecent accurate DISdata, has enforced usto give up thisassumption. It leads to an unexpected large gluon helic-ity distributionandthisis themajor point, whichis emphasized inthisletter.Inourprevious analysisallunpolarizedandhelicity light quark distributions were depending upon eightfree parame-ters, which were determined in 2002(see Ref. [1]),from a next-to-leading(NLO)fitofasmallsetofaccurateDISdata.Concerning thestrange quarksandantiquarks distributions,thestatistical ap-proachwas applied usingslightlydifferentexpressions,withfour additionalparameters[2].Sincethefirstdeterminationofthefree parameters, new testsagainst experimental (unpolarized and po-larized) data turned out to be very satisfactory, in particular in hadronicreactions,asreportedinRefs.[3–5].

In this letter, after a brief review of the statistical approach, wewillonlygivesome elementsofthenewdeterminationofthe partondistributions,butwewillfocusonthegluonhelicity distri-bution,a fundamentalcontributiontotheprotonspin.

2. Basicreviewonthestatisticalapproach

Letusnowrecallthe mainfeatures ofthestatisticalapproach forbuildingupthePDF,asopposetothestandardpolynomialtype parameterizationsofthePDF,basedonReggetheoryatlow x and oncountingrulesatlarge x.Thefermiondistributionsaregivenby thesumoftwoterms,aquasiFermi–Diracfunctionandahelicity independentdiffractivecontribution:

http://dx.doi.org/10.1016/j.physletb.2014.11.044

0370-2693/©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/3.0/).Fundedby SCOAP3.

(3)

xqh



x

,

Q02



=

AqX h 0qxbq exp

[(

x

Xh0q

)/

x

¯

] +

1

+

˜

Aqxb˜q exp

(

x

/

x

¯

)

+

1

,

(1) xq

¯

h



x

,

Q02



=

¯

Aq

(

X0qh

)

−1xb¯q exp

[(

x

+

X0qh

)/

¯

x

] +

1

+

˜

Aqxb˜q exp

(

x

/

x

¯

)

+

1

,

(2)

attheinputenergyscaleQ2

0

=

1 GeV2.Wenotethatthediffractive

term is absent in the quark helicity distribution



q and in the quarkvalencecontributionq

− ¯

q.

In Eqs. (1), (2) the multiplicative factors Xh

0q and

(

X

h

0q

)

−1 in

thenumeratorsofthenon-diffractivepartsofthe q’sandq’s

¯

dis-tributions, imply a modification of the quantum statistical form, wewereledtoproposeinordertoagreewithexperimentaldata. The presence of these multiplicative factors was justified in our earlierattempttogeneratethetransversemomentumdependence (TMD)[6],whichwasrevisitedrecently[7].Theparameterx plays

¯

theroleofauniversaltemperature and X±0q arethetwo thermody-namicalpotentials of thequark q,withhelicity h

= ±

.Notice the changeofsignofthepotentialsandhelicityfortheantiquarks.1

Foragivenflavorq thecorrespondingquarkandantiquark dis-tributions involve eight free parameters: X0q±, Aq, A

¯

q, A

˜

q, bq, b

¯

q and b

˜

q. It reduces to seven since one of them is fixed by the valence sum rule,



(

q

(

x

)

− ¯

q

(

x

))

dx

=

Nq, where Nq

=

2

,

1

,

0 for u

,

d

,

s, respectively. Forthe light quarks q

=

u

,

d, the total num-beroffreeparametersisreducedtoeight bytaking,asinRef.[1], Au

=

Ad, A

¯

u

= ¯

Ad, A

˜

u

= ˜

Ad,bu

=

bd,b

¯

u

= ¯

bd andb

˜

u

= ˜

bd.Forthe strangequarkandantiquarkdistributions,thesimplechoicemade inRef.[1]wasimprovedinRef.[2],butheretheyareexpressedin termsofseven freeparameters.

Forthegluonsweconsidertheblack-bodyinspiredexpression

xG



x

,

Q02



=

AGx

bG

exp

(

x

/

x

¯

)

1

,

(3)

aquasiBose–Einsteinfunction,withbGbeingtheonlyfree param-eter,since AG isdetermined by themomentum sumrule.Inour earlierworks [1,4], we were assuming that, at the input energy scale,thepolarizedgluon,distributionvanishes,so

x



G



x

,

Q02



=

0

.

(4)

However in ourrecent analysis ofa much larger setof very ac-curate unpolarizedandpolarized DISdata,we mustgive up this simplifyingassumption.Wearenowtaking



G



x

,

Q02



=

P

(

x

)

G



x

,

Q02



,

(5)

where P

(

x

)

isexpressedin termsoffour freeparameters, as fol-lows P

(

x

)

= ¯

AGxb¯G

/



cG

+

xdG



.

(6)

Wemusthave

|

P

(

x

)

|

1,toinsurethatpositivityissatisfied. Itisclearthatwedon’thaveaseriousjustificationofthe func-tionalform of



G

(

x

)

. However the above expression shows that it is strongly related to G

(

x

)

, since it is constructed by means ofaBose–Einstein distributionwithzeropotential. A simpler ex-pressionwouldbe P

(

x

)

=

Axb,buttheadditionaltermxdG inthe

denominatorisneededinordertogetareasonablefitofthedata aswewilldiscussbelow.

TosummarizethenewdeterminationofthePDFinvolvesa to-taloftwentyone freeparameters:inadditiontothetemperaturex

¯

1 Atvariancewithstatisticalmechanicswherethedistributionsareexpressedin

termsoftheenergy,hereoneusesx whichisclearlythenaturalvariableentering inallthesumrulesofthepartonmodel.

andtheexponentbG ofthegluondistribution,wehaveeight free parameters for the light quarks

(

u

,

d

)

, seven free parameters for the strange quarks and four free parameters forthe gluon helic-itydistribution.Theseparametersweredeterminedfromanext-to leading order (NLO) fit of a large set of accurate DIS data, (the unpolarizedstructure functionsF2p,n,d

(

x

,

Q2

)

,thepolarized struc-turefunctionsg1p,n,d

(

x

,

Q2

)

,thestructurefunctionxF ν3N

(

x

,

Q2

)

in

νN DIS,

etc...)atotalof2140experimentalpointswithanaverage

χ

2

/

pt of 1.33. Forthe polarizedstructure functions, itis slightly

better since for a total of 271 experimental points, we have an average

χ

2

/

pt of 1.21. Althoughthefull details ofthesenew

re-sultswill be presentedin a forthcomingpaper [8], we justwant tomakeageneralremark.Bycomparingwiththeresultsof2002 [1], we have observed a remarkable stability of some important parameters,thelightquarkspotentialsX±0uandX0d±,whose numer-icalvaluesarealmostunchanged.Thenewtemperatureisslightly lower. As a result the main features of the newlight quark and antiquarkdistributionsareonlyhardlymodified,whichisnot sur-prising,since our2002PDFsethasproven tohavearathergood predictivepower.

We now turn to the gluon helicity distribution which is the mainpurposeofthisletter.

3. Thegluonhelicitydistributionandtheprotonspin

The gluon helicity distribution



G

(

x

,

Q2

)

of the proton is a fundamentalphysicalquantityforourunderstandingoftheproton spin.Itsintegraloverx,



G

(

Q2

)

,maybeinterpreted,inthe light-cone gauge A+

=

0,asthe gluon spincontribution tothe proton spin[9].If

Σ(

Q2

)

denotesthetotalsumofquarkandantiquark

helicitycontributionsandLq,q¯,G

(

Q2

)

arethequark,antiquarkand gluonorbitalangularmomentumcontributions,theprotonhelicity sumrulereads

1

/

2

=

1

/

2



Q2



+ 

G



Q2



+

Lq



Q2



+

Lq¯



Q2



+

LG



Q2



.

(7)

Intheabovesumrule

Σ(

Q2

)

iscertainlythecontributionwhich

is bestknown, witha typical value

0

.

3 according to Refs. [10, 11] and also fromour own result. This contribution is therefore toosmalltosatisfythesumruleanditiscrucialtofindouthow much the gluon contributes to the proton spin, a long standing problem.

ThenewdeterminationofthePDFleads,inthegluonsector,to thefollowingparameters:

AG

=

36

.

778

±

0

.

085

,

bG

=

1

.

020

±

0

.

0014

,

¯

AG

=

0

.

731

±

0

.

001

,

b

¯

G

=

5

.

214

±

0

.

250

,

cG

=

0

.

006

±

0

.

0005

,

dG

=

6

.

072

±

0

.

35

,

(8) andthenewtemperatureis

¯

x

=

0

.

090

±

0

.

002.WedisplayinFig. 1 the gluon helicity distribution versus x atthe initial scale Q02

=

1 GeV2 andQ2

=

10 GeV2.Attheinitialscaleitissharplypeaked around x

=

0

.

4,butthisfeaturelessens aftersome evolution.We find that P

(

x

)

=

0

.

731x5.210

/(

x6.072

+

0

.

006

)

, which is such that

0

<

P

(

x

)

<

1 for0

<

x

<

1,sopositivityissatisfiedandinaddition thegluonhelicitydistributionremainspositive.

AsalreadymentionedthetermxdG playsanimportantrole.We

found that it hasa strong effect on the quality of the fit ofthe polarizedstructurefunctionssincethechi2increasessubstantially whendGdecreases.Thechi2whichis328fordG

=

6

.

072,becomes 337fordG

=

5,368fordG

=

4

.

5 and465fordG

=

4.Itsvaluealso affectstheshapeofthegluonhelicitydistribution,whichbecomes largertowardsthesmallerx-values,forsmallerdG.

(4)

Fig. 1. ThegluonhelicitydistributionxG(x,Q2)versusx,forQ2=1 GeV2

(dashed curve)andQ2=10 GeV2

(solidcurve),withthecorrespondingerrorband.

Fig. 2. G(x,Q2)/G(x,Q2) versus x,for Q2=2 GeV2 (solidcurve)and Q2=

10 GeV2(dashedcurve).ThedataarefromHERMES[12]andCOMPASS[13].

We display



G

(

x

,

Q2

)/

G

(

x

,

Q2

)

in Fig. 2 for two Q2 values

and some data points [12,13] suggestingthat the gluon helicity distributionispositiveindeed.Accordingtotheconstraintsofthe countingrules thisratio should goto 1 when x

=

1, butwe ob-servethatthisisnotthecasehere,sinceforexampleattheinitial scaleP

(

x

=

1

)

=

0

.

726.Insomeotherparameterizationsinthe cur-rentliterature,thisratiogoestozero,sincethelargex behaviorof x



G

(

x

)

is

(

1

x

)

β with

β



3[10,11].Clearlyoneneedsabetter knowledgeof



G

(

x

,

Q2

)/

G

(

x

,

Q2

)

forx

>

0

.

2.

Letus now examine the consequences of thisnew gluon he-licity distribution, with a rather strong Q2 dependence, on the proton helicity sum rule Eq. (7). By considering only the quark, antiquark andgluon helicity densities, we display in Fig. 3 their

Fig. 3. Totalcontributionofthequark,antiquarkΣ(x,Q2)andgluonG(x,Q2)

helicitydensities,totheprotonhelicitysumruleversusthelowerlimitofthe inte-gralxmin,fordifferentQ2values.

Fig. 4. Solidcurve:Ourpredicteddouble-helicityasymmetryAjetLLforjetproduction at BNL–RHICinthenear-forwardrapidityregion,versus pT andthedatapoints

fromRef.[14].Dashedcurve:TheapproximateexpressionEq.(9)withk=1/7.

contributions versus thelower limit ofthe integral xmin, for

dif-ferent Q2 values. For increasing Q2 they slowly saturate the

sum rule, allowing a decreasing positive contribution to the or-bital angular momentum, which definitely must change sign for Q2

=

1000 GeV2.

Finally, we would like to test our new gluon helicity dis-tribution in a pure hadronic reaction. In a very recent pa-per, the STAR Collaboration at BNL–RHIC has reported the ob-servation, in one-jet inclusive production, of a non-vanishing positive double-helicity asymmetry AjetLL for 5

pT

30 GeV, in the near-forward rapidity region [14]. We show in Fig. 4 our prediction2 compared with these high-statistics data points

2 WearegratefultoProf.W.Vogelsangforprovidinguswiththecodetomake

(5)

and the agreement is very reasonable. There is a simple way to understand the trend of this double-helicity asymmetry. In this kinematic region, where the jet has a pseudo-rapidity

η

close to zero and a moderate pT, the dominant subprocess is uG

uG, so we can write the following approximate expres-sion AjetLL

=

k



G

(

xT

)

G

(

xT

)

·



u

(

xT

)

u

(

xT

)

,

(9)

where xT

=

2pT

/

s and k is a normalization factor such that 0

k

1. It exhibits the strong correlation of AjetLL on the sign and magnitude of



G and the validity of this approximation is clearlyshowninFig. 4.

This new STAR data has been used recently by the DSSV Collaboration [15] to perform a new global polarized fit which leads them to extract also a rather large positive gluon helic-ity distribution (see also the recent NNPDF Collaboration paper [16]).

Althoughwe cannot yet firmly claim the discovery of a large positive gluon helicity distribution, giving a significant contribu-tion to the proton spin, these new results are strongly suggest-ing that we may have reached a benchmark in our knowledge ofthenucleonstructure.Otherindependentprocessessensitiveto



G

(

x

,

Q2

)

mustbeinvestigatedandinparticularin pp collisions,

the di-jetproduction atforward rapidity isnow strongly consid-eredatBNL–RHIC.

References

[1]C.Bourrely,F.Buccella,J.Soffer,Eur.Phys.J.C23(2002)487.

[2]C.Bourrely,F.Buccella,J.Soffer,Phys.Lett.B648(2007)39.

[3]C.Bourrely,F.Buccella,J.Soffer,Mod.Phys.Lett.A18(2003)771.

[4]C.Bourrely,F.Buccella,J.Soffer,Eur.Phys.J.C41(2005)327.

[5]C.Bourrely,F.Buccella,J.Soffer,Phys.Lett.B726(2013)296.

[6]C.Bourrely,F.Buccella,J.Soffer,Phys.Rev.D83(2011)074008.

[7]C.Bourrely,F.Buccella,J.Soffer,Int.J.Mod.Phys.A28(2013)1350026.

[8] C.Bourrely,F.Buccella,J.Soffer,inpreparation.

[9]E.Leader,C.Lorcé,Phys.Rep.541(2014)163andreferencestherein.

[10]D.deFlorian,R.Sassot,M.Stratmann,W.Vogelsang,Phys.Rev.Lett.101(2008) 072001;

D.deFlorian,R.Sassot, M.Stratmann,W.Vogelsang,Phys.Rev.D80(2009) 034030.

[11]R.D.Ball,etal.,NNPDFCollaboration,Nucl.Phys.B874(2013)36; J.Blümlein,H.Böttcher,Nucl.Phys.B841(2010)205;

E.Leader,A.V.Sidorov,D.B.Stamenov,Phys.Rev.D83(2010)114018; M.Hirai,S.Kumano,Nucl.Phys.B813(2009)106;

P.Jimenez-Delgado,A.Accardi,W.Melnitchouk,Phys.Rev.D89(2014)034025.

[12]A.Airapetian,etal.,J.HighEnergyPhys.1008(2010)130.

[13] M. Stolarski, COMPASS Collaboration, preliminary results presented at DIS 2014.

[14]L.Adamczyk,etal.,STARCollaboration,arXiv:1405.5134[hep-ex].

[15]D.deFlorian,R.Sassot,M.Stratmann,W.Vogelsang,Phys.Rev.Lett.113(2014) 012001.

Figure

Fig. 1. The gluon helicity distribution x  G ( x , Q 2 ) versus x, for Q 2 = 1 GeV 2 (dashed curve) and Q 2 = 10 GeV 2 (solid curve), with the corresponding error band.

Références

Documents relatifs

Les éoliennes à axe vertical ont été les premières structures développées pour produire de l’électricité paradoxalement en contradiction avec le traditionnel moulin à vent à

First, we mention that the numerical results satisfy the theoretical properties proved in [9] and in Theorem 1.3: the lack of triple points, the lack of triple points on the

Proposition Une matrice A (resp. un endomorphisme u d’un espace de di- mension finie E) est diagonalisable si et seulement si il existe un poly- nôme annulateur de A (resp.

Proposition Une matrice A (resp. un endomorphisme u d’un espace de di- mension finie E) est diagonalisable si et seulement si il existe un poly- nôme annulateur de A (resp.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

This conjecture, which is similar in spirit to the Hodge conjecture, is one of the central conjectures about algebraic independence and transcendental numbers, and is related to many

Thus, despite the work undertaken by our Indian colleagues over the last forty years, a great deal of research is needed to at least understand the basic anthropological

The second one follows formally from the fact that f ∗ is right adjoint to the left-exact functor f −1.. The first equality follows easily from the definition, the second by